铁电/AlGaN/GaN半导体异质薄膜的界面表征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
界面是功能氧化物/半导体异质薄膜研究的重要内容。功能氧化物/半导体薄膜既具有以半导体载流子的场效应与输运性质,又具有氧化物材料丰富的功能效应,如超导、铁磁、铁电、压电、电光等。如何在功能氧化物/半导体异质界面上,将半导体的场效应与氧化物的功能效应相互集成,诱导出新现象和新效应,进而研制新型器件是当前材料和器件研究的热点之一。尽管功能氧化物/半导体异质薄膜的制备技术在近几年出现了显著的进步,但是,由于理论和实验手段的制约,尤其是界面表征手段的缺乏,人们对功能氧化物/半导体界面有关物理性质和机制的认识还相当有限,阻碍了功能氧化物/半导体异质薄膜及其器件的进一步发展。
     本论文以典型的功能氧化物/半导体薄膜——铁电/AlGaN/GaN异质薄膜的界面为主要研究对象,针对三种界面:AlGaN/GaN异质界面、铁电/半导体异质界面和铁电畴壁界面,分别研究界面二维电子气(2DEG)、界面电荷陷阱态、极化反转与畴壁界面运动的表征方法。并以此为基础,研究这些界面特性与铁电/AlGaN/GaN半导体异质薄膜电性能之间的关系。
     首先,在纳米尺度上对AlGaN/GaN异质界面2DEG进行了表征研究。采用极弱电容信号的锁相放大技术,研制了微区电容测试系统,局域电容的分辨率达到10 aF(10-18 F)。通过有限元计算模拟,分析了探针针尖与界面2DEG电容与杂散电容的分布规律,发现降低杂散电容和控制针尖接触半径是准确检测局域2DEG电容—电压(C-V)特性的关键。提出“探针电流—半径比例法”,实现了界面局域2DEG浓度的定量检测,测量结果与宏观C-V测试结果具有可比性。利用该方法,发现2 nm超薄介质缓冲层对AlGaN/GaN异质界面2DEG的C-V特性的影响起着决定性的作用。实验结果表明,保证兼容性外延生长的条件下,MgO缓冲层比TiO2缓冲层更利于保持AlGaN/GaN异质界面2DEG的原有特性。
     其次,研究了界面电荷陷阱的表征以及电荷陷阱对铁电/AlGaN/GaN异质薄膜电性能的影响。通过建立“铁电/AlGaN”和“AlGaN/GaN”界面陷阱态的等效电导模型,实现了铁电/AlGaN/GaN异质薄膜界面电荷陷阱的定量表征。针对铌酸锂型和钙钛矿型两类典型的铁电/AlGaN/GaN异质薄膜,系统研究了铁电层结构、缓冲层材料、复合缓冲层结构等对界面电荷陷阱密度和分布的影响。研究发现LiNbO3/AlGaN/GaN异质薄膜中存在界面陷阱态和体陷阱态。两种陷阱态具有不同的时间常数,其中,界面陷阱态是影响二维电子气C-V回滞特性的主导因素,而体陷阱态是决定异质薄膜漏电机制的主要原因。与铌酸锂型结构相比,钙钛矿型铁电/AlGaN/GaN结构的界面陷阱态密度较之高出一到两个数量级。采用TiO2/MgO复合缓冲层,可以将无缓冲层的PZT/AlGaN/GaN界面陷阱密度降低一个数量级,达到1011cm-2eV-1,同时显著改善异质结器件的漏电特性。通过降低界面陷阱态和注入电荷,减小了界面电荷对铁电极化的屏蔽作用,改善了铁电极化反转对2DEG的调制作用。
     最后,对铁电极化反转特性和电畴的运动特性进行了表征研究。通过建立电极式PFM表征方法,实现了反转过程中电畴演变的监测和局域压电响应回线的测量,解决了宏观极化电滞回线测量无法表征铁电/半导体结构的问题。采用这种方法,对比研究了STO基和GaN基铁电薄膜极化反转过程中畴壁界面运动特性。发现PZT/SrRuO3/TiO2/GaN外延薄膜的极化反转以微区(约1μm)到微区的“成核—融合”方式进行,而且不同微区间新畴的成核特征时间和畴壁的运动速度呈弥散分布。这为解释GaN基铁电薄膜极化反转不同于STO基铁电薄膜的经典成核限制反转机制提供了直接的实验证据,为进一步研究铁电/AlGaN/GaN异质薄膜的极化过程提供了一种新的方法。
Interface is of importance for the functional oxide/semiconductor heterostructured films. The heterostructured films has not only the field effect and the transport properties of charge carriers, but also the fruitful properties of oxides, such as superconducting, ferromagnetic, ferroelectric, piezoelectric, and optioelectic functions. One of the current research focuses is to combine these versatile properties with field effect at the interface. This may induce new phenomena and new effects. Recent years have evident a great advance of the growth method for the function oxide/semiconductor hetero-structured films. However, the further development of the function oxide/semiconductor films is hindered by the limited understanding of their interface properties, especially the lack of efficient characterization methods.
     Therefore, in this thesis we focus on the characterization study of the interfaces of ferroelectric/AlGaN/GaN heterostructured thin films, including AlGaN/GaN, ferroelectric/semiconductor (F/S), and ferroelectric domain wall (DW) interfaces. The nanoscale characterization of the two-dimensional electron gas (2DEG) at AlGaN/GaN interfaces, quantitative evaluation of interface trap states at F/S interfaces, and the kinetics of DW interfaces are systematically studied to understand the relationship between macroscopic properties of ferroelectric/AlGaN/GaN and these interface.
     For AlGaN/GaN interfaces, the nanoscale characterization of the 2DEG are successfully demonstrated by the home-build nanoscale capacitance spectroscopy (NCS) based on the probe of an atomic force microscopy. The capacitance resolution of NCS is about 10 aF (10x10-18 F). A current measuring method is proposed to determine the contact radius of the probe, and helps our NCS quantitatively characterize the local density of 2DEG. By using NCS, the effect of ultra-thin (~ 2 nm) MgO and TiO2 buffers on the properties of 2DEG is studied. It is found that MgO is superior to TiO2 for preserving the original properties of 2DEG when dielectric oxides are epitaxially grown on the AlGaN/GaN heterostructures.
     For F/S interfaces, the trap states are studied by the conductance method. A model for the effective conductance are proposed to separate the contributions of the trap states at the AlGaN/GaN interace and the ferroelectric/AlGaN interface. Using this model, two different trap states, including interface traps and bulk traps are found in the LiNbO3/AlGaN/GaN structure, and the effect of buffers of PZT/AlGaN/GaN on the interface trap density are systematically studied. It is found that LiNbO3/AlGaN/GaN has lower trap densities, and TiO2/MgO buffers are good candidates for reducing taps densities and leakage currents.
     In order to characterize the nanoscale DW interfaces and switching processes simultaneously, an electrode-piezoresponse force microscopy (PFM) was developed by combining a PFM with the pulse switching current measurement. Using the electrode-PFM, a comparative study was performed on PZT/SRO/STO, PZT/SRO/TiO2/GaN structures. By imaging the motion of DW interfaces during the polarization switching, a region-by-region nucleation-coalescence process are found in the PZT/SRO/TiO2/GaN structure. This process differs significantly from that of PZT/SRO/STO, which obey classical nucleation-limited-switching model. These characterization methods provide new tools for the further studies of ferroelectric oxide/semiconductor heterostructures.
引文
[1] J. L. Moll,Y. Tarui. A new solid state memory resistor. IEEE Trans. Electron Devices, 1963, Vol.10(3): 338-340
    [2] Yasuo Tarui, Tadahiko Hirai, Kazuhiro Teramoto, et al. Application of the ferroelectric materials to ULSI memories. Applied Sufuce Science, 1997, Vol.113(7): 656-658
    [3] J. F. Scott. Applications of Modern Ferroelectrics, Science, 2007, Vol.315(4): 954-958
    [4] M. Dawber, K.M. Rabe, J.F. Scott. Physics of thin-film ferroelectric oxides. Rev. Mod. Phys., 2005, Vol.77(6): 1083-1090
    [5] J. Hoffman, X. Pan , J. W. Reiner, et al. Ferroelectric Field Effect Transistors for Memory Applications. Adv. Mater., 2010, Vol.22(8): 2957-2960
    [6] J. W. Reiner, A. M. Kolpak, Y. Segal, et al. Crystalline Oxides on Siliconm. Advanced Materials, 2010, Vol.22(6): 2919-2922
    [7] C. H. Ahn, K. M. Rabe, J.-M. Triscone. Ferroelectricity at the nanoscale:local polarization in oxide thin films and heterostructures. Science, 2004, Vol.303(9):488-491
    [8]虞丽生.半导体异质结物理.北京:科学出版社, 2006, 121-122
    [9]王占国.半导体光电信息功能材料研究进展.新材料产业, 2009, Vol.1(1): 65-73
    [10] C. Wood, D. Jena. Polarization Effects in Semiconductors From Ab InitioTheory to Device Applications. New York: Springer, 2008, 230-341
    [11] Stephen J. Pearton, Fan Ren. GaN electronics. Adv. Mater., 2000, Vol.12(8): 1571-1580
    [12] S. J. Pearton, F. Ren, A. P. Zhang, et al. GaN electronics for high power, high temperature applications. Materials Science and Engineering B, 2001, Vol.82(5): 227-231
    [13] S. J. Pearton, F. Ren, A. P. Zhang et al. Fabrication and performance of GaN electronic devices. Materials Science and Engineering:R, 2000, Vol.30(1): 55-212
    [14] A. P. Zhang, S. J. Pearton, F. Ren, et al. High power GaN electronic devices. Critical Reviews in Solid State and Materials Sciences, 2001, Vol.1(7): 1-71
    [15] S Bernet. Recent developments of high power converters for industry and traction applications. IEEE Transactions on Power Electronics, 2000, Vol.15(6): 1102-1117
    [16]赵小玲,李清秀.国外军事和宇航应用宽带隙半导体技术的发展.半导体技术, 2009, Vol.34(5):621-625
    [17] N Setter, D Damjanovic, L Eng, et al. Ferroelectric thin films:Review properties, and applications. J. of Appl. Phys., 2006, Vol.10(7): 051606-051646
    [18] D Damjanovic. Ferroelectric, dielectric and piezoelectric prperties of ferroelectric thin films and ceramics. Rep. Prog. Phys, 1999, Vol.61(4): 1267-1324
    [19] G. Koley, M. G. Spencer. On the origin of the two-dimensional electron gas at the AlGaN/GaN heterostructure interface. Appl. Phys. Lett., 2005, Vol.86(3): 042107-042109
    [20] E. J. Miller, E. T. Yu, C. Poblenz, et al. Direct measurement of the polarization charge in AlGaN/GaN heterostructures using capacitance-voltage carrier profiling. Appl. Phys. Lett., 2002, Vol.80(3): 3551-3553
    [21] H. Zhang, E. J. Miller, E. T. Yu, et al. Measurement of polarization charge and conduction band offset at InxGa1-xN/GaN heterojunction interfaces. Appl. Phys.Lett., 2004, Vol.84(4): 4644-4646
    [22] M. A. Khan, X. Hu, G. Sumin, et al. AlGaN/GaN metal oxide semiconductor field effect transistor. IEEE Electron Device Lett., 2000, Vol.21(1): 63-65
    [23] Tanaka H, Misono M. Advances in designing perovskite catalysts. Current opinion in solid state and materials science, 2001, Vol.5(5): 381-387
    [24] J. H. Haeni, C. D. Theis, D. G. Schlom, et al. Epitaxial growth of the first five members of the Srn+1TinO3n+1 Ruddlesden–Popper homologous series. Appl. Phys. Lett., 2001, Vol.78(3): 3292-3294
    [25]钟维烈.铁电体物理学.北京:科学出版社, 2000, 76-152
    [26] R. E. Schaak, T. E. Mallouk. Prying apart Ruddlesden?Popper phases:exfoliation into sheets and nanotubes for assembly of perovskite thin films. Chem. Mater., 2000, Vol.12 (11): 3427–3434
    [27] B. T. Batthais, A. von Hippel. Domain structure and dielectric response of Barium Titanate single crystal. Phys. Rev., 1948, Vol.73(4): 1378-1382
    [28] L. E. Cross. Ferroelectric Ceramics-Tutorial Reviews, Theory, Processing and Applications. Basel:Birkhauser Verlag, 1993, 56-72
    [29] R. C. Buchanan. Ceramic Materials for Electronics - Processing, Properties and Applications. New York: Marcel Dekker, 1986, 38-42
    [30] A. J. Moulson, J. M. Herbert. Electroceramics, Materials, Properties, and Applications. London:Chapman and Hall, 1990, 27-39
    [31] Y. Xu. Ferroelectric Materials and their Applications. Amsterdam: North Holland, 1991, 13-17
    [32] T. Volk, M. W?hlecke. Lithium Niobate: Defects, Photorefraction and Ferroelectric Switching. Berlin:Springer, 2008, 270-275
    [33] M. Lines, A. Glass. Principles and applications of ferroelectrics and related materials. Oxford: Clarendon Press, 1979, 301-305
    [34] L. D. Landau, E. M. Lifshitz. Statistical Physics. London: Pergamon, 1968, 180-190
    [35] Hongtao Xu. MMICs using GaN HEMTs and thin-film BST capacitors: [PhD Thesis]. Santa Barbara: University of California, 2005, 25-27
    [36] H. Xu, N. K. Pervez, P. J. Hansen, et al. Integration of BaxSr1-xTiO3 thin AlGaN/GaN HEMT circuits. IEEE electron device letter, 2004, Vol.25(1): 49-51
    [37] Wei Cao. Processing and properties of lead zirconate titanate thin films on gallium nitride and ruthenium by sol-gel and chemical vapor deposition:[PhD Thesis]. Arizona: Arizona State University, 2005, 57-59
    [38] P. J. Hansen, L. Shen, Y. Wu, et al. AlGaN/GaN metal-oxide-semiconductor heterostructure field-effect transistors using barium strontium titanate. J. Vac. Sci. Technol. B, 2004, Vol.22(8): 2479-2482
    [39] I. Stolichnov, L. Malin, P. Muralt, et al. Ferroelectric gate for control of transport properties of two-dimensional electron gas at AlGaN/GaN heterostructures. Appl. Phys. Lett., 2006, Vol.88(4): 043512-043515
    [40] L. Malin, I. Stolichnov, N. Setter. Ferroelectric polymer gate on AlGaN/GaN heterostructures. J. Appl. Phys., 2007, Vol.102(11): 114101-114105
    [41] B. Shen, W. Li, T. Someya, et al. Influence of ferroelectric polarization on the properties of two-dimensional electron gas in Pb(Zr0.53Ti0.47)O3/AlxGa1-xN/GaN Structures. Jpn. J. Appl. Phys., 2002, Vol.41:2528-2530
    [42] Youn-Seon Kang, Qian Fan, Bo Xiao, et al. Fabrication and current-voltage characterization of a ferroelectric lead zirconate titanate/AlGaN/GaN field effect transistor. Appl. Phys. Lett., 2006, Vol.88(12): 123508-123510
    [43] W. B. Luo, J. Zhu, H. Chen, et al. Improved crystalline properties of laser molecular beam epitaxy grown SrTiO3 by rutile TiO2 layer on hexagonal GaN. J. Appl. Phys., 2009, Vol.106(10): 104120-104124
    [44] Dorfman S, Fuks D, Kotomin E. Comparative study of [001] surface relaxations of perovskite titanates. Thin Solid Films, 1998, Vol.318(1): 65-68
    [45] J A Kilner, R A Souza, I C Fullarton. Surface exchange of oxygen in mixed conducting perovskite oxides. Solid State Ionics, 1996, Vol.86-88(3): 703-709
    [46] T Ishihara, J A Kilner, M Honda, et al. Oxygen surface exchange and diffusion in LaGaO3 based perovskite type oxides. Solid State Ionics, 1998, Vol.113(2): 593-600
    [47] Clark A M, Hao J H, Si W, et al. Properties of interfaces between SrTiO3 thin films and electrodes. Integr. Ferroelectr., 2000, Vol.29(2): 309-313
    [48] N Nakagawa, H Y Hwang, D A Muller. Why Some Interfaces Cannot be Sharp. Nature Mater., 2006, Vol.5(1): 204-208
    [49] R J Francis, S C Moss, A Jacobson. X-ray truncation rod analysis of the reversible temperature-dependent [001] surface structure of LaAlO3. Phys. Rev. B, 2001, Vol.64(23): 235425-235429
    [50] A A Knizhnik, I M Iskandarova, A A Bagaturyants, et al. First-principles calculations of the electrical properties of LaAlO3 and its interface with Si. Phys. Rev. B, 2005, Vol.72(23): 235329-235333
    [51] R. Resta. Macroscopic polarization in crystalline dielectrics: The geometric phase approach, Rev. Mod. Phys., 1994, Vol.66, 899-902
    [52] M. Posternak, A. Baldereschi, A. Catellani, et al. Ab initio study of the spontaneous polarization of pyroelectric BeO. Phys. Rev. Lett., 1990, Vol.64(2):1777-1780
    [53] F. Bernardini, V. Fiorentini. Macroscopic polarization and band offsets at nitride heterojunctions. Phys. Rev. B, 1998, Vol.57(9): R9427-9430
    [54] O. Ambacher, B. Foutz1, J. Smart, et al. Two dimensional electron gases induced by spontaneous and piezoelectric polarization in undoped and doped AlGaN/GaN heterostructures. J. Appl. Phys., 2000, Vol.87(2): 334-337
    [55] O. Ambacher, J. Smart, J. R. Shealy, et al. Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures. J. Appl. Phys., 1999, Vol.85(3): 3222-3236
    [56] Fabio Bernardini, Vincenzo Fiorentini, David Vanderbilt. Spontaneous polarization and piezoelectric constants of III-V nitrides. Phys. Rev. B, 1997, Vol.56(10): R10024-10030
    [57] D. K. Schroder. Semiconductor Material and Device Characterization. New York: Wiley-Interscience IEEE, 2006, 258-320
    [58] H. Kroemer, W.Y. Chien, J.S. Harris, et al. Measurement of Isotype Heterojunction Barriers by C–V Profiling. Appl. Phys. Lett., 1980, Vol.36(2): 295-297
    [59] M.A. Rao, E.J. Caine, H. Kroemer, et al. Determination of Valence and Conduction Band Discontinuities at the (Ga,In)P/GaAs Heterojunction by C–V Profiling. J. Appl. Phys., 1987, Vol.61(4): 643–649
    [60] D.N. Bychkovskii, O.V. Konstantinov, M.M. Panakhov. Method for Determination of the Band Offset at a Heterojunction from Capacitance-Voltage Characteristics of an M-S Heterostructure. Sov. Phys. Semicond., 1992, Vol.26(2): 368-371
    [61] H. Kroemer. Determination of Heterojunction Band Offsets by Capacitance-Voltage Profiling Through Nonabrupt Isotype Heterojunctions. Appl. Phys. Lett., 1985, Vol.46(2): 504-506
    [62] A. Morii, H. Okagawa, K. Hara, et al. Band Discontinuity at AlxGa1?xP/GaP Heterointerfaces Studied by Capacitance-Voltage Measurements. Japan. J. Appl. Phys., 1992, Vol.31(5): L1161-1165
    [63] H. Li, X. Hu, Y. Wei, Z. Yu, et al. Two-Dimensional growth of high-quality strontium titanate thin films on Si. J. Appl. Phys., 2003, Vol.93(4): 4521- 4525
    [64] R. A. McKee, F. J. Walker, M. F. Chisholm. Physical structure and inversion charge at a semiconductor interface with a crystalline oxide. Science, 2001, Vol.293(2):468-471
    [65] R. A. McKee, F. J. Walker, M. F. Chisholm, Crystalline Oxides on Silicon:The First Five Monolayers. Phys. Rev. Lett., 1998, Vol.81(5): 3014–3017
    [66] Y. Liang, J. Kulik, T. C. Eschrich, et al. Hetero-epitaxy of perovskite oxides by molecular beam epitaxy. Appl. Phys. Lett., 2004, Vol.85(7): 1217–1219
    [67] H. S. Craft, J. F. Inlefeld, M. D. Losego, et al. MgO epitaxy molecular beam epitaxy. Appl. Phys. Lett., 2006, Vol.88(21): 212906-212908
    [68] Chae-Ryong Cho, Jae-Yeol Hwang, Jong-Pil Kim, et al. Growth and characterization of (Ba0.5Sr0.5)TiO3 films epitaxially grown on (002) GaN/(0006) Al2O3 Electrode. Jpn. J. Appl. Phys., 2004, Vol.43(7): L1425-L1428
    [69] K.R. Balasubramanian, Kai-Chieh Chang, A Feroz, et al. Growth and structural investigations of epitaxial hexagonal YMnO3 thin films deposited on wurtzite GaN(001) substrates. Thin Solid Films, 2006, Vol.515(6):1807-1813
    [70] Chae-Ryong Cho, Jae-Yeol Hwang, Jong-Pil Kim, et al. Heteroepitaxial growth and ferroelectricity of Bi3.25La0.75Ti3O12 films on n-GaN/Al2O3(0001) substrates prepared by pulsed-laser deposition. Jpn. J. Appl. Phys., 2004, Vol.43(7): L7625-L7626
    [71] Yukio Watanabe. Physics of Ferroelectric Interfaces:An Attempt at Nanoferroelectric Physics. Topics Appl. Phys., 2005, 98: Vol(2): 177-199
    [72] Y. Watanabe. Theoretical stability of the polarization in insulating ferroelectric/ semiconductor structures, J. Appl. Phys., 1998, Vol.83(5): 2179-2182
    [73] Y. Watanabe. Erratum: Theoretical stability of the polarization in insulating-ferroelectric/ semiconductor structures. J. Appl. Phys., 1998, Vol.84(6): 3238
    [74] T.P. Ma, Jin-Ping Han. Why is Nonvolatile Ferroelectric Memory Field-Effect Transistor Still Elusive. IEEE Electron Device Letters, 2002, Vol.23(4): 386-388
    [75] H. Ishiwara, M. Okuyama, Y. Arimoto. Ferroelectric Random Access Memories: Fundamentals and Applications. New York: Springer, 2004, 301-305
    [76] Sang-Mo Koo, Sergey Khartsev, Carl-Mikael Zetterling, et al. Ferroelectric Pb(Zr0.52Ti0.48)O/SiC field-effect transistor. Appl. Phys. Lett., 2003, Vol.83(11): 3975-3977
    [77] Z. P. Wu, W. Huang, K. H. Wong, et al. Structural and dielectric properties of epitaxial SrTiO3 films grown directly on GaAs substrates by laser molecular beam epitaxy. J. Appl. Phys., 2008, Vol.104(5): 054103-054106
    [78] W. Huang, Z. P. Wu, J. H. Hao. Electrical properties of ferroelectric BaTiO3 thin film on SrTiO3 buffered GaAs by laser molecular beam epitaxy. Appl. Phys. Lett., 2009, Vol.94(3): 032905-032907
    [79] I. Stolichnov, E. Colla, N. Setter, et al. Nonvolatile Gate Effect in a Ferroelectric- Semiconductor Quantum Well. Phys. Rev. Lett., 2006, Vol.97(24): 247601-247604
    [80] Ohtomo, H. Y. Hwang. A high-mobility electron gas at the LaAlO3/SrTiO3 heterointerface. Nature, 2004, Vol.427(42): 423-426
    [81] B. Meyer, D. Vanderbilt. Ab initio study of ferroelectric domain walls in PbTiO3. Phys. Rev. B, 2002, Vol.65(10): 104111-1044114
    [82] L. He, D. Vanderbilt. First-principles study of oxygen-vacancy pinning of domain walls in PbTiO3. Phys. Rev. B, 2003, Vol.68(13): 134103-134106
    [83] S.M. Nakhmanson, K.M. Rabe, David Vanderbilt. Predicting polarization enhancement in multicomponent ferroelectric superlattices. Phys. Rev. B, 2006, Vol.73(06): R060101- 060105
    [84] R.I. Eglitis, David Vanderbilt. Ab initio calculations of BaTiO3 and PbTiO3 (001) and (011) surface structures. Phys. Rev. B, 2007, Vol.76(15): 155439-155443
    [85] J. Padilla, W. Zhong, David Vanderbilt. First-Principles Investigation of 180 degree Domain Walls in BaTiO3. Phys. Rev. B, 1996, Vol.53(59): R5969-5972
    [86] X.Zhang, T.Hashimoto, D.C.Joy. Electron holographic study of ferroelectric domain walls. Appl. Phys. Lett., 1992, Vol.60(2): 784-786
    [87] T. Giamarchi. Quantum Phenomena in Mesoscopic Systems. Proceedings of the International School of Physics. Amsterdam: IOS Press, 2003, 175-177
    [88] A. B. Kolton, A. Rosso, T. Giamarchi. Creep motion of an elastic string in a random potential. Phys. Rev. Lett., 2005, Vol.94(04): 047002-047005
    [89] A. B. Kolton, A. Rosso, T. Giamarchi, et al. Dynamics below the Depinning Threshold in Disordered Elastic Systems. Phys. Rev. Lett., 2006, Vol.97(5): 057001-057004
    [90] A. B. Kolton, A. Rosso, T. Giamarchi. Nonequilibrium Relaxation of an Elastic String in a Random Potential. Phys. Rev. Lett., 2005, Vol.94(4): 047002-047005
    [91] S. Brazovskii, T. Nattermann. Pinning and sliding of driven elastic systems:from domain walls to charge density waves. Adv. Phys., 2004, Vol.53(1): 177-180
    [92] G. Blatter, M. V. Feigel’man, V. B. Geshkenbein, et al. Vortices in high-temperature superconductors. Rev. Mod. Phys., 1994, Vol.66(3): 1125-1128
    [93] X. Du, G. Li, E. Y. Andrei, et al. Ageing memory and glassiness of a driven vortex system. Nat. Phys., 2007, Vol.3(1): 111-114
    [94] S. Lemerle, J. Ferré, C. Chappert, et al. Domain Wall Creep in an Ising Ultrathin Magnetic Film. Phys. Rev. Lett., 1998, Vol.80(2), 849-852
    [95] M. Yamanouchi, D. Chiba, F. Matsukura, et al. Velocity of Domain-Wall Motion Induced by Electrical Current in the Ferromagnetic Semiconductor (Ga,Mn)As. Phys. Rev. Lett., 2006, Vol.96(09): 096601-096604
    [96] V. Repain, M. Bauer, J. P. Jamet, et al. Creep motion of a magnetic wall: Avalanche size divergence. Europhys. Lett., 2004, Vol.68(2): 460-463
    [97] P. J. Metaxas, J. P. Jamet, A. Mougin, et al. Creep and Flow Regimes of Magnetic Domain-Wall Motion in Ultrathin Pt/Co/Pt Films with Perpendicular Anisotropy. Phys. Rev. Lett., 2007, Vol.99(21): 217208-217211
    [98] S. Moulinet, A. Rosso, W. Krauth, et al. The distribution of contact lines on a disordered substrate. Phys. Rev. E, 2004, Vol.69(03): R035103-035106
    [99] P. Paruch, T. Giamarchi, J. M. Triscone. Domain Wall Roughness in Epitaxial Ferroelectric PbZr0.2Ti0.8O3 Thin Films. Phys. Rev. Lett., 2007, Vol.94(19): 197601-197604
    [100] P. Paruch, J.-M. Triscone. High-temperature ferroelectric domain stability in epitaxial PbZr0.2Ti0.8O3 thin films. Appl. Phys. Lett., 2006, Vol.88(16): 162907-162909
    [101] D. J. Kim, J. Y. Jo, T. H. Kim, S. M. Yang, et al. Observation of inhomogeneous domain nucleation in epitaxial Pb(Zr,Ti)O3 capacitors. Appl. Phys. Lett., 2007, Vol.91(13): 132903-132905
    [102] J. Y. Jo, H. S. Han, J.-G. Yoon, et al. Domain Switching Kinetics in Disordered Ferroelectric Thin Films. Phys. Rev. Lett., 2007, Vol.99(26): 267602-267605
    [103]王恩哥.薄膜生长中的表面动力学Ⅰ.物理学进展, 2003, Vol.23(1): 1-61
    [104] D. M. Kolb, G. Lehmpfuhl. The advantages of RHEED over LEED for surface studies of emersed electrodes. J. Electrochem. Soc. 1980, Vol.127(1): 243-244
    [105]祁景玉. X射线结构分析.上海:同济大学出版社, 2003: 79-83
    [106] G. Binning, C.F. Quate, C. Gerber. Atomic force microscope. Phys. Rev. Lett., 1986, Vol.56(2): 930-933
    [107] S.V. Kalinin, B.J. Rodriguez, S. Jesse, et al Electromechanics of Ferroelectric and biological Systems. Annu. Rev. Mat. Sci., 2007, Vol. 37(1): 189-192
    [108] A. Gruverman, O. Auciello, H. Tokumoto, et al. Imaging and Control of Domain Structures in Ferroelectric Thin Films via Scanning Force Microscopy. Nanotechnlogy, 1998, Vol.28(1): 101-104
    [109] M.Alexe, A.Gruverman. Ferroelectrics at Nanoscale:Scanning Probe Microscopy Approach. New York: Springer, 2004, 162-167
    [110] S.V. Kalinin, S. Jesse, B.J. Rodriguez, et al. Recent Advances in Electromechanical Imaging on the Nanometer Scale:Polarization Dynamics in Ferroelectrics, Biopolymers, and Liquid Imaging. Jap. J. Appl. Phys., 2007, Vol. 46(56): 5674-5678
    [111] C. C. Shi, P. M. Asbeck, E. T. Yu. Piezoelectric polarization associated with dislocations in wurtzite GaN. Appl. Phys. Lett., 1999, Vol.74(2): 573–575
    [112] J. Elsner, R. Jones, M. I. Heggie, et al. Deep acceptors trapped at threading-edge dislocations in GaN. Phys. Rev. B, 1998, Vol.5(12): 12571-12575
    [113] K. Leung, A. F.Wright, E. B. Stechel. Charge accumulation at a threading edge dislocation in gallium nitride. Appl. Phys. Lett., 1999,Vol.74(3), 2495–2497
    [114] S. J. Rosner, E. C. Carr, M. J. Ludowise, et al. Correlation of cathodoluminescence inhomogeneity with microstructural defects in epitaxial GaN grown by metalorganic chemical-vapor deposition. Appl. Phys. Lett., 1997, Vol.70(3): 420–422
    [115] G. Gomila, J. Toset, L. Fumagalli. Nanoscale capacitance microscopy of thin dielectric films. J. Appl. Phys., 2008, Vol.104(02): 024315-024318
    [116] L Fumagalli, G Ferrari, M Sampietro, et al. Nanoscale capacitance imaging with attofarad resolution using ac current sensing atomic force microscopy. Nanotechnology 2006, Vol.17(31): 4581-4584
    [117] P. Horowitz, W. Hill. The Art of Electronics. Cambridge:Cambridge University Press, 1989, 605-613
    [118] B. M. Law, F. Rieutord. Electrostatic forces in atomic force microscopy. Phys. Rev. B, 2002, Vol.66(03): 035402-035406
    [119] A Gil , J Colchero , J Gómez-Herrero, et al. Electrostatic force gradient signal:resolution enhancement in electrostatic force microscopy and improved Kelvin probe microscopy. Nanotechnology, 2003, Vol.14(1): 332-335
    [120] J. Yoshida. Classical versus quantum mechanical calculation of the electron distribution at the n-AIGaAs/GaAs heterointerface. IEEE Transactions on Electron Devices, 1986, Vol.33(1): 154-157
    [121] X. Aymerich-Humet. F. Serra-Mestres. J. Millan. A generalized approximation of the Fermi–Dirac integrals. J. Appl. Phys., 1983, Vol.54(3): 2850-2853
    [122] Press W H. Numerical Recipies in FORTRAN 77:The Art of Scientific Computing. Cambridge:Cambridge University Press, 1992, 721-724
    [123] http://www.ioffe.ru/SVA/NSM/
    [124] S. Akita. H. Nishijima. Y. Nakayama. Influence of stiffness of carbon-nanotube probes in atomic force microscopy. J. Phys. D:Appl. Phys., 2000, Vol.33(30): 2673-2676
    [125] Daniel M. Schaadt, Eric J. Miller, Edward T. Yu, et al. Lateral variations in threshold voltage of an AlxGa1–xN/GaN heterostructure field-effect transistor measured by scanning capacitance spectroscopy. Appl. Phys. Lett., 2001, Vol.78(1): 88-91
    [126] J. Robertson. B. Falabretti. Band offsets of high K gate oxides on III-V semiconductors. J. Appl. Phys., 2006, Vol.100(01): 014111-014114
    [127] John Robertson. High K Dielectrics for Future CMOS Devices. ECS Trans, 2009, Vol.19(2): 579-582
    [128] John Robertson. Maximizing performance for higher K gate dielectrics. J. Appl. Phys., 2008,. Vol.104(12): 124111-124115
    [129] Atsushi Masuda, Shinya Morit, Hideki Shigeno, et al. Fabrication of Pb(Zr,Ti)O3/MgO/GaN/ GaAs structure for optoelectronic device applications. J. of Crystal Growth,1998, Vol.189(1): 227-230
    [130] Lee Ching-Ting, Chen Hong-Wei, Lee Hsin-Ying. Metal-oxide-semiconductor devices using Ga2O3 dielectrics on n-type GaN. Appl. Phys. Lett., 2003, Vol.82(24): 4304-4306.
    [131] P. D. Ye, B. Yang. K, K Ng, et al. GaN metal-oxide-semiconductor high-electronmobility- transistor with atomic layer deposited Al2O3 as gate dielectric. Appl. Phys. Lett., 2005, Vol.86(06): 063501-063503
    [132] Chang Liu, Eng Fong Chor, Leng Seow Tan. Enhanced device performance of AlGaN/GaN HEMTs using HfO2 high-kdielectric for surface passivation and gate oxide. Semicond. Sci. Technol., 2007, Vol.22(2): 522–527
    [133] Y. Irokawa. Y. Nakano. M. Ishiko. et al. MgO/p-GaN enhancement mode metal-oxide semiconductor field-effect transistors. Appl. Phys. Lett.. 2004. Vol.84(15): 2919-2921.
    [134] H.Z. Zeng, L.Z. Hao, W.B. Luo, et al. Trapping properties of LiNbO3/AlGaN/GaN metal-ferroelectric-semiconductor heterostructure characterized by temperature dependent conductance measurements. J. Appl. Phys., 2010, Vol.107(08): 084508-084510
    [135] E. H. Nicollian, J. R. Brews. MOS Physics and Technology. New York: Wiley, 2003, 339-340
    [136] L. Z. Hao, J. Zhu, W. B. Luo, et al. Electron trap memory characteristics of LiNbO3 film /AlGaN/GaN heterostructure. Applied Physics Letters, 2010, Vol.96(03): 032103-032105
    [137] L.Z. Hao, J. Zhu, W.B. Luo, et al. Epitaxial Fabrication and Memory Effect of Ferroelectric LiNbO3 film/AlGaN/GaN Heterostructure. Applied Physics Letters, 2009, Vol.95(23): 232907-232909
    [138] Kevin M. Brunson, David Sands, Clive B. Thomas, et al. The contribution of bulk states to the ac conductance of metal‐insulator‐semiconductor diodes. J. Appl. Phys., 1987, Vol.78(1): 185-188
    [139] R. Stoklas, D. Gregu?ová, J. Novák, et al. Investigation of trapping effects in AlGaN/GaN/Si field-effect transistors by frequency dependent capacitance and conductance analysis. Appl. Phys. Lett., 2008, Vol.93(12): 124103-124105
    [140] P. Kordo?, R. Stoklas, D. Gregu?ová, et al. Characterization of AlGaN/GaN metal-oxide-semiconductor field-effect transistors by frequency dependent conductance analysis. Appl. Phys. Lett., 2009, Vol.94(22): 223512-223514
    [141] J. Frenkel. On pre-breakdown phenomena in insulators and electronic semi-conductors. Phys. Rev., 1938, Vol.54(3): 647–648
    [142] R. M. Hill. Poole–Frenkel conduction in amorphous solids. Philos. Mag., 1971, Vol.23(1): 59–86
    [143] P. Y. Yu, M. Cardona. Fundamentals of Semiconductors - Physics and Material Properties. Berlin: Springer-Verlag, 1996, 214-217
    [144] A. Hayes, A. M. Stoneham. Defects and Defect Processes in Nonmetallic Solids. New York:Wiley. 1985, 170-172
    [145] T. P. Ma, H. M. Bu, X. W. Wang, et al. Special reliability features for Hf-based high-k gate dielectrics. IEEE Trans. Device Mater. Rel., 2005, Vol.5(1): 36–44
    [146] J. R. Yeargan, H. L. Taylor. The Poole–Frenkel effect with compensation present. J. Appl. Phys., 1968, Vol.39(25): 5600–5604
    [147] J. J. Chen, B. P. Gila, M. Hlad, et al. Determination of MgO/GaN heterojunction band offsets by x-ray photoelectron spectroscopy. Appl. Phys. Lett., 2006, Vol.88(04): 042113-042115
    [148] M. Avrami. Kinetics of Phase Change II Transformation‐Time Relations for Random Distribution of Nuclei. J. Chem. Phys., 1940, Vol.8(2): 212-214
    [149] Y. Ishibashi, Y. Takagi. Note on Ferroelectric Domain Switching. J. Phys. Soc. Jpn., 1971, Vol.31(2): 506-509
    [150] A. K. Tagantsev, I. Stolichnov, N. Setter, et al. Non-Kolmogorov- Avrami switching kinetics in ferroelectric thin films. Phys. Rev. B, 2002, Vol.66(21): 214109-214114
    [151] J. Y. Jo, S. M. Yang, T. H. Kim, et al. Domain switching kinetics in Disordered Ferroelectric Thin Films. Phys. Rev. Lett., 2009, Vol.102(04): 045701-045705
    [152] Y. W. So, D. J. Kim, T. W. Noh, et al. Polarization switching kinetics of epitaxial Pb(Zr0.4Ti0.6)O3 thin films. Appl. Phys. Lett., 2005, Vol.86(09): 092905-092907
    [153] D. Sornette. Critical Phenomena in Natural Sciences. New York. Springer. 2003. 202-207
    [154] J. H. V. Vleck. The Dipolar Broadening of Magnetic Resonance Lines in Crystals. Phys. Rev., 1948, Vol.74(10): 1168-1170
    [155] J. R. Klauder, P. W. Anderson. Spectral Diffusion Decay in Spin Resonance Experiments. Phys. Rev., 1962,Vol.125(5): 912-916
    [156] I. Stolichnov1, A. Tagantsev1, N. Setter, et al. Crossover between nucleation-controlled kinetics and domain wall motion kinetics of polarization reversal in ferroelectric films. Appl. Phys. Lett., 2003, Vol.83(22): 3362-3364
    [157] B. J. Rodriguez, S. Jesse, A. P. Baddorf, et al. Controlling Polarization Dynamics in a Liquid Environment:From Localized to Macroscopic Switching in Ferroelectrics. Phys. Rev. Lett., 2007, Vol.98(24): 247603-247606
    [158] G. Catalan, H. Béa, S. Fusil, et al. Fractal Dimension and Size Scaling of Domains in Thin Films of Multiferroic BiFeO3. 2008, Vol.100(02): 027602-072605
    [159] A. Seike, K. Amanuma, S. Kobayashi, et al. Polarization reversal kinetics of a lead zirconate titanate thin-film capacitor for nonvolatile memory. J. Appl. Phys., 2000, Vol.88(33): 3445-3349
    [160] Kittel C. Theoiy of the structureof ferromagnetic domains in films and small particles. Phys. Rev., 1946, Vol.70(3): 965-971
    [161] C. Kittel. Physical Theory of Ferromagnetic Domains. Rev. Mod. Phys, 1949, Vol.2(2): 541-547

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700