一维纳米二氧化钛溶胶的制备及其光电化学性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
二氧化钛溶胶在光催化薄膜、染料敏化太阳能电池、光电化学传感器等方面有着重要的应用前景。目前多种溶胶的制备方法中存在两个问题,一是溶胶的液相主要是乙醇等有机溶剂,二是溶胶中的胶粒为无定形二氧化钛。本论文主要通过解胶的方法获得水性锐钛矿相Ti02溶胶,并初步研究了所得溶胶在染料敏化太阳能电池和光电催化测定水溶液中的化学需氧量(COD)的光电化学性能,所取得主要结果有:
     1).通过沉淀-解胶-晶化的方法在无任何表面活性剂的情况下得到了高长径比的Ti02纳米棒。以无机钛盐为主要原料制备了沉淀,经过低温解胶制备透明的锐钛矿相二氧化钛溶胶。将溶胶进行水热处理,调节其结晶度与形貌,形成了直径6 nm,长径比大于5的纳米棒。将该溶胶浓缩,制备成光阳极,用于染料敏化太阳能电池。具有较高的光电转化性能(5-6%)。
     2).开发出pH值中性、不含腐蚀性或有机物的多孔电极修饰剂来取代TiCl4溶液有重要应用价值。本文采用自制的水溶性过氧钛酸为原料,通过水热法低温制备透明锐钛矿相溶胶。用P25作为配制二氧化钛浆料的主要原料,用丝网印刷的方法在FTO玻璃上制备了多孔TiO2电极。将低浓度溶胶内渗透到多孔氧化钛电极,改善了电极的内部连通性和表面结构。改性后的电极组装成染料敏化太阳能电池,其光电转换性能由2.8%提高到4.7%.
     3).将溶胶通过浸渍法在FTO与多孔二氧化钛层之间制备了阻挡层。结果表明,该溶胶形成的薄膜没有改变玻璃的透过率,不影响电极对光的吸收,有效地阻碍了电解质与导电玻璃的直接接触,最终电极的光电转化性能有原先的3.8%提高到4.9%。
     4).用丝网印刷和浸渍法在FTO上制备了多孔和溶胶-多孔两类TiO2薄膜,以葡萄糖为目标污染物,利用电化学工作站考察了电极的光电化学性能。测试结果表明,由于引入了溶胶,增加了TiO2纳米颗粒与基底的附着力,改善了TiO2颗粒与基底的欧姆接触,使得溶胶-多孔电极的电荷转移电阻远小于多孔电极,提高了光电催化电极的光电流。
Titanium dioxide sol has very important applications in the photocatalytic film, dye-sensitized solar cells, photoelectro-chemical sensors, and so on. There are two problems in the current sol preparation methods:first, the solvent of sol is mainly organic solvents (such as ethanol); second, the sol particles is the amorphous titanium dioxide. This paper is a presentation of how to obtain the water-based anatase TiO2 sol by the peptization, and a preliminary study of the sol obtained in the dye-sensitized solar cells and photoelectro-chemical properties of chemical oxygen demand (COD) in the photoelectrocatalysis determination aqueous solution. The main results obtained are follows:
     We describe a peptization and hydrothermal process for the synthesis of nanorod-like anatase TiO2 nanocrystals with a high aspect ratio without any organic surfactants. Inorganic titanium salt as the main raw material to prepare the precipitation, after a low-temperature peptization to make the transparent anatase titanium dioxide sol. hydrothermal treatment for the sol, adjust its crystallinity and morphology, to form a nanorods of 6 nm diameter, aspect ratio is more than 5. Concentrate the sol to make the photoanode prepared for dye-sensitized solar cells. It has got more efficient photoelectric conversion performance (5-6%).
     Developed a pH value of the neutral, porous electrode modifier without corrosive or organic to replace the TiCl4 solution has an important application value. In this paper, the transparent anatase sol is prepared by self-made water-soluble peroxotitanium acid as percursor, through hydrothermal method at low temperature. Use P25 titanium dioxide slurry as the preparation of the main percursor, with the screen printing method to prepare the porous TiO2 electrodes on the FTO glass. The sol of low concentration infiltrates into porous titanium dioxide electrodes to improve the internal connectivity of the electrode and surface structure. Modified electrode is assembled into dye-sensitized solar cell, the photoelectric conversion is improved from 2.8% to 4.7%.
     The barrier layer is prepared by dip-coating method between the FTO and the porous titanium dioxide layer. The results show that the sol film did not change transmittance of the glass, did no effect on dye's light absorption, effectively prevented direct contact between the electrolyte and the conductive glass, the final photoelectric conversion performance of the electrode was improved from the original 3.8% to 4.9%.
     Using screen printing and dip-coating method in the FTO preparated Two kinds of the porous and sol- porous TiO2 film; using glucose as the target pollutants, Photoelectrochemical properties was investigated by the electrochemical workstation. The results show that the introduction of the sol has increased the adhesion between TiO2 nanoparticles and substrate; improved the TiO2 particles and the base ohmic contact; made the charge transfer resistance of the sol-porous electrodes is much less than that of the porous electrodes; improved the photoelectrocatalysis Electrode's photocurrent.
引文
[1]孔凡太,戴松元,王孔嘉,染料敏化太阳电池研究进展[J],化学通报,2005,68(5):338-345
    [2]O'Regan B, Gratzel M, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films[J], Nature,1991,353:734-740
    [3]Gratzel M, Systems phosphorus analogs of bipyridines:their synthesis and coordination chemistry[J], Coord Chem Rev.,1991,111:167-174
    [4]Li S L, Jiang K J, Shao K F, et al. Novel organic dyes for efficient dye-sensitized solar cells[J], Chem. Commun.,2006:2792-2794
    [5]吕笑梅,方靖淮,陆祖宏等,敏化TiO2纳米晶太阳能电池[J],功能材料,1998,29(6):574-577
    [6]Nakade S, Kambe S, Kitamura T, et al, Effects of lithium ion density on electron transport in nanoporous TiO2 electrodes [J], J. Phys. Chem. B,2001,105(38): 9150-9152
    [7]Lindstrom H, Rensmo H, Sodergren S, et al, Electron transport properties in dye-sensitized nanoporous-nanocrystalline TiO2 films[J], J. Phys. Chem.,1996, 100(8):3084-3088
    [8]Galoppini E, Rochford J, Chen H, Saraf G, Lu Y, Hagfeldt A, Boschloo G, Fast electron transport in metal organic vapor deposition grown dye-sensitized ZnO nanorod solar cells[J], J. Phys. Chem. B,2006,110:16159-16161
    [9]Shankar K, Bandara J, Paulose M, Wietasch H, Varghese O K, Mor G K, LaTempa T J, Thelakkat M, Grimes C A, Highly efficient solar cells using TiO2 nanotube arrays sensitized with a donor-antenna dye[J], Nano Lett.,2008,8: 1654-1659
    [10]Macak J M, Ghicov A, Hahn R, Tsuchiya H, Schmuki P, hotoelectrochemical properties of N-doped self-organized titania nanotube layers with different thicknesses[J], J. Mater. Res.2006,21:2824-2828
    [11]Gratzel M, Recent advances in sensitized mesoscopic solar cells[J], Accounts of Chemical Research,2009,11(42):1788-1798
    [12]Rothenberger G, Comte P, Gratzel M, A contribution to the optical design of dye-sensitized nanocrystalline solar cells[J], Sol. Energy Mater. Sol. Cells,1999, 58:321-336
    [13]Kinetie K S. Study of photocataiytic degradation of vclatile organic compound in air using thin film TiO2 photocatalyst[J], Appl Catal B:Environ, 2002,15:305-315
    [14]Alberici R M, Jardim W F, Photocatalytic destruction of VOCs in the gas-phase using titanium dioxide[J], Appl Catal B:Envi-ron,1997,14(1-2): 55-68
    [15]Hass G, Properties and optical applications of thin films of titanium dioxide[J], Vacuum,1952,11:331-345
    [16]Decher G F, nanoassemblies:toward layered polymeric multicomposites[J], Science,1997,277(5330):1232-1237
    [17]张立德,牟季美,纳米材料和纳米结构[M],北京:科技出版社,2001
    [18]Brien S, Koh K, Crean G M, ZnO thin films prepared by a single step sol-gel process[J], Thin Solid Films,2008,516(7):1391-1395
    [19]Tsay C Y, Wang M C, Chiang S C. Characterization of Znl-xMg(x)O films prepared by the sol-gel process and their application for thin-film transistors[J]. J. Electron. Mater,2009,38(9):1962-1968
    [20]Dong Y L, Du P Y, Weng W J, et al. In situ formation of sol-gel derived PbTiO3/NiFe2O4biphase thin film[J]. J. Electronceram,2008,21(1-4):327-330
    [21]Yang H M, Zhang X C, Tao Q F, etal. Microwave-assisted sol-gel synthesis and optical property of TiO2 thin film [J]. J. Optoelectron Adv Mater,2007,9(8): 2493-2497
    [22]Kavan L, O'Regan B, Kay A, Gratzel M, Preparation of TiO2(anatase)films on electrodes by anodic oxidative hydrolysis of TiCl3[J], J. Electroanal. Chem, 1993,346:291-307
    [23]Seigo I, Paul L, Pascal C, etal. Control of dark current in photoelectrochemical and dye-sensitized solar cells[J]. Chem. Commun.,2005, 4351-4353
    [24]Liu Y J, Claus R O, Blue Light Emitting Nanosized TiO2 Colloids[J]. J. Am. Chem. Soc.1997,119:5273-5274
    [25]Jiu J, Isoda S, Wang F, Adachi M, Dye-sensitized solar cells based on a single-crystalline TiO2 nanorod film[J], J. Phys. Chem. B 2006,110:2087-2092
    [26]Weinberger B R, Garbar R B, Titanium dioxide photocatalysts produced by reactive magnetron sputtering[J], Appl.phys. lett,1995,66(18):2409-2411
    [27]邱健斌,曹亚安,马颖等,担载材料对TiO2薄膜光催化活性的影响[J],物理化学学报,2000,16(1):1-4
    [28]Empedocles S A, Neuhauser R, Shimizu K, Bawendi M G, Photoluminescence from Single Semiconductor Nanostructures[J], Adv. Mater. 1999,11:1243-1256
    [29]Karuppuchamy S, Amalnerkar D P, Yamaguchi K, et al, Cathodic elecodeposition of TiO2 thin films for dye-sensitized photoelectrochemical applications[J], Chemistry Letters,2001,30(1):78-79
    [30]Craig A, Grimes, et al. Hydrogen sensing using titania nanotubes[J], Sensors and Actuators B,2003,93:338-344
    [31]郑德海,郑军明,沈青,丝网印刷工艺,北京:印刷工业出版社,2000:1-2
    [32]解冬梅,冯树京,林原,等.丝网印刷纳晶多孔TiO2薄膜电极的制备[J].科学通报,2007,52(9):1007-1011
    [33]Christophe B, Francine A. Nanocrystalline titanium oxide electrodes for photovoltaic applications [J], J. Am. Ceram. Soc.,1997,8(12):3157-3171
    [34]Fan S Q, Li C J, Yang G J, et al. Influence of TiCl4 treatment on performance of dye-sensitized solar cell assembled with nano-TiO2 coating deposited by vacuum cold spraying[J], Rare Metals,2006,25(6):163-168
    [35]杨术明,李富友,黄春辉.染料敏化稀土离子修饰二氧化钛纳米晶电极的光电化学性质[J],中国科学(B辑),2003,33(1):59-65
    [36]Kitiyanan A, Yoshikawa S. The use of ZrO2 mixed TiO2 nanostructures as efficient dye-sensitized solar cells'electrodes[J], Mater. Lett.,2005,59(29-30): 4038-4040
    [37]Kang S H, Kim J Y, Kim Y K, et al. Effects of the incorporation of carbon powder into nanostructured TiO2 film for dye-sensitized solar cell [J], J.Photoch. Photo Bio. A,2007,186(2-3):234-241
    [38]Gratzel M, Solar energy conversion by dye-sensitized photovoltaic cells[J], Inorg. Chem.2005,44,6841-6851
    [39]Adachi M, Murata Y, Takao J, Jiu J, Sakamoto M, Wang F, Highly efficient dye-sensitixed solar cells with a Ietania thin-film electrode composed of a network structure of single-crystal-like TiO2 nanowires made by the "oriented attachment" mechanism[J], J. Am. Chem. Soc.2004,126:14943-14949
    [40]晏太红,崔海霞,林志东等,稀土掺杂TiO2薄膜的制备及光催化特性[J],复旦学报,2003,42(6):999
    [41]李芳柏,瑞丰等.铷掺杂提高TiO2光催化活性的机制[J],稀土学报,2004,22(1):75
    [42]陈俊涛,李新军,杨莹等,Sm掺杂对TiO2薄膜光催化性能的影响[J],催 化学报,2004,25(5):397
    [43]Chen X B, Mao S S, Titanium dioxide nanomaterials:synthesis, properties, modifications, and applications[J], Chem. Rev.2007,107:2891-2959
    [44]Manna L, Scher E C, Alivisatos A P, Synthesis of soluble and processable rod-,arrow and tetrapod-shaped CdSe nanocrystals[J], J. Am. Chem. Soc.2000, 122:12700-12706 Srinivas K, Yesudas K, Bhanuprakash K, A combined experimental and computational investigation of anthracene based sensitizers for DSSC:comparison of cyanoacrylic and malonic acid electron withdrawing groups binding onto the TiO2 anatase (101) surface[J], J. Phys. Chem. C, 2009,113:20117-20126
    [45]Chen H H, Pasquier A D, Saraf G, Zhong J, Lu Y C, Dye-sensitized solar cells using well-aligned zinc oxide nanotip arrays[J], Appl. Phys. Lett.2006,89: 253513
    [46]O'Regan B C, Durrant J R, Sommeling P M, Bakker N J, Influence of the TiCl4 treatment on nanocrystalline TiO2 films in dye-sensitized solar cells.2. Charge density, band edge shifts, and quantification of recombination losses at short circuit[J], J. Phys. Chem. C 2007,111:14001-14010
    [47]Brinker C J, Arendse F, Comte P, Jirousek M, Lenzmann F, Shklover V, Gratzel M, Nanocrystalline titanium oxide electrodes for photovoltaic applications[J], J. Am. Ceram. Soc.1997,80:3157-3171
    [48]Joo J, Kwon S G, Yu T, Cho M, Lee J, Yoon J, Hyeon T, Large-scale synthesis of TiO2 nanorods via nonhydrolytic sol-gel ester elimination reaction and their application to photocatalytic inactivation of ecoli [J], J. Phys. Chem. B 2005,109:15297-1530
    [49]Penn R L, Banfield J F, Geochim C, Morphology development and crystal growth in nonocrystalline aggregates under hydrothermal conditions:Insights from titania[J]. Acta 1999,63:1549-1557
    [50]Penn R L, Kinetics of oriented aggregation[J], J. Phys. Chem. B,2004,108: 12707-12712
    [51]Yang X F, Konishi H, Xu H F, Wu M M, Comparative Sol-Hydro(Solvo)thermal Synthesis of TiO2 Nanocrystals, Eur. J. Inorg. Chem. 2006:2229-2235
    [52]Kolen'ko Y V, Kovnir K A, Gavrilov A I, Garshev A V, Frantti J, Lebedev O I, Churagulov B R, Van Tendeloo G, Yoshimura M, Hydrothermal synthesis and characterization of nanorods of various titanates and titanium dioxide[J], J. Phys. Chem. B 2006,110:4030-4038
    [53]Xia J B, Masaki N, Jiang K J, Yanagida S, Sputtered Nb2O5 as an effective blocking layer at conducting glass and TiO2 interfaces in ionic liquid-based dye-sensitized solar cell[J], Chem. Commun,2007:138-140
    [54]Cozzoli P D, Kornowski A, Weller H, Synthesis of very small TiO2 nanocrystals in a room-temperature ionic liquid and their self-assembly toward mesoporous spherical aggregates[J], J. Am. Chem. Soc.2003,125:14539-14548
    [55]Mor G K, Varghese O K, Paulose M, Shankar K, Grimes C A, A review on highly ordered, vertically oriented TiO2 nanotube arrays:Fabrication, material properties, and solar energy applications [J], Sol. Energy Mater. Sol. Cells,2006, 90:2011-2075
    [56]Chen D H, Huang F Z, Cheng Y B, Caruso R A, Nanoscale logic circuits: hybrid complementary logic circuits of one-dimensional nanomaterials with adjustment of operation voltage[J], Adv. Mater.2009,21(21):2156-2160
    [57]Bach U, Lupo D, Comte P, Moser J E, Weissortel F J, Spreitzer H, Gratzel M, Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies[J], Nature,1998,395:583
    [58]Horiuchi T, Miura H, Uchida S, Synthesis of organic chromophores for dye sensitized solar cells [J], Chem. Commun.,2003,164:3036-3037
    [59]Wang P, Zakeeruddin S M, Humphry-Baker R, Moser J E, Gratzel M. Enhance the performance of dye-sensitized solar cells by co-grafting amphiphilic sensitizer and hexadecylmalonic acid on TiO2 nanocrystals, J. Phys. Chem. B, 2003,107 (51):14336-14341
    [60]Wilson G J, Will G D, Frost R L, Montgomery S A, Efficient microwave hydrothermal preparation of nanocrystalline[J], J. Mater. Chem.2002,12: 1787-1791
    [61]詹卫伸,潘石,李源作,陈茂笃,二氢吲哚类染料用于染料敏化太阳能电池光敏剂的比较[J],物理化学学报,2009,25:2087-2092
    [62]Nakade S, Saito Y, Kubo W, Kitamura T, Wada Y, Yanagida S, Influence of TiO2 nanoparticle size on electron diffusion and recombination in dye-sensitized TiO2 solar cells[J], J. Phys. Chem. B,2003,107:8607-8611
    [63]Park N G, Schlichthorl G, Van de Lagemaat J, Cheong H M, Mascarenhas A, Frank A J, Dye-sensitized TiO2 solar cells:structural and photoelectrochemical characterization of nanocrystalline electrodes formed from the hydrolysis of TiCl4[J], J. Phys. Chem. B,1999,103:3308-3314
    [64]Cass M J, Qiu F L, Walker A B, Fisher A C, Peter L M, Influence of grain morphology on electron transport in dye sensitized nanocrystalline solar cells[J], J. Phys. Chem. B,2003,107:113-119
    [65]Kamat P V, Haria M, Hotchandani S, C60 Cluster as an electron shuttle in a Ru(Ⅱ)-Polypyridyl sensitizer-based photochemical solar cell[J], J. Phys. Chem. B, 2004,108:5166-5170
    [66]Tan S, Zhai J, Xue B, Wan M, Meng Q, Li Y, Jiang L, Zhu D, Property influence of polyanilines on photovoltaic behaviors of dye-sensitized solar cells[J], Langmuir,2004,20:2934-2937
    [67]Xia J, Masaki N, Jiang K, Yanagida S. Deposition of a thin film of TiOx from a titanium metal target as novel blocking layers at conducting glass/TiO2 interfaces in ionic liquid mesoscopic TiO2 dye-sensitized solar cells[J], J. Phys. Chem. B,2006,110:25222-25228
    [68]Gregg B A, Pichot F, Ferrere S, Fields C L, Interfacial recombination processes in dye-sensitized solar cells and methods to passivate the interfaces[J]. J. Phys. Chem. B,2001,105:1422-1429
    [69]Sharmaa G D, Suresha P, John A M, Quasi solid state dye-sensitized solar cells with modified TiO2 photoelectrodes and triphenylamine-based dye, Electrochimica Acta[J],2010,55(7):2368-2372
    [70]Zaban A, Chen S G, Chappel S, Gregg B A, Bilayer nanoporous electrodes for dye sensitized solar cells[J], Chem. Commun.,2000:2231-2232
    [71]Yang S M, Huang Y Y, Huang C H, Zhao X S, Enhanced energy conversion efficency of the Sr2+-modified nanoporous TiO2 electrode sensitized with a ruthenium Complex[J], Chem. Mater.,2002,14:1500-1504
    [72]Diamant Y S, Chen G, Melamed O, Zaban A, Core-shell nanoporous electrode for dye sensitized solar cells:the effect of the SrTiO3 shell on the electronic properties of the TiO2 core[J], J. Phys. Chem. B,2003,107:1977-1981
    [73]Taguchi T, Zhang X T, Sutanto I, Tokuhiro K, Rao T N, Watanabe H, Nakamori T, Uragami M, Fujishima A, Improving the performance of solid-state dye-sensitized solar cell using MgO-coated TiO2 nanoporous film[J], Chem. Commun.,2003:2480-2481
    [74]Hore S, Kern R, Absence of magnetism in hafnium oxide films[J], Appl. Phys. Lett.,2005,87:263504
    [75]徐波,吴季怀,张秀坤,李树全,阻挡层薄膜对染料敏化太阳能电池光电性能的影响[J],功能材料,2008,39:1703-1709
    [76]Li S, Li Y G, Wang H Z, Fan W G, Zhang Q H, Peptization-hydrothermal method as a surfactant-free process toward nanorod-like Anatase TiO2 nanocrystals[J], Eur. J. Inorg. Chem.,2009,27:4078-4084
    [77]杨术明,寇慧芝,汪玲,王红军,付文红.N3敏化Ho3+离子修饰TiO2纳米晶电极的光电化学性质[J],物理化学学报,2009,25(6):1219-1224
    [78]Wang Z S, Kawauchi H, Kashima T, Arakawa H, Significant influence of TiO2 photoelectrode morphology on the energy conversion efficiency of N719 dye-sensitized solar cell[J], Coord. Chem. Rev.2004,248:1381-1389
    [79]Patrocinio A O T, Paterno L G, Murakamilha N Y, Layer-by-layer TiO2 films as efficient blocking layers in dye-sensitized solar cells[J], J. Photochem. Photobiol. A:Chem.2009,205:23-27
    [80]Xia J B, Masaki N, Jiang. J, Yanagida S, Sputtered Nb2O5 as an effective blocking layer at conducting glass and TiO2 interfaces in ionic liquid-based dye-sensitized solar cells[J], Chem. Commun.2007,2:138-140
    [81]Xia J, Masaki N, Jiang K, Yanagida S, Deposition of a thin film of TiOx from a titanium metal target as novel blocking layers at conducting glass/TiO2 interfaces in ionic liquid mesoscopic TiO2 dye-sensitized solar cells[J], J. Phys. Chem. B 2006,110:25222-25228
    [82]张继远,田汉民,田志鹏,王湘艳,于涛,邹志刚.TiO2纳米晶溶胶水热的合成及其染料敏化光电性能[J],无机材料学报,2009,24(6):1110-1114
    [83]O'Regan B, Durrant J, Sommeling P Bakker N, Influence of the TiCl4 treatment on nanocrystalline TiO2 films in dye-sensitized solar cells.2. Charge density, band edge shifts, and quantification of recombination losses at short circuit[J], J. Phys. Chem. C,2007,111(50):14001-14005
    [84]李爽,张青红,李耀刚,王宏志,过氧钛酸水热合成锐钛矿相二氧化钛纳米棒溶胶[J],无机材料学报,2009,24(4):675-679
    [85]Brinker C J, Arendse F, Comte P, Jirousek M, Lenzmann F, Shklover V, Gratzel M, Nanocrystalline titanium oxide electrodes for photovoltaic applications[J], J. Am. Ceram. Soc.,1997,80(12):3157-3171
    [86]Ichinose H, Terasaki M, Katsuki H, Properties peroxotitanium acid solution and peroxo-modified Anatase sol derived from peroxotitanium hydrate[J], J. Sol-Gel Sci. Technol.,2001,22:33-37
    [87]Van de Lagemaat J, Benkstein K D, Frank A J, Relation between particle coordination number and porosity in nanoparticle films:Implications to dye-sensitized solar cells[J], J. Phys. Chem. B,2001,105:12433-12436
    [88]李秀娟,金洙吉,康仁科,郭东明,苏建修,抛光液中缓蚀剂对铜硅片的影响[J],半导体学报,2005,11:2259-2263
    [89]王富民,巩峰,李成亮,染料敏化太阳能电池的内部阻抗分析[J],天津大学学报,2007,40:265-268
    [90]Wei M D, Konishi Y, Zhou H S, Yanagida M, Sugihara H, Arakawa H, Highly efficient dye-sensitized solar cells composed of mesoporous titanium dioxide[J], J. Mater. Chem.2006,16:1287-1293
    [91]Kroon J M, Bakker N J, Smit H J P, Liska P, Thampi K R, Wang P, S. Zakeeruddin M, Gratzel M, Hinsch A, Hore S, Wurfel U, Sastrawan R, Durrant J R, Palomares E, Pettersson H, Gruszecki T, Walter J, Skupien K, Tulloch G E, Nanocrystalline dye-sensitized solar cells having maximum performance[J], Prog. Photovolt.2007,15:1-18
    [92]Brinker C J, Arendse F, Comte P, Jirousek M, Lenzmann F, Shklover V, Gratzel M, Nanocrystalline titanium oxide electrodes for photovoltaic applications[J], J. Am. Ceram. Soc.1997,80:3157-3171
    [93]Yu H, Zhang S Q, Zhao H J, Xue B F, Liu P R, Geoffrey W, High-performance TiO2 photoanode with an efficient electron transport network for dye-sensitized solar cells[J], J. Phys. Chem. C,2009,113:16277-16282
    [94]Fujihara K, Kumar A, Jose R, Ramakrishna S, Uchida S, Spray deposition of electrospun TiO2 nanorods for dye-sensitized solar cell[J], Nanotechnology,2007, 18:1-5
    [95]Chappel S, Chen S G, Zaban A, TiO2-coated nanoporous SnO2 electrodes for dye-sensitized solar cells[J], Langmuir,2002,18:3336-3342
    [96]Frank A J, Kopidakis N, Van de Lagemaat, Electrons in nanostructured TiO2 solar cells:transport, recombination and photovoltaic properties[J], J. Coord. Chem. Rev.,2004,248:1165-1168
    [97]Garcia C G, de Lima J F, Murakami Iha N Y, Energy conversion:from the ligand field photochemistry to solar cells[J], Coord. Chem. Rev.2000,196: 219-247
    [98]Burke A, Ito S, Snaith H, Bach U, Kwiatkowski J, Gratzel M, The function of a TiO2 compact layer in dye-sensitized solar cells incorporating "planar" organic dyes[J], Nano Lett,2008,8:977-981
    [99]Hara K, Kurashige M, Dan-Oh Y, Kasada C, Shinpo A, Suga S, Sayama K, Arakawa H, Design of new coumarin dyes having thiophene moieties for highly efficient organic-dye-sensitized solar cells[J], New J. Chem,2003,27:783-785
    [100]Palomares E, Clifford J N, Haque S A, Lutz T, Durrant J R, Control of charge recombination dynamics in dye-sensitized solar cells by the use of conformally deposited metal oxide blocking layers[J], J. Am. Chem. Soc,2003,125:475-482
    [101]Ito S, Liska P, Comte P, Charvet R, Pechy P, Bach U, Gratzel M, Control of dark current in photoelectrochemical (TiO2/I--I3) and dye-sensitized solar cells[J], Chem. Commun.,2005,34:4351-4353
    [102]Xia J B, Masaki N, Jiang K J, Yanagida S, Sputtered Nb2O5 as a novel blocking layer at conducting Glass/TiO2 interfaces in dye-sensitized ionic liquid solar cells[J], J. Phys. Chem. C,2007,111:8092-8097
    [103]李芳柏,古国榜,陈伟彬,等.絮凝-光催化处理实际染料废水的研究[J].土壤与环境,1999,8(3):189-192
    [104]董超平,张嘉凌,李金花,陈红冲,周保学,二氧化钛纳米管阵列光电催化测定地表水化学需氧量,分析化学仪器装置与实验技术,2010,38(7):1227-1230
    [105]Zhao H J, Jiang D L, Zhang S Q, et al. Development of a direct photoelectrochemical method for determination of Chemical Oxygen Demand [J], Analytica Chemist,2004,76:155-160
    [106]Zhang S Q, Jiang D L, Zhao H J, Development of chemical oxygen demand on-Line monitoring system based on a photoelectronchemical degradation principle[J], Environmental Sciences Technol,2006,40:2363-2368
    [107]Zhang S, Zhao H, Jiang D, John R, Photoelectrochemical determination of chemical oxygen demand based on an exhaustive degradation model in a thin-layer cell[J], Anal. Chim. Acta 2004,514:89-97
    [108]Han Y H, Zhang S Q, Zhao H J, Wen W, Zhang H M, Wang H J, Peng F, Photoelectrochemical characterization of a robust TiO2/BDD heterojunction electrode for sensing application in aqueous solutions[J], Langmuir,2009,26 (8): 6033-6040

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700