直立堤前的破碎波流场特征及波浪力研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
防波堤是一种用于防御风浪侵袭港口水域,保证港内平稳的重要水工建筑物。作为抵御外海波浪入侵的屏障,其自身在恶劣海况下的安全问题一直是学者关注和研究的热点。对于直立式防波堤而言,当波高、水深、基床、海床底坡等条件满足一定关系时,会产生对直立堤具有巨大冲击性和破坏性的波浪形态(即近破波或远破波),巨大的冲击荷载可能会导致结构失稳或破坏。破碎波荷载的产生与破碎波流场具有密切关系,因此对于破碎波波浪形态和流场特性的研究,有着重要的科学价值和实际意义。本论文利用PIV激光流场测试系统和数值模拟方法,在规则波条件下对近破波和远破波进行了物理模型试验和数值模拟的研究工作:
     (1)建立了以Naiver-Stokes方程为基本控制方程、CLEAR-VOF方法追踪水体运动表面的二维数值波浪水槽模型。该数值模型采用大涡模拟方法模拟湍流效应,有限元方法对控制方程进行离散。利用该模型成功的模拟了二阶斯托克斯波的传播;通过对立波的模拟验证了可吸收式数值造波边界条件;在非结构化网格下成功模拟了溃坝的流动,验证了该模型与非结构化网格联合应用的能力;利用该模型,成功的模拟了直立式防波堤前不同破碎形态的近破波和远破波,流场的数值结果与试验结果良好符合。
     (2)利用PIV激光流场测试系统及波浪压力传感器对直立堤前的近破波流场和破碎波压力进行了测试研究:分析了不同基床和相对波高条件下的堤前波浪破碎形态和流场特征;分析了近破波的冲击过程;给出了冲击时刻堤前水平流速的沿垂向分布;发现了堤脚处堤脚涡的存在;分析了相对波高对破碎波压力和总力的影响。结果表明,在本文的试验参数条件下,直立堤前出现了Flip-through、Well-developed plunging breaker和Turbulent bore三种不同的波浪破碎形态;对于中基床,冲击时刻最大水平速度发生在水面处,对于高基床,冲击时刻最大水平速度发生在水面下;在d1/d=0.26条件下,当相对波高H/d1增大到1.2时,破碎波浪力随着相对波高增大而减小。
     利用数值波浪水槽模型,对近破波问题进行了更深入的计算:分析了多种基床、相对波高和相对肩宽条件下的堤前波浪破碎形态;研究了波浪破碎时水质点水平特征速度和击堤时沿堤面垂向特征速度的变化规律;分析了相对肩宽对近破波总力的影响,研究了静水面处波压力峰值和对应位置处的水质点水平冲击速度平方之间的关系。结果表明,不同相对水深条件下相对波高对无量纲化速度VH产生不同的影响,而相对波高一定时无量纲化速度VH基本随着相对水深的增大而减小,随着相对肩宽的增大而增大;不同相对水深条件下相对波高对无量纲化速度VV体现出不同的影响,而相对波高一定时VV随着相对水深或相对肩宽的增大而增大;当相对波高H/d1在0.8~1.1变化时,最不利肩宽基本出现在b/L=0.1-0.2之间,并且相对水深一定时,最不利肩宽随着相对波高的增大而减小;静水面处波压力峰值Ppeak和对应位置处的水质点水平冲击速度平方v2之间的关系可表示为Ppeak≈0.75ρv2。
     (3)利用PIV激光流场测试系统对直立堤前的远破波流场形态进行了研究,分析了特征流速和波浪力。在模型试验结果基础之上,对直立堤前的远破波问题进行了深一步的数值计算。结果表明破后波型远破波的破碎程度要剧烈于“原始行进波未破型”的远破波;破后波型远破波会产生较大的波浪力。
The breakwater, which is one kind of the important coastal structures, is used to protect the harbour from wave intrusion and ensures the water smooth. As a barrier to protect the harbor from the intrusion of the offshore wave, the safety of the breakwater in bad weather condition has been widely studied by the scholars. If the wave height, water depth, mound foundation and the sea bed slope satisfy certain conditions, the waves (breaking or broken wave) which have great impactive and destructive power to the vertical breakwater would occur. The strong wave load can cause the instability and damage of the structure. The characteristic of the wave load has close relationship with the flow field. So the study of breaking and broken wave profiles and the characteristics of flow field has important significance. With PIV system and numerical model, the breaking and broken waves are studied experimentally and numerically in the case of regular waves in this paper:
     (1) A two-dimensional numerical model based on the Navier-Stokes equations and computational Lagrangian-Eulerian advection remap-volume of fluid (CLEAR-VOF) method is developed to simulate water wave problems. In this numerical model, large eddy simulation method is used to describe the turbulent effect and finite element method is adopted to discretize the governing equations. By using this numerical model, second order stokes waves are well simulated; the absorbing wave generation theory is verified by the simulation of standing wave; the dam-collapse flow is simulated with unstructured grids, and the capability of the numerical model combined with unstructured grids is verified; the breaking and broken waves in front of a vertical breakwater are simulated and the results have good agreement with the experimental data.
     (2) By using PIV system, the flow fields and wave pressures of breaking wave are studied:the breaking wave profiles and the characteristics of flow velocity are analyzed under different mound and relative wave height conditions; the breaking wave impcat processes are analyzed; the vertical distributions of the horizontal velocity at the instant of impact are given; the vortexes at the toe of the vertical breakwater during the impact process are found; the effects of relative wave height on wave pressures and forces are discussed. Results show, three breaker types, Flip-through, Well-developed plunging breaker and Turbulent bore, are found in the PIV experiment; at the instant of impact, the maximum horizontal velocity occurs near the wave surface in the case of medium-height mound foundation, and under the wave surface in the case of high mound foundation; when d1/d=0.26and H/d1increases to1.2, the breaking wave force decreases with the increase of relative wave height.
     By using the numerical model, more groups calculation for breaking wave problems are carried out:the breaking wave profiles under different mound, relative wave height and relative berm width conditions are analyzed; the variations of the characteristic horizontal velocities and the characteristic vertical velocities along the vertical breakwater are studied; the effects of relative berm width on breaking wave force are discussed; and the relation between peak wave pressures and the horizontal velocities of the water particles at the still water level is given. Results show, the relative wave height has different effects on the dimensionless VH with the change of relative water depth, the dimensionless VH decreases with the increase of relative water depth and increases with the increase of relative berm width under certain relative wave height condition; the relative wave height has different effects on the dimensionless VV with the change of relative wave height, the dimensionless VV increases with the increase of relative water depth or relative berm width under certain relative wave height condition; as the relative wave height varies from0.8to1.1, the maxium wave force occurs between b/L,=0.1~0.2, and with certain water depth, the relative berm width for the maxium wave force decreases with the increase of relative wave height; the relation of the peak wave pressures and the horizontal velocities at the still water level can be described as Ppeak≈0.75ρv2.
     (3) By using PIV system, the flow fields of broken waves are experimentally studied. Based on the experimental results, the broken waves are further calculated. The results show, the broken wave induced by the traveling-breaking wave breaks more intensely than the broken wave induced by the normal-traveling wave; bigger wave force could occur during the impact of the broken wave induced by the traveling-breaking wave.
引文
[1]Easson W J, Greated C A. Breaking wave forces and velocity fields [J]. Coastal Engineering, 1984,8(3):233-241.
    [2]Oumeraci H, Klammer P, Partenscky H W. Classification of Breaking Wave Loads on Vertical Structures Journal of Waterway[J]. Port, Coastal, Ocean Engineering,1993,119(4): 381-397.
    [3]Oumeraci H, Bruce T, Klammer P, Easson W. PIV-measurements of breaking wave kinematics and impact loading of caisson breakwaters[C]. Proceeding of the 1st International Conference on Coastal and Port Engineering in Developing Countries, Brazil,1995, 2394-2410.
    [4]Kirkgoz M S, Mamak M. Impulse modelling of wave impact pressures on vertical wall[J]. Ocean Engineering,2004,31(3-4):343-352.
    [5]Kirkgoz M S. Impact pressure ofbreaking waves on vertical and sloping walls[J]. Ocean Engineering,1991,18:45-49.
    [6]Kirkgoz M. S. Influence of water depth on the breaking wave impact on vertical and sloping walls[J]. Coastal Engineering,1992,18(3-4):297-314.
    [7]Kirkgoz M S, Akoz M S. Geometrical properties of perfect breaking waves on composite breakwaters[J]. Ocean Engineering,2005,32(16):1994-2006.
    [8]Akoz M S, Cobaner M, Kirkgoz M S, et al. Prediction of geometrical properties of perfect breaking waves on composite breakwaters[J]. Applied Ocean Research.2011, 33(3):178-185.
    [9]Hull P, Muller G. An investigation of breaker heights, shapes and pressures[J]. Ocean Engineering,2002,29(1):59-79.
    [10]Munireddy M G, Neelamani S. Wave pressure reduction on vertical seawalls/caissons due to offshore breakwater[J]. Indian Journal of Marine Sciences,2004,33(4):329-337.
    [11]Bruce T. Wave kinematics in front of caisson breakwaters[C]. Proceeding of the 8th International Offshore and Polar Engineering Conference, USA,1998,658-664.
    [12]Gurhan G, Unsalan D. A comparative study of the first and second order theories and Goda's formula for wave-induced pressure on a vertical breakwater with irregular waves[J]. Ocean Engineering,2005,32(17-18):2182-2194.
    [13]Hattori M, Arami A, Yui T. Wave impact pressure on vertical walls under breaking waves of various types[J]. Coastal Engineering,1994,22(1-2):79-114.
    [14]Bullock G N, Crawford A R, Hewson P J, et al. The influence of air and scale on wave impact pressures[J]. Coastal Engineering,2001,42(4):291-312.
    [15]Bulloc G N, Obhrai C, Peregrine D H, et al. Violent breaking wave impacts. Part 1:Results from large-scale regular wave tests on vertical and sloping walls[J]. Coastal Engineering,2007,54(8):602-617.
    [16]Cuomo G, Allsop W, Bruce T, et al. Breaking wave loads at vertical seawalls and breakwaters[J]. Coastal Engineering,2010,57(4):424-439.
    [17]Cuomo G, Piscopia R, Allsop W. Evaluation of wave impact loads on caisson breakwaters based on joint probability of impact maxima and rise times[J]. Coastal Engineering, 2011,58(1):9-27.
    [18]Kimmoun 0, Malenica S, Scolan Y M. Fluid structure interactions occuring at a flexible vertical wall impacted by a breaking wave[C]. Proceeding of the 19th International Offshore and Polar Engineering Conference, Japan,2009,308-315.
    [19]Kisacik D, Philippe V B, Peter T. Comparative study on breaking wave forces on vertical walls with cantilever surfaces[C]. Proceeding of the 20th International Offshore and Polar Engineering Conference, China,2010,1-7.
    [20]Martin F L, Losada M A, Medina R. Wave loads on rubble mound breakwater crown walls[J]. Coastal Engineering,1999,37(2):149-174.
    [21]大连工学院港工专业海港水文规范小组.近破波波浪力[J].大连工学院学报,1975,3:81-104.
    [22]大连工学院水利系海港水文规范组.远破波波浪力[J].大连工学院学报,1975,2:42-55.
    [23]大连工学院水港教研室浅水波研究小组.埋入式基床直立堤前波浪击堤性质及其作用力的研究[J].大连工学院学刊,1960,2:1-24.
    [24]侯穆堂,李玉成.波浪与直立堤的相互作用[J].大连工学院学刊,1963,2:1-29.
    [25]侯穆堂,李玉成.破波(涌浪)对混合堤的作用[J].大连工学院学刊,1964,2:69-85.
    [26]李玉成.直墙式建筑物的波浪力—对合田波压力新计算方法的评述[J].大连工学院学报,1980,19(1):91-99.
    [27]李玉成,刘大中,苏小军等.直墙上不规则波近破波的波浪力[J].水动力学研究与进展(A辑),1997,12(4):456-469.
    [28]李玉成,刘大中,齐桂萍等.不规则波远破波对真墙的作用[J].海洋学报,1999,21(2):99-107.
    [29]刘大中.抛石突基床直立堤前破碎波浪形态和压力特性的研究[J].大连工学院学刊,1964,2:55-64.
    [30]刘大中.关于近破波波浪力计算公式的探讨[J].海岸工程,1985,4(2):11-20.
    [31]刘大中.远破波波浪力计算公式的探讨[J].海岸工程,1985,4(1):1-12.
    [32]刘大中,高耀星.新型空箱防波堤波压力分布的实验研究[J].港口工程,1994,1:14-20.
    [33]齐桂萍.直墙前破波波浪力-对修正过的Gota方法的探讨[J].海岸工程,1995,14(3):1-7.
    [34]王登婷.近岸直墙波浪力的模拟[D].南京:南京水利科学研究院,2002.
    [35]Zhong H S. Wave impact theory and scale effect[J]. China Ocean Engineering,1989, 3(4):421-432.
    [36]许光祥.平面斜坡小波高各向破波压力试验研究[J].水动力学研究与进展A辑,2007,22(1):129-134.
    [37]薛鸿超,过达,潘少华等.混成堤直墙上破波作用[J].海洋工程,1994,12(2):49-58.
    [38]马强华.破碎波作用下削角堤实验研究[D].天津:天津大学,2004.
    [39]王元战,周枝荣,杨海东.不同类型近破波作用下沉箱式防波堤的振动-提离摇摆运动[J].应用数学和力学,2005,26(5):534-540.
    [40]赵子丹.明基床直立堤在立波作用下堤前底流速的确定[J].港口工程,1990,2:4-7.
    [41]屈晓婷.破碎波对直立式建筑物作用机理的实验研究[D].大连:大连理工大学,2008.
    [42]原娟.破碎波与直立堤相互作用的研究[D].大连:大连理工大学,2009.
    [43]原娟,陈兵,董敏.破碎立波对直墙建筑物作用机理的研究[J].海洋技术,2009,28(4):107-112.
    [44]董敏.破碎波对直墙建筑物作用机理的试验研究[D].大连:大连理工大学,2007.
    [45]余广明.破波研究的新进展[J].水利水运科学研究,1982,3:100-116.
    [46]张绍松,张兴无,李炎保.直立堤不规则波波浪力研究进展[J].海洋通报,2000,19(5):79-86.
    [47]赵耀南,竺艳蓉.浅海破碎波浪对海上建筑物的作用力[J].海洋通报,1982,2:33-40.
    [48]李炎保.破碎波对桩柱的作用力及其流场的研究进展[J].水动力学研究与进展,1989,4(2):103-110.
    [49]高学平,赵耀南.桩柱上破波力的特性分析[J].水利学报,2002,10:67-71.
    [50]徐兴平.作用在直立桩柱上的破碎波浪力研究[J].石油大学学报(自然科学版),2004,28(6):80-86.
    [51]李家春,林缅.破波力的动量理论[J].科学通报,1992,10:883-885.
    [52]Gao X P, Zhang Y, Li C L. Characteristics of scour and deposition in front of breakwaters under irregular broken clapotis[J]. China Ocean Engineering,2004,3:493-500.
    [53]李昌良.破碎波作用下堤前冲淤研究[D].天津:大津大学,2005.
    [54]Bredmose H, Peregrine D H, Bullock G N. Violent breaking wave impacts. Part 2:Modelling the effect of air[J]. Journal of Fluid Mechanics,2009,641:389-430.
    [55]Bredmose H, Raby A H, Jayaratne R. The ideal flip-through impact:Experimental and numerical investigation[J]. Journal of Engineering Mathematics,2010,67(1):115-136.
    [56]Plumerault L R, Astruc D, Maron P. The influence of air on the impact of a plunging breaking wave on a vertical wall using a multifluid model[J]. Coastal Engineering, 2012,62(4):62-74.
    [57]Hsu T J, Sakakiyama T, Liu P L F. A numerical model for wave motions and turbulence flows in front of a composite breakwater[J]. Coastal Engineering,2002,46(1):25-50.
    [58]Sakakiyama, T, liu P L F. Laboratory experiments for wave motions and turbulence flows in front of a breakwater[J]. Coastal Engineering,2001,44(2):117-139.
    [59]Lara J L, Losada I J, Guanche R. Wave interaction with low-mound breakwaters using a RANS model [J]. Ocean Engineering,2008,35(13):1388-1400.
    [60]Guanche R, Losada I J, Lara J L. Numerical analysis of wave loads for coastal structure stability[J]. Coastal Engineering,2009,56(5-6):543-558.
    [61]Karim M F, Tingsanchali T. A coupled numerical model for simulation of wave breaking and hydraulic performances of a composite seawall[J]. Ocean Engineering,2006, 33 (5-6):773-787.
    [62]Mokrani C, Abadie S, Grilli S, et al. Numerical simulation of the impact of a plunging breaker on a vertical structure and subsequent overtopping event using a Navier-Stokes VOF model[C]. Proceeding of the 20th International Offshore and Polar Engineering Conference, China,2010,729-736.
    [63]Muni Reddy M G, Sannasiraj S A, Natarajan R. Numerical investigation on the dynamics of a vertical wall defenced by an offshore breakwater[J]. Ocean Engineering,2007, 34(5-6):790-798.
    [64]Khayyer A, Gotoh H. Modified Moving Particle Semi-implicit methods for the prediction of 2D wave impact pressure[J]. Coastal Engineering,2009,56(4):419-440.
    [65]Cuomo G, Lupoi G, Shimosako K, et al. Dynamic response and sliding distance of composite breakwaters under breaking and non-breaking wave attack[J]. Coastal Engineering,2011, 58(10):953-969.
    [66]Miyata H, Kanai A, Kawamura T, et al. Numerical simulation of three-dimensional breaking waves[J]. Journal of Marine Science and Technology,1996,1 (4):183-197.
    [67]Kawasaki K. Numerical simulation of breaking and post-breaking wave deformation process around a submerged breakwater[J]. Coastal Engineering Journal,1999, 41(3):201-223.
    [68]Hieu P D, Tanimoto K. Verification of a VOF-based two-phase flow model for wave breaking and wave-structure interact ions[J]. Ocean Engineering,2006,33(11-12):1565-1588.
    [69]王永学.VOF方法数模直墙式建筑物前的波浪破碎过程[J]. 自然科学进展,1993,3(6):553-559.
    [70]王永学.孤立波破碎过程试验与数模结果比较[J].大连理工大学学报,1994,34(4):463-469.
    [71]于永学,郭科.破碎波对直墙建筑物的作用[J].大连理工大学学报,1999,39(2):326-330.
    [72]王元战,破碎波冲击作用下直立式防波堤动力响应特性分析[J].水运工程,1995,12:1-7.
    [73]吕宝柱,王元战.破碎波作用下直立堤的运动及其稳定性[J].港工技术,2003,1:1-5.
    [74]Wang Y Z, Yu H X. Vibrating-sliding motion of caisson breakwaters under various breaking wave impact forces[J]. China Ocean Engineering,2003,17(4):565-576.
    [75]王元战,周枝荣,杨海东.不同类型近破波作用下沉箱式防波堤的振动-提离摇摆运动[J].应用数学和力学,2005,26(5):534-540.
    [76]高学平,赵子丹.直立堤前为任意地形时立波运动的数值分析[J].海洋学报,1995,17(1):111-120.
    [77]高学平,李昌良,张尚华.堤前远破波运动与冲淤形态[J].海洋通报,2006,25(1):24-29.
    [78]高学平,李昌良,张尚华.复杂结构形式的海堤波浪力及波浪形态数值模拟[J].海洋学报,2006,28(1):139-145.
    [79]张尚华.堤前波浪数值模拟及可视化研究[D].天津:天津大学,2006.
    [80]齐鹏,王永学,侯一筠.孤立波翻越防波堤流动的湍流数值模拟[J].水动力学研究与进展(A辑),2004,19:884-889.
    [81]孙鹤泉,沈永明,王永学等.PIV技术的儿种实现方法[J].水科学进展,2004,15(1):105-108.
    [82]孙鹤泉,康海贵,李广伟.PIV的原理与应用[J].水道港口,2002,23(1):42-45.
    [83]Ashgriz N, Barbat T, Wang G. A computational Lagrangian-Eulerian advection remap for free surface flows[J]. International Journal for Numerical Methods in Fluids,2004, 44(1):1-32.
    [84]吕林.海洋工程中小尺度物体的相关水动力数值计算[D].大连:大连理工大学,2006.
    [85]Jiang C B, Kawahara M. The analysis of unsteady incompressible flows by a three-step finite element method [J]. International Journal for Numerical Methods in Fluids,1993, 16(9):793-811.
    [86]陈兵.波浪场中小尺度杆件受力的有限元数值模拟[D].大连:大连理工大学,1998.
    [87]Versteeg H K, Malalasekera W. An introduction to computational fluid dynamics:The finite volume method[M]. New York:Prentice Hall,1995.
    [88]何子干,倪汉根.大涡模拟法的二维形式[J].水动力学研究与进展(A辑),1994,9(1):30-36.
    [89]Bleiler S A, Hodgson C D, Zhang J F, et al. Interactions of vortex-induced vibrations of a circular cylinder and a steady approach flow at a Reynolds number of 13,000[J]. Computers & Fluids,1996,25(3):283-294.
    [90]张兆顺,崔桂香,许春晓.湍流理论与模拟[M].北京:清华大学出版社,2005.
    [91]章本照,印建安,张宏基.流体力学数值方法[M].北京:机械工业出版社,2003.
    [92]Orourke J. Computational geometry in C[M].2nd ed. Cambridge Cambridge University Press,1998.
    [93]Dong C M, Huang C J. Generation and propagation of water waves in a two-dimensional numerical viscous wave flume[J]. Journal of Waterway, Port, Coastal and Ocean Engineering,2004,130(3):143-153.
    [94]陶建华.水波的数值模拟[M].天津:天津大学出版社,2005.
    [95]Martin J C, Moyce W J. An experimental study of the collapse of liquid columns on a rigid horizontal plane[J]. Philosophical Transaction of the Royal Socity of Lodon, Series A, Mathematical and Phiscal Science,1952,224(882):312-324.
    [96]Cox D T. Experimental and numerical modeling of surf zone hydrodynamics[D]. Delaware: University of Delaware,1995.
    [97]Oumeraci H, kortenhaus. Wave impact loading:tentative formulae and suggestions for the development of final formulae[c]. Proceedings of the 2nd Task 1 MAST Ⅲ Workshop(PROVERBS), Scotland,1997,3 Annexes.
    [98]Munk W H. The solitary wave theory and its application to surf problems [J]. Annals of the New York Academy of Science,1949,51(3):378-424.
    [99]李玉成,滕斌.波浪对海上建筑物的作用[M].2nd ed北京:海洋出版社,2002.
    [100]Takahashi S. Dynamics response and sliding of breakwater cassions against impulsive breaking wave forces[C]. Proceeding of the International Workshop on Wave Barriers in Deep Waters, Japan,1994,362-399.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700