环保型三价铬电镀实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电镀铬是工业上应用最广泛的电镀技术之一,其产品遍及日常生活与工业生产等诸多领域。传统的镀铬是采用六价铬镀铬工艺进行的。由于六价铬电镀铬工艺存在电流效率低、能耗大、覆盖能力差等缺点,特别是六价铬具有对操作工人身体危害极大与污染环境严重的问题,使得采用新型镀铬技术来取代六价铬电镀成为必然趋势。
     本论文采用甲酸铵与草酸铵复合作为配位剂的氯化物体系电镀液进行三价铬电镀。该体系基本上克服了上述六价铬电镀的缺点,具有低毒环保、不受电流中断的影响和可在常温下电镀等优点。采用该体系镀液在金属表面进行电镀,可得到外观光亮,结合力与耐蚀性较好的镀铬层,基本满足装饰性镀铬的需求,具有一定的实用价值。
     本文的主要工作包括以下三个部分:
     (1)金属表面三价铬电镀
     采用甲酸铵与草酸铵复合配位剂体系三价铬电镀液,在铜和45钢两种金属材料表面进行三价铬电镀。利用正交试验法进行小槽实验,以镀铬层的厚度作为考核指标,优化选择电镀液中两种配位剂的浓度,阴极电流密度与电镀时间等工艺参数,结合镀液pH值与温度对镀层外观的影响,获得良好的电镀工艺条件。采用优化后的工艺条件,可在金属表面获得外观光亮、分布均匀致密,纯度较高,结合力与耐蚀性较好的镀铬层。
     (2)非金属表面化学镀铜
     采用甲醛-酒石酸钾钠镀铜体系镀液,在尼龙、酚醛树脂和玻璃三种非金属材料上进行化学镀铜。通过正交设计进行小槽实验,以镀铜速率作为考核指标,对化学镀铜液中硫酸铜、酒石酸钾钠和甲醛的浓度与镀液pH值等参数进行优化。采用优化后的工艺条件,可在非金属材料表面获得分布均匀,颜色红亮,导电性良好,无漏镀现象的铜镀层。其中尼龙和酚醛树脂表面铜镀层结合力较好,玻璃表面铜镀层结合力较差。
     (3)非金属镀铜件表面三价铬电镀
     在表面化学镀铜的尼龙、酚醛树脂两种非金属材料上,在前文研究的基础上进行三价铬电镀实验,分析了不同阴极电流密度对镀层外观的影响。针对镀层出现的结合力差的缺点,给出了几种增强镀层结合力的改进方案。
Chromium eletroplating, one of the most widely used industrial eletroplating technologies, has numerous applications in daily life and industrial fileds. The traditional plating process is completed by the hexavalent chromium plating method. However, hexavalent chromium plating has shortcomings such as low current efficiency, high energy consumption, and poor coverage capacity. In addition, hexavalent chromium is extremely harmful to the health of operating workers and environment. Therefore, it has become an inevitable trend that a new chromium plating technology will replace the traditional way.
     In this thesis, ammonium formate and ammonium oxalate are compounded as a complexing agent of the chloride system eletroplating solution for eletroplating trivalent chromium. The complete system has generally overcome the shortcomings of the hexavalent chromium plating technology illustrated above, with the superior performances including low toxicity, environment friendly, free from current disruption, feasibility at room temperature, etc. The experimental results show that the system used in the metal surface plating can achieve a chrome layer of bright appearance, large adhesion force and good corrosion resistance, which could basically meet the requirements for decoration and other practical use.
     The main work of this thesis includes the following three parts:
     (1) Trivalent chromium eletroplating on metal surface
     Ammonium formate and ammonium oxalate are compounded as a complexing agent of the chloride system eletroplating solution for eletroplating trivalent chromium on copper and 45 steel. Small tank experiments are conducted using the orthogonal test method with the thickness of the chrome layer taken as the assessment indicators and the optimal selection of the four process parameters, including concentrations of the two complexants in plating solution, cathode current density and plating time. Then good plating process conditions are obtained by further considering the effect of pH value and temperature of plating solution on the coating appearance. With the application of the optimized process conditions, chrome layers with bright appearance, uniform density, high purity, good adhesion and corrosion resistance on metal surface are achieved.
     (2) Electroless copper plating on non-metallic surface
     Formaldehyde-potassium sodium tartrate is used as plating bath to plate copper on non-metallic surface such as nylon, phenolic resins, and glass. The four parameters, which consist of pH value of the plating bath and concentrations and of the copper sulfate solution, potassium sodium tartrate solution and formaldehyde solution, are optimized with the plating rate taken as the assessment indicator. An evenly distributed, bright red-colored copper coating with good electrical conductivity and leakless plating can be achieved under the optimal process conditions. The experimental results show that the adhesion force of the copper coatings on nylon and phenolic resins surfaces are larger than that of glass surfaces.
     (3) Trivalent chromium eletroplating on non-metallic copper-plated part surface
     Based on the previous research in this paper, trivalent chromium eletroplating on the copper plated nylon and phenolic resins non-metallic surfaces were conducted, and the influence of current density on the appearance of the coating was investigated. Several improvement methods are proposed to enhance the adhesion force to overcome the weak adhesion of the coatings.
引文
[1]丁翼.铬化合物生产与应用[M].北京:化学工业出版社,2003.
    [2]Lindsay J H. Decorative and hard chromium plating [J]. Plating and Surface Finishing, 2004, (8):16-17.
    [3]郑伟涛.薄膜材料与薄膜技术[M].北京:化学工业出版社,2008.
    [4]洪燕,季孟波,何安国,等.三价铬电镀研究进展[J].电镀与精饰,2005,27(4):16-20.
    [5]李家柱,林安,甘复兴.取代重污染六价铬电镀的技术及应用[J].电镀与涂饰,2004,23(5):30-33.
    [6]胡耀红,陈力格,刘建平.三价铬镀铬工艺及其新型阳极的初步研究[J].电镀与涂饰,2004,23(2):19-21.
    [7]屠振密,郑剑,李宁,等.三价铬电镀铬现状及发展趋势[J].表面技术,2007,36(5):59-63.
    [8]国家环保总局标准处.电镀行业污染物排放标准[J].电镀与涂饰,2006,25(9):58-61.
    [9]屠振密.三价铬镀铬的国内外研究和发展[J].哈尔滨工业大学学报,1980,(1):109-121.
    [10]刘卫青,张长鑫,杜登学,等.日本三价铬电镀技术的发展状况[J].材料保护,2008,41(10):47-50.
    [11]吴慧敏.全硫酸盐体系三价铬电镀铬研究[D].武汉:武汉大学化学学院,2004.
    [12]Dash J, Kasaaian A S. Chromium-Iron alloy plating from a solution containing both Hexavalent and Trivalent Chromium:US,4615773[P].1986,10,07.
    [13]屠振密,杨哲龙.甲酸盐一乙酸盐体系三价铬电镀工艺[J].材料保护,1985,18(6):68-71.
    [14]车承焕.三价铬镀铬工艺试验[J].电镀与环保,1987,7(2):6-8.
    [15]王先友,蒋汉瀛,文清良.甲酸盐型三价铬电镀溶液稳定性研究[J].电镀与涂饰,1995,14(2):1-6.
    [16]黄长山,张宏图,李长鸣,等.草酸体系三价铬电镀铬新工艺研究[J].河南科学,1992,10(3):264-270.
    [17]姚守拙,李克平.用EDTA为络合剂的三价铬镀铬工艺研究[J].电镀与环保,1985,5(6):1-4.
    [18]张新,李惠东,段淑贞,等.金属杂质和稀土添加剂对三价铬镀铬的影响[J].电镀与精饰,1993,15(6):14-16.
    [19]李炳江,屠振密,孙化松,等.硫酸盐三价铬电镀新工艺[J].电镀与环保,2010,30(3):12-14.
    [20]曾志翔,王立平,陈丽,等.三价铬电镀硬铬及镀层性能的研究[J].电镀与环保,2006,26(4):11-13.
    [21]田军,乔秀丽,聂春红.三价铬装饰性镀铬新工艺的研究[J].哈尔滨商业大学学报(自然科学版),2010,26(2):214-217.
    [22]吴慧敏,康健强,左正忠,等.全硫酸盐体系三价铬电镀铬的研究[J].武汉大学学报(理学版),2004,5(20):187-191.
    [23]张招贤,赵国鹏,胡耀红.三价铬电镀[J].电镀与涂饰,2005,24(12):50-53.
    [24]杜登学,隋永红,周磊,等.三价铬电镀的研究现状及发展[J].材料保护,2010,43(4):29-32.
    [25]李永彦,李宁,屠振密,等.三价铬硫酸盐电镀铬的发展现状[J].电镀与精饰,2009,31(1):13-17.
    [26]安茂忠.电镀理论与技术[M].哈尔滨:哈尔滨工业大学出版社,2004.
    [27]李新梅.高效复合镀铬添加剂的研究[D].西安:西安理工大学材料学院,2002.
    [28]Mandich N V. Chemistry & theory of chromium deposition:part I-chemistry [J]. Plating & Surface Finishing,1997,84(5):108-114.
    [29]郑剑.三价铬电镀装饰性铬新工艺研究[D].哈尔滨:哈尔滨工业大学材料学院,2007.
    [30]方景礼.电镀添加剂理论及应用[M].北京:国防工业出版社,2006.
    [31]Tu Z M, Yang Z L. Cathode polarization in trivalent chromium plating[J]. Plating and Surface Finishing,1993,80(9):78-82.
    [32]Song Y B, Chin D T. Current efficiency and polarization behavior of trivalent chromium electrodeposition process [J]. Electrochimica Acta,2002,48(4):349-356.
    [33]宋元伟,赵斌,孙承绪.化学镀铜及其在玻璃工业中的应用[J].玻璃与搪瓷.1999,27(5):47-51.
    [34]田庆华,闫剑锋,郭学益.化学镀铜的应用与发展概况[J].电镀与涂饰,2007,26(4):38-41.
    [35]崔国峰,李宁,黎德育.化学镀铜在微电子领域中的应用及展望[J].电镀与环保,2003,23(5):5-7.
    [36]杨保中.化学镀纳米铜膜的工艺参数和表面形貌及沉积原理研究[D].长春:吉林大学材料学院,2007.
    [37]高志强,沈晓冬,崔升,等.化学镀铜的研究进展[J].材料导报,2007,21:217-219.
    [38]杨建文,邓型深,徐浩森.4种羧酸盐配位剂对装饰性三价铬电镀的作用[J].材料保护,2009,42(6):39-41.
    [39]周阳,周磊,王灵锋.三价铬电镀面临的问题及其解决方法[J].杭州化工,2009,4:9-11.
    [40]Smith A M, Watson A, Vaughan D H. The role of oligomeric olated species in the deposition rate of chromium from a commercial chromium (III) electrolyte [J]. Transactions of the Institute of Metal Finishing,1993,71(3):106-112.
    [41]Duan S, Li H, Zhang X, et al. Hard chromium plating from a trivalent plating bath [J]. Plating and Surface Finishing,1995,82(6):84-86.
    [42]天津市电镀工程学会,天津市电镀研究所.简明电镀工手册[M].北京:机械工业出版社,2000.
    [43]田民波,刘德令.薄膜科学与技术手册(上)[M].北京:机械工业出版社,1991.
    [44]崔廷昌,张素兰.三价铬电镀[J].电镀与环保,2008,28(3):41-42.
    [45]吴水苟.ABS塑料三价黑铬电镀工艺与故障处理[J].电镀与涂饰,2008,27(10):35-36.
    [46]吴连波,张伟.塑料的金属化工艺[J].吉林工学院学报,2002,23(1):27-30.
    [47]王爱荣.非金属材料电镀前预处理概述[J].表面技术,2001,30(5):11-19.
    [48]吴水苟.ABS塑料与电镀层结合力差的原因分析及其控制[J].电镀与涂饰,2008,28(2):13-15.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700