白菜花粉发育相关的C2H2型锌指蛋白新基因BcMF20的克隆与功能验证
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
选育雄性不育系是作物杂种优势利用中简化制种程序、降低制种成本的重要手段,而十字花科作物生产一代杂种的理想系统是雄性不育系,花粉败育是植物雄性不育发生的表型体现,弄清花粉发育的分子机理是研究雄性不育的关键所在。本实验室在成功构建了三种共享同一保持系(核不育两用系的可育株系)的白菜(Brassica campestris L. ssp. chinensis Makino, syn. B. rapa ssp. chinensis)'矮脚黄’核不育('Aijiaohuang'genic male sterility, ajhGMS)两用系'Bcajh97-01A/B'、'Polima'核质互作不育(polima genic-cytoplasmic male sterility,polG-CMS)系'Bcpol97-05A'以及'Ogura'细胞质不育(Ogura cytoplasmic male sterility, oguCMS)系'Bcogu97-06A'材料体系的基础上,采用拟南芥基因芯片分析其花蕾转录组差异,对花粉基因表达谱进行系统分析,发现在三种不育系花蕾中均下调表达的基因有29个,在这29条基因中,大部分(14条)是功能未知基因,仅有2条是转录因子。其中一条的转录本标签是At1g26610,这是一条C2H2锌指家族的转录因子。At1g26610在三种不同雄性不育遗传模式的材料中表达均下调,提示我们它可能与花粉发育相关。本研究通过同源克隆的方法获得白菜中At1g26610的同源基因的编码序列和DNA全长,分析其序列特征;克隆其在十字花科芸薹属和萝卜属的18份材料中的同源基因,同时通过与近缘基因的比较,构建分子进化树,探讨进化关系;运用半定量PCR和实时定量荧光PCR技术分析该基因在'Bcajh97-01A/B'不育株和可育株花蕾五级、花序、嫩角果、花茎和花叶中的表达情况,同时采用原位杂交方法分析其在组织中的定位,明确其时空表达情况;最后运用反义RNA技术,对拟南芥进行转化,获得这个基因的功能缺失突变体,鉴别该基因在花粉发育过程中的作用。取得的主要结果如下:
     (1)依据拟南芥At1g26610序列,采用同源克隆方法扩增获得在可育株'Bcajh97-01B'中高表达的转录本标签At1g26610在白菜中的同源基因,对该基因的cDNA序列和DNA序列分析可知,该基因最大开放阅读框为1359 bp,无内含子和外显子,Blast搜索没有发现相同序列的基因,说明这是一条新基因,我们将其命名为BcMF20 (Brassica campestris male fertility gene 20)。对推导的BcMF20编码氨基酸序列进行结构和功能域的分析表明,BcMF20编码452个氨基酸。编码的假定蛋白质的分子量为50.874 kDa,等电点为8.562,pH 7.0时的电荷为12.241,包含碱性氨基酸(K,R)72个,酸性氨基酸(D,E)63个,疏水氨基酸(A, I, L, F, W, V)105个,极性氨基酸(N, C, Q, S, T, Y) 133个。BcMF20基因是MMB型的3锌指C2H2锌指家族转录因子,其结构与矮牵牛EPF家族的TAZ1(ZPT3-2)基因的相似程度较高。
     (2)根据BcMF20的全长序列设计引物,在十字花科芸薹属和萝卜属的18个物种中克隆到BcMF20的同源序列,对十字花科植物BcMF20同源基因DNA序列进行核苷酸同源序列比对,发现BcMF20同源基因在DNA序列上的相似性为86.9%-100%。所有基因均没有内含子,尤其是在CDS的起始区和终止区,序列完全相同。它们所编码的蛋白质同源性高达77.6%-100%,均是3个锌指的C2H2转录因子,且编码的锌指类型与BcMF20一致,均为MMB型。在锌指的保守区域,碱基序列完全相同。在NCBI上对BcMF20进行BLAST搜索查询,发现12个与BcMF20有较高相似性的C2H2锌指转录因子,NJ法构建系统树,结果显示BcMF20与同科的拟南芥的三条C2H2锌指转录因子聚成一类,然后再与矮牵牛中的两条C2H2的4锌指C2H2转录因子聚为一类。
     (3)采用半定量PCR和实时定量PCR技术分析BcMF20在'Bcajh97-01A/B'不育株和可育株花蕾五级、花序、嫩角果、花茎和花叶中的表达情况,半定量PCR结果显示BcMF20基因仅在可育系Ⅳ级、V级花蕾中有表达,说明BcMF20基因可能与花粉发育相关;实时定量PCR结果表明BcMF20在不育系'Bajh97-01A'中的表达量极低,BcMF20基因在花蕾Ⅰ级-V级以及开放的花中表达,在角果、花茎、花叶中无表达,并且BcMF20基因在可育系Ⅳ级、V级花蕾中表达量非常大,实时定量PCR的结果证明该基因确实与花粉发育有关,按照Mascarenhas (1990)对花粉表达基因的分类方法,应该被归于“晚期”基因。原位杂交分析发现杂交信号出现在单核小孢子时期的小孢子和绒毡层细胞中,在花粉成熟早期的小孢子和将要降解的绒毡层细胞中继续表达,提示我们BcMF20可能在单核小孢子时期对绒毡层和花粉发育起作用。
     (4)构建含有组成型启动子CaMV35S的RNA反义载体,并利用Floral Dip法将构建的反义载体导入拟南芥中,与空载体对照比较,转基因植株营养生长正常,雌蕊正常,花药上花粉量少,最终不能形成正常饱满果荚。转基因拟南芥花粉不萌发,T1代萌发率为13%,T2代为15%。扫描电镜显示,82%的转基因植株的花粉畸形。与正常的椭圆形、三条萌发沟均匀分布的花粉粒相比,转基因植株的花粉呈现各种空洞,凹陷,异常空瘪。透射电镜显示导致转基因植株花粉萌发率降低的主要原因有两个:一是花药内花粉数量减少,二是花粉畸形、空泡化。转基因植株的花粉畸形是由于花粉壁畸形导致的,而花粉壁的畸形很有可能是由于胼胝质或者初生外壁的合成出现缺陷。在单核小孢子时期,转基因植株绒毡层的细胞质充满形态异常的空泡,花粉粒中也出现空泡。我们推测BcMF20可能是绒毡层发育中减数分裂后期TAZ1与MS1调控机制中的一个组件,它们共同作用丁绒毡层细胞的增殖,维持花粉的正常发育。
Brassica crops is a kind of important crops in agricultural production. The male sterile line was widely utilized in practice on produce F1 hybrid seeds. Much attention was paid to research on the plant breeding of the male sterile line and the basis for application in Brassica crops. The research on male sterility mechanism of Brassica contributed to the understanding of microspore and pollen development process and provided theory direction to create man-made male sterile line. In the former research of our lab, we established three different male sterile types,'Aijiaohuang'genic male sterility AB line (aihGMS'Bcajh97-01A/B'),'Poloma'genic-cytoplasmic male sterility (polG-CMS 'Bcpol97-05A') and'Ogura'cytolasmic male sterility (oguCMS'Bcogu97-06A') in Brassica campestris L. ssp. chinensis Makino, syn. B. rapa ssp. chinensis. These male sterile lines share a common maintainer line. Then, we conducted profiling comparisons between flower buds of these male sterile lines and their maintainer line using ATH1 genome array analysis. By analyzing the changes in expression pattern of genes acting downstream due to the gene mutation in different male sterile plant, 29 genes were identified. In this study, one C2H2 transcription factor in the 29 genes was selected for further characterization. The corresponding full-length cDNA and DNA was subsequently amplified by homologous gene amplification method. The gene sequence was analyzed and proteins functions were predicted. Spatial and temporal expression patterns were analyzed by reverse transcriptase PCR (RT-PCR), real-time quantitative PCR (RT-qPCR) and in situ hybridization. On this base the plant anti-sense RNA expression vector was constructed regulated by the constitutive promoter CaMV35S. The transgenic plants were obtained successfully using the floral dip method to transform the vector to the Arabidopsis (Columbia). Finally, molecular, morphological and cytological characteristics of the pollen were studied in transgenic plants, in order to elucidate the relation of the gene and pollen development, and understand the systematic regulation and molecular mechanism of pollen development in Brassica. The results obtained are as follows.
     (1) We cloned an cDNA of the gene differentially expressed in pollen using homologous expansion named Brassica Campestris Male Fertility 20 (BcMF20). Based on the cDNA of BcMF20, we designed primers to amplify DNA of BcMF20. A comparison of cDNA and DNA sequence showed that BcMF20 was composed of a 1359bp open reading frame, encoding an 50.874 kDa protein of 452 amino acids.The amino acid sequence of BcMF20 possesses the basic feature of C2H2 zinc finger protein, containing three finger, its finger type is MMB.
     (2) We isolated the homologue of BcMF20 from 18 cultivars from genera Brassica and Raphanus of family Cruciferae by homology cloning, and then compared these sequences with BcMF20 by multiple alignment. The similarity of DNA from BcMF20 homologous gene is from 86.9%-100%, which indicated that homologues of BcMF20 from family Cruciferae were highly conserved. All the genes are without introns, and totally identical in the CDs region. The encoded proteins are all C2H2 transcription factor contain three Zinc-finger, and the type of the Zinc-finger are MMB style as BcMF20. In the zinc-finger domain, the base sequences are conservation. When Blast BcMF20 according to NCBI database, found 12 Zinc-finger transcription factor genes have high identity to BcMF20, and all these sequences were analyzed by NJ to construct a phylogenetic tree. From the tree, BcMF20 is neighbored with three Arabidopsis thaliana C2H2 Zinc-finger transcription factors, and then become a tuft with four Zinc-fingers C2H2 transcription factor from Petunia.
     (3) Spatial and temporal expression patterns were analysed by RT-PCR and real-time quantitative PCR during the different stages of sterile and fertile plant development. The expression signal of BcMF20 was detected from fertile plant flower buds of stage 4 and stage5 by RT-PCR and real-time quantitative PCR. In contrast, little expression signal of BcMF20 was detected in same tissues of the sterile mutant by real-time quantitative PCR, and undetected from germinal siliques, leaves and scapes from sterile and fertile plant. The result indicated BcMF20 was an important gene in pollen development. BcMF20 was a'late'gene according to the classification of pollen expressed gene by Mascarenhas (Mascarenhas,1990). In situ hybridization indicated expression signal of BcMF20 was detected in uninucleate microspore and the tapetum cells, and expression signal was also detected in the maturing pollen and degradating tapetum. These results indicated that BcMF20 may has an effect on the tapetum and microspore development in uninucleate microspore stage.
     (4) Construct the anti-sense RNA vector with CaMV35S promoter, and introduced the vector into Arabidopsis thaliana by Floral Dip. Contrast with the empty vector, transgenic plant is normal during vegetable growth and the female organs, but have less pollen grain, and can not form turgid pods. The pollen from transgenic plant has low germination rate,13% and 15% in the T1 and T2 generations, respectively. 82% pollen from transgenic plant shows malformation under SEM. Contrast with normal pollen grain, the transgenic pollen display inanition, hollow and shrunken. Under TEM, we found two reasons to explain the low germination rate from transgenic pollen, one is the less of pollen grain in the pollen sac, and the other is the vacuole in the pollen. The abnormal pollen is likely due to the abnormal callose and the extine formation. The similarity in the expression pattern and the phenotypes resulting from the lack of their respective expression suggest that TAZ1, MS1 and BcMF20 could serve as components of the regulatory mechanism that controls the postmeiotic phase of tapetum development.
引文
陈丽.植物转录因子的结构与功能.植物生理学通讯,1997,33:401-409
    黄鹂.白菜三种雄性不育系与保持系花蕾转录组差异分析及三个花粉发育相关基因功能鉴定.博士学位论文,2007
    黄泽军,黄荣峰,黄大昉.植物转录因子功能分析方法.农业生物技术学报,2002,10:295-300
    江华.拟南芥花药发育相关基因MPS1和AMS功能的初步研究.博士学位论文,2009
    李焰焰.白菜花粉发育相关基因BcMF13和BcMF14的分离及其功能验证.博士学位论文,2007
    刘乐承,余小林,叶纨芝,向珣,曹家树.白菜雄性不育相关基因BcMF3功能的反义RNA验证.浙.江大学学报(农业与生命科学版),2006a32:473-478
    刘乐承,向珣,曹家树.白菜雄性不育相关基因BcMF4基因功能的RNAi验证.遗传,2006b,28:1428-1434
    刘乐承.白菜花粉发育相关基因BcMF3和BcMF4的转基因功能验证.博士学位论文,2006c
    刘强,张贵友,陈受宜.植物转录因子的结构与调控作用.科学通报,2000,45:1465-1474
    刘强,赵南明,Yamaguch-Shmozakj K, Shinozaki K. DREB转录因子在提高植物抗逆性中的作用.科学通报,2000,45:11-16
    刘颖.白菜花粉发育相关的PGIP新基因BcMF19的克隆与表达分析.硕士学位论文,2010
    普莉,索金凤,薛勇彪.植物表皮毛发育的分子遗传控制.遗传学报,2003,30:1078-1084
    宋江华.白菜花粉发育相关基因BcMF11和BcMF12的克隆、表达及其功能验证.博士学位论文,2007
    孙菲菲,侯喜林,李英,高红亮,张昌伟.不结球白菜硝酸还原酶基因BcNR的克隆及其在拟南芥中的转化.中国农业科学,2009,42:577-587
    田爱梅.白菜雄性不育相关基因BcMF15及其启动子的分离和功能验证.博士学位论文,2008
    王保.大白菜BrARGOS基因的分离与功能分析.中国农业科学,2009,42:2068-2075
    王华新.白菜雄性不育相关新基因BcMF1的克隆和功能验证.博士学位论文,2008a
    王华新,王永勤,曹家树,向珣,余小林,叶纨芝.一个与白菜雄性不育相关的新基因BcMF1的分离和特征分析.中国农业科学,2008b,41:1119-1127
    王永勤,余小林,曹家树.白菜小孢子发育相关基因BcMF3的分离及其表达特征分析.遗传学报,2004,31:1302-1308
    王永勤,曹家树,符庆功,余小林,向殉.利用cDNA-AFLP技术分析白菜核雄性不育两用系的表达差异.中国农业科学,2003,36:557-560
    杨志荣,王兴春,李西明,杨长登.高等植物转录因子的研究进展.遗传,2004,26:403-408
    余小林.白菜雄性不育相关基因CYP86MF的功能验证及人工不育系的创建.博士学位论文,2002
    张强.白菜花粉外壁蛋白基因BcMF5和多聚半乳糖醛酸酶基因BcMF6的分离及其功能验证.博士学位论文,2006
    张强,黄鹂,曹家树.白菜多聚半乳糖醛酸酶基因BcMF6的克隆、序列分析及其表达.园艺学报,2007,34:117-124
    张弢.十字花科植物BcMF2和BcMF4同源基因的克隆、表达及进化关系的研究.博士学位论文,2005
    朱骏.转录因子MYB103调控花药发育分子机理以及绒毡层发育与功能转录调控途径的研究.博士学位论文,2010
    Adamczyk B J, Fernandez D E. MIKC* MADS domain heterodimers are required for pollen maturation and tube growth in Arabidopsis. Plant Physiol,2009,149:1713-1723
    Benjamin L. Gene Ⅶ Oxford University Press,2000,654-656
    Boulikas T. Putative nuclear localization signals (NLS) in protein transcription factors. J Cell Biochem,1994, 55:32-58
    Bowman J L, Sakai H, Jack T, Weigel D, Mayer U, Meyerowitz E M. SUPPERMAN, a regulator of floral homeotic genes in Arabidopsis. Development,1992,114:599-615
    Cao J S, YuX L, Ye W Z, Lu G, Xiang X. Functional analysis of a male fertility CYP86MF gene in Chinese cabbage(Brassica campestris L. ssp. chinensis Makino). Plant Cell Rep,2006,24:715-723
    Carre I A, Kim J Y. MYB transcription factors in the Arabidopsis Circadian clock. J Exp Bot,2002, 53:1551-1557
    Clough S J, Bent A F. Floral dip:a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J,1998,16:735-743Dinneny J R, Weigel D, Yanofsky M F. NUBBIN and JAGGED define stamen and carpel shape in Arabidopsis. Development,2006,133:1645-1655
    Crawford B C, Ditta G, Yanofsky M F. The NTT Gene Is Required for Transmitting-Tract Development in Carpels of Arabidopsis thaliana. Curr Biol,2007,17:1101-1108
    Eckardt N A. Cytoplasmic male sterility and fertility restoration. Plant Cell,2006,18:515-517
    Eulgem T, Rushton P J, Schmelzer E, Hahlbrock K, Somssich I E. Early nuclar events in plant defence signalling:rapid gene activation by WRKY transcription factors. EMBO J,1999,18:4689-4699
    Fitzgerald M A, Knox R B. Initiation of primexine in freeze-substituted microspores of Brassica campestris. Sex Plant Reprod,1995,8:99-104
    Gatz C. Chemical control of gene expression. Annu Rev Plant Physiol Plant mol Biol,1997,48:89-108
    Gibalova A, Renak D, Matczuk K, Duplakova N, Chab D, Twell D, Honeys D. AtbZIP 34 is required for Arabidopsis pollen wall patterning and the control of several metabolic pathway in developing pollen. Plant Mol Biol,2009,70:581-601
    Hake S, Vollbrecht E, Freeling M. Cloning Knotted, the domain morphological mutant in maize using Ds2 as a transposon tag. EMBO J,1989,8:15-22
    Higginson T, Li S F, Parish R W. AtMYB103 regulates tapetum and trichome development in Arabidopsis thaliana. Plant J,2003,35:177-192
    Huang H, Tudor M, Weiss C A, Hu Y, Ma H. The Arabidopsis MADS-box gene AGL3 is widely expressed and wencodes a sequence-specific DNA-binding protein. Plant Mol Biol,1995,28:549-557
    Huang L, Cao J-S, Zhang Y-C, Ye Y-Q. Characterization of a novel gene, BcMF7, that is expressed preferentially in pollen of Brassica campestris L. ssp. chinensis Makino. Sci China Ser C-Life Sci, 2007,50(4):497-504
    Huang L, Cao J S, Ye W Z, Liu T T, Jiang L H, Ye Y Q. Transcriptional differences between the male-sterile mutant bcms and wild-type Brassica campestris ssp. chinensis reveal genes related to pollen development. Plant Biology,2008a,10:342-355
    Huang L, Cao J S, Zhang A H, Ye Y Q. Characterization of putative pollen-specific arabinogalactan protein gene, BcMF8, from Brassica campestris ssp. Chinensis. Mol Biol Rep,2008b,35:631-639
    Huang L, Cao J-S, Zhang A-H, Zhang Y-C, Ye Y-Q. Characterisation of BcMF10, a novel gene involved in pollen wall development of Brassica rapa ssp. chinensis. Funct Plant Biol,2008c,35(12):1194-1204
    Huang L, Cao J-S, Zhang A-H, Ye Y-Q, Zhang Y-C, Liu T-T. The polygalacturonase gene BcMF2 from Brassica campestris is associated with intine development. J Exp Bot,.2009a,60:301-313
    Huang L, Ye Y-Q, Zhang Y-C, Zhang A-H, Liu T-T, Cao J-S. BcMF9, a novel polygalacturonase gene, is required for both Brassica campestris intine and exine formation, Annals Bot,2009b,104:1339-1351
    Huang L, Liu Y, Yu X L, Xiang X, Cao J S. A polygalacturonase inhibitory protein gene (BcMF19) expressed during pollen development in Chinese cabbage-pak-choi. Mol Biol Rep,2011,38:545-552
    Huang T, Duman J G. Cloning and characterization of a thermal hysteresis (antifreeze) protein with DNA-binding activity from winter bittersweet nightshade, Solanum dulcamara. Plant Mol Biol,2002, 48:339-350
    Immink R G, Ferrario S, Busscher-Lange J, Kooiker M, Busscher M, Angenent G C. Analysis of the petunia MADS-box transcription factor family. Mol Genet Genomics,2003,268:598-606
    Ito T, Shinozaki K. The MALE STERILITY1 gene of Arabidopsis, encoding a nuclear protein with a PHD-finger motif, is expressed in tapetal cells and is required for pollen maturation. Plant Cell Physiol,2002,43:1285-1292
    Ito T, Wellmer F, Yu H, Das P, Ito N, Alves-Ferreia M, Riechmann J L, Meyerowit E M. The homeotic protein AGAMOUS controls microsporogenesis by regulation of SPOROCYTELESS. Nature,2004, 430:356-360
    Jung K H, Han M J, Lee Y S, Kim Y W, Hwang I, Kim M J, Kim Y K, Nahm B H, Ana G. Rice Undeveloped Tapetuml Is a Major Regulator of Early Tapetum Development. Plant Cell,2005,17:2705-2722
    Kapoor S, Kobayashi A, Takatsuji H. Silencing of the Tapetum-specific Zinc Finger Gene TAZ1 Causes Premature Degeneration of Tapetum and Pollen Abortion in Petunia. Plant Cell,2002,14:2353-2367
    Kaufmann K, Melzer R, Theissen G. MIKC-type MADS-domain proteins:structural modularity, protein interactions and network evolution in land plants. Gene,2005,347:183-198Kim J C, Lee S H, Cheong Y H, Yoo C M, Lee S 1, Chun H J, Yun D J, Hong J C, Lee S Y, Lim C O, Cho M J. A novel cold-inducible zinc finger from soybean, SCOF-1, enhances cold tolerance in transgenic plants. Plant J, 2001,25:247-259
    Kim S Y, Park B S, Kwon S J, Kim J, Lim M H, Park Y D, Kim D Y, Suh S C, Jin Y M, Ahn J H, Lee Y H. Delayed flowering time in Arabidopsis and Brassica rapa by the overexpression of FLOWERING LOCUS (FLC) homologs isolated from Chinese cabbage (Brassica rapa L. ssp. pekinensis). Plant Cell Rep,2007,26:327-336
    Kobayashi A, Sakamoto A, Kubo K, Rybka Z, Kanno Y, Takatsuji H. Seven zinc-finger transcription factors are expressed sequentially during the development of anthers in petunia. Plant J,1998,13:571-576
    Kubo K, Sakamoto A, Kobayashi A, Rybka Z, Kanno Y, Nakagawa H, Nishino T, Takatsuji H. Cys2/His2 zinc-finger protein family of petunia:evolution and general mechanism of target-sequence recognition. Nucleic Acids Res,1998,26:608-615.
    Li Y-Y, Cao J-S, Huang L, Yu X-L, Xiang X. BcMF13, a new reproductive organ-specific gene from Brassica rapa.ssp.chinensis, affects pollen development. Mol Biol Rep,2008,35:207-214
    Li Y-Y, Cao J-S. Morphological and functional characterization of BcMF13 in the antisense-silenced plants of Brassica campestris ssp.chinensis var.parachinensis. Mol Biol Rep,2009,36:929-937
    Lippuner V, Cyert M S, Gasser C S. Two classes of plant cDNA clones differentially complement yeast calcineurin mutants and increase salt tolerance of wild-type yeast. J Biol Chem,1996, 271:12859-12866
    Liu L, White M J, MacRae T H. Transcription factors and their genes in higher plants functional domains, evolution and regulation. Eur J Biochem,1999,262:247-257
    Luo M, Dennis E S, Berger F, Peacock W J, Chaudhury A. MINISEED3 (MINI3), a WRKY family gene, and HAIKU2 (IKU2), a leucine-rich repeat (LRR) KINASE gene, are regulators of seed size in Arabidopsis. PNAS,2005,102:17531-17536
    Mascarenhas J P. Gene activity during pollen development. Annu Rev Plant Physiol Plant Mol Biol,1990, 41:317-338
    McCormick S. Control of male gametophyte development. Plant Cell,2004,16:S142-S153
    Millar A A, Gublera F. The Arabidopsis GAMYB-Like Genes, MYB33 and MYB65, are microRNA-regulated genes that redundantly facilitate anther development. Plant Cell,2005, 17:705-721
    Miller J, McLachlan A D, Klug A. Repetitive zinc binding domains in the protein transcription factor ⅢA from Xenopus oocytes. The EMBO Journal,1985,4:1609-1614
    Mitsuda N, Seki M, Shinozaki K, Ohme-Takagi M. The NAC transcription factors NST1 and NST2 of Arabidopsis regulate secondary wall thickening and are required for anther dehiscence. Plant Cell, 2005,17:2993-3006
    Pacini E, Franchi G G, Hesse M. The tapetum:its form, function, and possible phylogeny in Embrophyta. Plant Syst Evol,1985,149:155-185
    Paxson-Sowgers D M, Owen H A, Makaroff C A. A comparative ultrastructural analysis of exine pattern development in wild-type Arabidopsis and a mutant defective in pattern formation. Protolasma,1997, 198:53-65
    Piffanelli P, Ross.J H E, Murphy D J. Biogenesis and function of the lipidic structure of pollen grains. Sex Plant Reprod,1998,11:65-80
    Pnueli L, Hallak-Herr E, Rozenberg M, Cohen M, Goloubinoff P, Kaplan A, Mittler R. Molecular and biochemical mechanism associated with dormancy and drought tolerance in the desert legume Retama raetam. Plant J,2002,31:319-330
    Riechmann J L, Krizek B A, Meyerowitz E M. Dimerization specificity of Arabidopsis MADS domain homeotic proteins APETALA1, APETALA3, PISTILLATA, and AGAMOUS. Proc Natl Acad Sci U S A,1996,93:4793-4798
    Riechmann J L, Heard J, Martin G, Reuber L, Jiang-Z C, Keddie J, Adam L, Pineda O, Ratcliffe O J, Samaha R R, Creelman R, Pilgrim M, Broun P, Zhang J Z, Ghandehari D, Sherman B K, Yu G-L. Arabidopsis transcription factors:genome-wide comparative analysis among eukaryotes. Science, 2000a,290:2105-2110
    Riechmann J L, Ratcliffe O. A genomic perspective on plant transcription factors. Curr Opin in Plant Biol, 2000b,3:423-434
    Rushton P J, Torres J T, Parniske M, Wernert P, Hahlbrock K, Somssich 1 E. Interaction of elicitor-induced DNA-binding proteins with elicitor response elements in the promoters of parsley PR1 genes. EMBO J,1996,15:5690-5700
    Sakai H, Medrano L J, Meyerowitz EM. Role of SUPERMAN in maintaining Arabidopsis floral whorl boundaries. Nature,1995,378:199-203
    Schiefthaler U, Balasubramanian S, Sieber P, Chevalier D, Wisman E, Schneitz K. Molecular analysis of NOZZLE, a gene involved in pattern formation and early sporogenesis during sex organ development in Arabidopsis thaliana. Proc Natl Acad Sci U S A,1999,96:11664-11669
    Scott R J, Spielman M, Dickinson H G. Stamen structure and function. Plant Cell,2004,16(Suppl.):S46-60
    Singh K, Foley R C, Onate-Sanchez L. Transcription factors in plant defense and stress responses. Curr Opin Plant Biol,2002,5:430-436
    Smith L G, Hake S. Molecular genetic approaches to leaf development:Knotted and beyond. Can J Bot, 1994,72:617-625
    Song J-H, Cao J-S, Yu X-L, Xiang X. BcMF11, a putative pollen-specific non-coding RNA from Brassica campestris ssp.chinensis. J Plant Physiol,2007,164:1097-1100
    Sorensen A M, Krober S, Unte U S, Huijser P, Dekker K, Saedler H. The Arabidopsis ABORTED MICROSPORES (AMS) gene encodes a MYC class transcription factor. Plant J,2003,33:413-423
    Tague B W, Gallant P, Goodman H M. Expression analysis of an Arabidopsis C2H2 zinc finger protein. Plant Mol Biol,1997,32:785-796
    Takatsuji H, Mori M, Benfey P N, Ren L, Chua N H. Characterization of a zinc finger DNA-binding protein expressed specifically in petunia petals and seedling. EMBO J,1992,11:241-249
    Takatsuji H. Zinc-finger transcription factors in plants. Cell Mol Life Sci,1998,54:582-596
    Takatsuji H. Zinc-finger protein:The classical zinc finger emerges in contemporary plant science. Plant Mol Biol,1999,39:1073-1078
    Tian A-M, Cao J-S, Huang L, Yu X-L, Ye W-Z. Characterization of a male sterile related gene BcMF15 from Brassica campestris ssp.chinensis. Mol Biol Rep,2009,36:307-314
    U N. Genome-analysis in Brassica with special reference to the experimental formation of B. napus and its peculiar mode of fertilization. Japan J Bot,1935,7:389-452
    Verelst W, Saedler H, Munster T. MIKC*MADS-protein complexes bind motifs enriched in the proximal region of late pollen-specific Arabidopsis promoters. Plant Physiol,2007a,143:447-460
    Verelst W, Twell D, de Folter S, Immink R, Saedler H, Munster T. MADS-complexes regulate transcriptome dynamics during pollen maturation. Genome Biol,2007b,8:R249
    Vizcay-Barrena G, Wilson Z A. Altered tapetal PCD and pollen wall development in the Arabidopsis ms1 mutant. J Exp Bot,2006,57:2709-2717
    Waterkeyn L. Les parois microsporocytaires de nature callosique chez Helleborus et Tradescantia. Cellule, 1962,62:225-255
    Waterkeyn L, Beinfait A. On a possible function of the callosic special wall in Lpomoea (L.) Roth. Grana, 1970,10:13-20
    Wellmer F, Riechmann J L, Alves-Ferreira M, Meyerowitz E M. Genome-wide analysis of spatial gene expression in Arabidopsis flowers. Plant Cell,2004,16:1314-1326
    Wijeratne A J, Zhang W, Sun Y J, Liu W L, Albert R, Zheng Z G, Oppenheimer D G, Zhao D Z, Ma H. Differential gene expression in Arabidopsis wild-type and mutant anthers:insights into anther cell differentiation and regulatory networks. Plant J,2007,52:14-29
    Wilson Z A, Morroll S M, Dawson J, Swarup R, Tighe P J. The Arabidopsis MALE STERILITY 1 (MS1) gene is a transcriptional regulator of male gametogenesis, with homology to the PHD-finger of transcription factors. Plant J,2001,28:27-39
    Yang X Y, Li J G, Pei M, Gu H, Chen Z L, Qu L J. Over-expression of a flower-specific transcription factor gene AtMYB24 causes aberrant anther development. Plant Cell Rep,2007a,26:219-228
    Yang C Y, Xu Z Y, Song J, Conner K, Barrena G V, Wilson Z A. Arabidopsis MYB261MALE STERILE35 Regulates Secondary Thickening in the Endothecium and Is Essential for Anther Dehiscence. Plant Cell,2007b,19:534-548
    Yang C Y, Vizcay-Barrena G, Conner K, Wilson Z A. MALE STERILITY1 is required for tapetal development and pollen wall biosynthesis. Plant Cell,2007,19:3530-3548
    Yun J Y, Weigel D, Lee I. Ectopic expression of SUPERMAN suppresses development of petal and stamans. Plant Cell Physiol,2002,43:52-57
    Yang W C, Ye D, Xu J, Sundaresan V. The SPOROCYTELESS gene of Arabidopsis is required for initiation of sporogenesis and encodes a novel nuclear protein. Genes Dev,1999,13:2108-2117
    Yang C Y, Xu Z Y, Song J, Conner K, Barrena G V, Wilson Z A. Arabidopsis MYB26/MALE STERILE35 regulates secondary thickening in the endothecium and is essential for anther dehiscence. Plant Cell, 2007,19:534-548
    Yanagisawa S, Sheen J. Involvement of maize Dof zinc finger proteins in tissue-specific and light-regulated gene expression. Plant Cell,1998,10:75-90
    Zhang Q, Liu H-Z, Cao J-S. Identification and preliminary analysis of a new PCP promoter from Brassica rapa ssp.chinensis.2008, Mol Biol Rep 35:685-691
    Zhang Q, Cao J-S, Liu H-Z, Huang L, Xiang X, Yu X-L. Characterization and functional analysis of a novel PCP gene BcMF5 from Chinese cabbage (Brassica campestris L.ssp. chinensis Makino). J Plant Physiol,2008,165:445-455
    Zhang W, Sun Y, Timofejeva L, Chen C B, Grossniklaus U, Ma H. Regulation of Arabidopsis tapetum development and function by DYSFUNCTIONAL TAPETUM1 (DYT1) encoding a putative bHLH transcription factor. Development,2006,133:3085-3095
    Zhu J, Chen H, Li H, Gao J F, Jiang H, Wang C, Guan Y F, Yang Z N. Defective in Tapetal development and function 1 is essential for anther development and tapetal function for microspore maturation in Arabidopsis. Plant J,2008,55:266-277
    Zhang Z B, Zhu J, Gao J F, Wang C, Li H, Zhang H Q, Zhang S, Wang D M, Wang Q X, Huang H, Xia H J, Yang Z N. Transcription factor AtMYB103 is required for anther development by regulating microspore release from tetrads and exine formation in Arabidopsis. Plant J,2007,52:528-538
    Zhang Z Z, Ma Z Q, Liu D J. Suppression Subtractive Hybridization Analysis of Ms2 Near-isogenic Lines of Wheat Reveals Genes Differentially Expressed in Spikelets and Anthers. J Plant Physiol Mol Biol, 2005,31:175-182

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700