皖南毛竹林密度效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
毛竹(Phyllostachys edulis)是我国亚热带主要的生态经济竹种,不仅具有较高的经济价值和社会价值,而且发挥着重要的生态功能。密度管理一直是毛竹林培育的关键技术,合理的密度管理不仅是提高竹林生产力的重要途径,而且是充分发挥竹林生态功能的必要手段。以往关于毛竹林密度的研究常侧重于生产力方面,而随着人们对生态需求的不断增强,毛竹林经济效益和生态效益兼顾将成了竹林培育的重要发展方向,因此探讨毛竹林的密度效应对毛竹林可持续经营具有重要的意义。本研究通过在皖南地区设置具有代表性且环境条件基本一致,林分密度分别为1 200株?hm-2(D1)、1 800株?hm-2(D_2)、2 400株?hm-2(D_3)和3 000株?hm-2(D_4)的毛竹纯林,比较研究了不同密度毛竹林的生长特征、土壤质量、生物量格局、营养元素积累与分配、水源涵养功能的差异,旨在揭示林分密度对毛竹林生产力及主要生态功能的作用机理,探讨经济效益和生态效益兼顾的毛竹林经营密度,为皖南地区毛竹林丰产培育和可持续经营提供理论依据和技术指导。研究结果表明:
     (1)不同密度毛竹林的胸径、竹高、枝下高、冠幅、基径、胸径处壁厚、总节数和枝盘数等指标差异不显著,而毛竹林的出笋成竹、受害程度及叶面积指数差异显著。毛竹林的出笋率和成竹率随着密度的增大而降低,而退笋率不受密度的影响。密度影响着毛竹林病虫害率和雨雪冰冻受害率,竹林总受害率大小排序为D(316.67 %)>D(413.33%)>D1(10.19 %)>D_2(9.26 %),在竹林经营中可以通过密度管理来降低毛竹林的受害率。构建了皖南地区毛竹林叶面积指数的估算模型LAI=0.000588 N 0.9519 D 0.7136,不同密度毛竹林叶面积指数表现为D_4(6.83)>D_3(5.38)>D_2(4.21)>D1(2.96)。毛竹生长因子之间存在着不同程度的相关关系,其中毛竹的胸径和竹高与其他指标的相关关系更密切。
     (2)应用加权综合指数法对毛竹林土壤物理性状、化学性质和酶活性进行了综合评价,毛竹林土壤质量综合指数排序为D(10.5086)>D(20.5084)>D(30.4943)>D(40.4781)。试验区土壤较适合毛竹的生长,但是土壤氮磷钾比值与毛竹生长所需氮磷钾比值存在差异,其中土壤磷元素含量是毛竹生长的主要限制因子。随着林分密度增大,毛竹林土壤脲酶、蔗糖酶、蛋白酶、过氧化氢酶、酸性磷酸酶活性总体呈现先增加后趋于稳定的规律性变化。土壤酶之间及其与土壤理化性质密切相关,可以用土壤酶活性作为评价毛竹林土壤质量的指标。
     (3)林分密度显著影响着毛竹林生物量格局。不同密度毛竹林生态系统生物量表现为D_4(118.02 t·hm~(-2))>D_3(98.42 t·hm~(-2))>D_2(67.84 t·hm~(-2))>D_1(58.27 t·hm~(-2)),其中乔木层生物量所占比例最大,大小排序为D(4111.45 t·hm~(-2))>D(391.44 t·hm~(-2))>D(260.54 t·hm~(-2))>D_1(50.14 t·hm~(-2))。林下植被生物量占毛竹林生态系统生物量的比例较小,其中灌木层所占比例为0.23 %~4.60 %,草本层所占比例为0.25 %~2.53 %,灌木层和草本层的生物量与竹林密度呈显著负相关。毛竹林枯落物储量的大小排序为D(46.00 t·hm~(-2))>D_3(5.56 t·hm~(-2))>D_2(5.02 t·hm~(-2))>D_1(3.98 t·hm~(-2)),占生态系统生物量的5.08 %~7.40 %。通过线性逐步回归拟合发现,对毛竹林生态系统生物量的直接影响力排序依次为林分密度>土壤有机质>土壤pH值>平均胸径>土壤容重。
     (4)林分密度对毛竹不同器官和毛竹林生态系统各层次氮、磷、钾元素积累与分配有着深刻的影响。毛竹林营养元素的总积累量表现为D(354 019.59 kg·hm~(-2))>D(446676.53 kg·hm~(-2))>D_2(44 548.81 kg·hm~(-2))>D_1(25 650.10 kg·hm~(-2)),各元素占总积累量比例大小依次为钾>氮>磷。毛竹林对林地土壤中营养元素的累积程度存在显著差异,表现为主要累积氮元素和磷元素,而对钾元素的生物吸收较少。毛竹林林下植被的营养元素含量均高于乔木层,富集系数呈现随密度增大而减小的趋势。
     (5)林分密度显著影响毛竹林水源涵养功能的发挥,试验区1 200株·hm~(-2)的毛竹林水源涵养功能最强。毛竹林的水源涵养量表现为D_1(722.20 t·hm~(-2))>D_3(720.71 t·hm~(-2))>D_4(655.96 t·hm~(-2))>D_2(616.04 t·hm~(-2))。毛竹林植冠层截留量的大小排序为D_4(7.93 t·hm~(-2))>D_2(6.34 t·hm~(-2))>D_3(6.33 t·hm~(-2))>D_1(5.30 t·hm~(-2)),乔木层枝叶持水量随密度增大而增加,林下植被持水量则与密度负相关。毛竹林枯落物层最大持水量与其储量密切相关,大小排序为D_4(20.70 t·hm~(-2))>D_3(17.71 t·hm~(-2))>D_2(17.04 t·hm~(-2))>D_1(13.56 t·hm~(-2))。枯落物层最大拦蓄量和有效拦蓄量均随着竹林密度增大而增加,枯落物层持水量和吸水速率与浸泡时间之间的拟合模型为S=aInt+b和V=ctd。土壤是毛竹林水源涵养的主体,占毛竹林水源涵养量的95.64 %~97.39 %。随着林分密度增大,毛竹林土壤层水源涵养功能呈降低趋势。不同密度毛竹林土壤渗透性能高低排序为D_1>D_3>D_2>D_4,模型f=at-n可以模拟毛竹林土壤水分入渗过程。
     (6)在研究区,2 400株·hm~(-2)为毛竹林最优的经营密度。不同密度毛竹林的生产力、改良土壤、维持生物循环平衡、水源涵养功能等主要生态功能优劣次序不尽相同。应用加权综合指数法对毛竹林的生长特征、土壤质量、生物量格局、营养元素积累与分配、水源涵养功能进行综合评价,不同密度毛竹林生产力及生态功能综合指数大小依次为D_3(0.4995)>D_2(0.4803)>D_1(0.4662)>D_4(0.2602)。皖南地区2 400株·hm~(-2)毛竹林不仅具有较好的经济效益,而且能够很好地发挥竹林改良土壤、维持生物循环平衡、水源涵养等生态功能。
Moso bamboo (Phyllostachys edulis) is the most important eco-economic bamboo species in subtropical region of China. It has not only relatively high economic value and social value, but also other important ecological functions. For now, as a key technology, density management is always used in P. edulis silviculture, because a reasonable density can express a vital function not only in improve productivity, but also in ecological function. It is important to study density effect from the aspect of sustainable management for P. edulis forest. Previously, the research of density was focus on the aspect of productivity, but with the continuous enhancement of the ecological requirements, more and more people took the balance of economic and ecological benefits as the new direction. In this research, four kinds of densities (D_1, D_2, D_3, D_4, represent the stand density of 1 200, 1 800, 2 400, 3 000 tree·hm-2 respectively) had been chosen at the southern Anhui province, and the characters of representativeness and environment condition were all contained in the samples. Through the study on different aspects of P. edulis forest, such as growth characteristics, soil quality, biomass, nutrient accumulation and distribution, and water conservation function, the mechanisms of forest density for productivity and ecological function were exposed, and the reasonable density was chosen as well. The aiming is to provide theoretical and technical guidance for P. edulis silvilcuture and sustainable management in the mountainous areas of southern Anhui province. The main results of this study are as follow:
     (1) There were no obvious differences in the grown factors under different densities, such as DBH, height, height under branch, crown width, basic diameter, wall thickness, number of internodes and branch, while significant difference was found in shooting, harmed and leaf area index (LAI) under all four stands. Sprouting rate and survival rate decrease with the increasing of stand density, but stand density had no significant influence on shooting mortality rate. The harmed rates of diseases, pests, freezing rain and snow were affected by stand density, the sequence of harmed rates were D_3 (16.67%)>D_4 (13.33%)>D_1 (10.19%)>D_2 (9.26%), therefore, the harmed rate can be reduced by density management of P. edulis forest. The sequence of LAI under different stands was D_4 (6.83)>D_3 (5.38)>D_2 (4.21)>D_1 (2.96). LAI=0.000588 N 0.9519 D 0.7136 can be used as LAI estimation models of P. edulis in the areas of southern Anhui province. The grown factors had various relationships between each other; furthermore, DBH and height had closer relationships than the other growth factors.
     (2) A weighted composite index method was used to make a comprehensive evaluation of soil quality of P. edulis forest with different density, and the order was D_1 (0.5086)>D_2 (0.5084)>D_3 (0.4943)>D_4 (0.4781). In the study area, soil condition is suitable for the growth of P. edulis, but there is a different between the N, P, K ratio in the soil and the N, P, K ratio needed for growth, and the content of P in soil is the main limiting factor for the growth of P. edulis. With the increasing of stand density, the overall activity of urease, invertase, protease, catalase and acid phosphatase in the soil showed that an increasing was found at the first beginning and then became stable under different density stands. The relationship among the soil enzymes were closely related to each other, as well as the relationship between soil enzymes and soil properties, so, the soil enzymes can be used as the indicators to evaluate soil quality.
     (3) Stand density had significant effect on biomass pattern of P. edulis forest. In the experimental area, the ecosystem biomass of P. edulis stands have been shown as D_4 (118.02 t·hm~(-2))>D_3 (98.42 t·hm~(-2))>D_2 (67.84 t·hm~(-2))>D_1 (58.27 t·hm~(-2)). The max proportion of total biomass was the biomass of tree layer, which the range was D_4 (111.45 t·hm~(-2))>D_3 (91.44 t·hm~(-2))>D_2 (60.54 t·hm~(-2))>D_1 (50.14 t·hm~(-2)). The biomass of undergrowth plant had less proportion of total biomass, the proportion of shrub ranged from 0.23 % to 4.60 %, the proportion of herb ranged from 0.25 % to 2.53 %. The biomass of shrub and herb had a significant negative correlation with stand density. The ratio of litter amount under various stands ranged from 5.08% to 7.40%. The litter amount order of P. edulis forest was D_4 (6.00 t·hm~(-2))>D_3 (5.56 t·hm~(-2))>D_2 (5.02 t·hm~(-2))>D_1 (3.98 t·hm~(-2)). The stepwise multiple regression analysis showed that, the sequence of direct influence of biomass were stands density>soil organic matters>soil pH value>average DBH>soil bulk in P. edulis forest.
     (4) The nutrients accumulation and distribution had influence in some extent by stand density in different organic of bamboo body and different layer of bamboo forest eco-system. The arrangement order of total accumulation of nutrient under different stands was D_3 (54019.59 kg·hm~(-2))>D_4 (46 676.53 kg·hm~(-2))>D_2 (44 548.81 kg·hm~(-2))>D_1 (25 650.10 kg·hm~(-2)), and the ratio of each element was potassium>nitrogen>phosphorus. Accumulation of different nutrient elements from soil had significant differences in P. edulis forest, and it was mainly enriched in nitrogen and phosphorus, but low in potassium. The nutrient contents of understory vegetation were higher than the tree layer, and the accumulation coefficients to nutrient element in soil decrease with the increasing of stand density.
     (5) Stand density had significant effect on water conservation of P. edulis forest. In the experimental area, the P. edulis stand with 1 200 tree·hm~(-2) was the best stand which conserves water and soil. The arrangement order of the total water conservation of P. edulis stands was D_1 (722.20 t·hm~(-2))>D_3 (720.71 t·hm~(-2))>D_4 (655.96 t·hm~(-2))> D_2 (616.04 t·hm~(-2)). The arrangement order of water-holding capacity of plant canopy layer of P. edulis stands was D_4 (7.93 t·hm~(-2))>D_2 (6.34 t·hm~(-2))>D_3 (6.33 t·hm~(-2))>D_1 (5.30 t·hm~(-2)). With the increase of density, the water-holding capacity of branch and leaf of tree layer increase, while the water-holding capacity of undergrowth vegetation reduced. The maximal water holding capacities of litter layer was closely related to the litter amount, and the range was D_4 (20.70 t·hm~(-2))>D_3 (17.71 t·hm~(-2))>D_2 (17.04 t·hm~(-2))>D_1 (13.56 t·hm~(-2)). The modified and maximal interception amount of litter increase with the increase of density, S = a In t+b and V = c t d were expressed in the relation between water holding capacity, water absorption rate and immerse time respectively. With the increase of density of P. edulis stands, the maximum water holding capacity of soil reduced, and the arrangement order was D_1>D_3>D_4>D_2. Model f = a t -n can simulate the process of soil water infiltration of P. edulis stands.
     (6) In the experimental area, 2 400 tree·hm~(-2) was the reasonable management density of P. edulis forest. The order of productivity and main ecological function such as improve soil fertility, maintain the balance of ecosystem nutrient circulation and conserve water were different under different densities. A weighted composite index method was used to make a comprehensive evaluation of productivity, soil quality, nutrient accumulation and distribution, water conservation of P. edulis forest with different density. The comprehensive index of productivity and ecological function of P. edulis stands with different density were in the order of D_3 (0.4995)>D_2 (0.4803)>D1 (0.4662)>D_4 (0.2602). In southern Anhui province, P. edulis stand with 2 400 tree·hm~(-2) not only bring about better economic benefit, but also improve soil fertility, maintain the balance of ecosystem nutrient circulation, conserve water, etc.
引文
[1]江泽慧.世界竹藤.沈阳:辽宁科学技术出版社,2002
    [2]范少辉,盛炜彤,俞新妥.人工林培育与地力衰退.林业科学研究,1996,9(专刊):18-25
    [3] Chen D L. The function and the effect of crown volume on the tree growth. Proceedings of international symposium on eco-environmental conservation and 21ts century’s forestry management, Chinese Academy of forestry, 2002, 56-60
    [4]罗素梅,何东进,谢益林,等.林分密度对尾赤桉人工林群落结构与生态效应的影响研究.热带亚热带植物学报,2010,18(4):357-363
    [5]王迪生.关于林分密度研究.林业资源管理,1994,(1):67-71
    [6]沈国舫.森林培育.北京:中国林业出版社,2001,64-75
    [7]林开敏,郑燕明.杉木造林密度生长效应规律的研究.福建林学院学报,1996,16(1):53-56
    [8]谌红辉,丁贵杰.马尾松造林密度效应研究.林业科学,2004,40(1):92-98
    [9]曹福亮,徐锡增,吕士行,等.黑杨派南方型杨树密度效应规律的研究.南京林业大学学报,1991,15(3): 12-20
    [10]黄宝灵,蒙钰钗.不同造林密度对尾叶桉生长、产量及材性影响的研究.林业科学,2000,36(1):81-90
    [11]吴勇刚,张健,冯茂松.不同密度巨尾桉纸浆林的生长效果初步研究.四川农业大学学报,2003,21(2):109-112
    [12]刘君然.落叶松人工林不同密度林分生长量成熟变化规律.内蒙古林业调查设计,1995,(1):12-16
    [13]项文化,田大伦.中幼龄湿地松人工林生长过程的密度效应.中南林学院学报,1998,18(2):10-13
    [14]纪楠,周文成.合理造林密度与林分生长关系的探讨.林业勘查设计,2003,(4):35
    [15]薛立,杨鹏.森林生物量研究综述.福建林学院学报,2004,24(3):283-288
    [16]姚东和,杨民胜,李志辉.林分密度对巨尾桉生物产量及生产力的影响.中南林学院学报,2000,20(3):20-23
    [17]孙中峰,张学培,朱金兆.晋西黄土区坡面刺槐林分生长规律研究.农业系统科学与综合研究,2006,22(1):46-49
    [18]黄丽铭,薛立,王相娥,等.不同密度下大叶相思幼林的生长和生物量分配格局.华南农业大学学报,2008,29(3):52-55
    [19]方华,孔凡斌.不同密度火炬松林生物量及其分配.福建林学院学报,2003,23(2):182-185
    [20]彭龙福.不同林分密度楠木人工林生物量初步研究.福建林业科技,2008,35(4):15-18,23
    [21]张炜平,黄聚聪,李熙波.杉木林林下植被生物量影响因素.福建林业科技,2007,34(3):97-99,149
    [22]熊有强,盛炜彤,曾满生.不同间伐强度杉木林下植被发育及生物量研究.林业科学研究,1995,8(4):408-412
    [23]涂育合.杉木不同经营密度的林下植被变化.西北林学院学报,2005,20(4):52-55
    [24]李国雷,刘勇,郭蓓,等.保留密度对飞播油松林下植被发育影响的研究.西北林学院学报,2007,22(3):105-110
    [25]李伟伟,谷建才,陈瑜,等.林分密度对华北落叶松人工林林下植被多样性影响的研究.中国农学通报,2009,25(6):84-88
    [26]康冰,刘世荣,蔡道雄,等.马尾松人工林林分密度对林下植被及土壤性质的影响.应用生态学报,2009,20(10):2323-2331
    [27]刘玉宝.29年生杉木林下植物多样性与密度的关系.福建林学院学报,2005,25(1):27-30
    [28]盛炜彤.不同密度杉木人工林林下植被发育与演替的定位研究.林业科学研究,2001,14(5):463-471
    [29]曾小梨,薛立,刘斌,等.不同密度红苞木幼林的土壤理化性质研究.水土保持通报,2010,30(5):43-45,95
    [30] Kelting D L, Burger J A, Patterson S C, et al. Soil quality assessment in domesticated forests-a southern pine example. Forest Ecology and Management, 1999, 122: 167-185
    [31] Schoenholtz S H, Van M H, Burger J A. Physical and chemical properties as indicators of forest soil quality: A review of challenges and opportunities. Forest Ecology and Management, 2000, 138: 335-356
    [32]林开敏,俞新妥.不同密度杉木林分生物量结构与土壤肥力差异研究.林业科学,1996,32(5):385-391
    [33]许松葵,王相娥,谢腾芳,等.不同密度大叶相思幼林的土壤肥力.华南农业大学学报,2008,29(2):79-81
    [34]刘勇,李国雷,李瑞生,等.密度调控对油松人工林土壤肥力的影响.西北林学院学报,2008,23(6):18-23
    [35]郑郁善,洪伟编著.毛竹经营学.厦门:厦门大学出版社,1998
    [36]罗治建,陈卫文,鲁剑巍,等.鄂南地区毛竹林的土壤肥力.东北林业大学学报,2003,31(3):19-23
    [37]徐秋芳,刘力,洪月明.高低产毛竹林地土壤酶活性比较分析.竹子研究汇刊,1998,17(3):37-40
    [38]郑郁善,陈礼光,洪伟,等.毛竹杉木混交林生产力和土壤性状研究.林业科学,1998,34(专刊1):16-25
    [39]徐秋芳,姜培坤,董敦义,等.毛竹林地土壤养分动态研究.竹子研究汇刊,2000,19(4):46-49,71
    [40]郭晓敏,牛德奎,郭熙,等.奉新毛竹林土壤养分空间变异性研究.植物营养与肥料学报,2006,12(3):420-425
    [41]何黎明,叶仲节.多元分析方法在毛竹林土壤研究中的应用.竹子研究汇刊,1987,6(4):28-39
    [42]傅懋毅,方敏瑜.竹林养分循环:Ⅰ.毛竹林的叶凋落物及其分解.林业科学研究,1989,2(3):207-213
    [43]方敏瑜,傅懋毅.竹林养分循环规律研究:Ⅲ.毛竹林秆流及其养分输入.竹子研究汇刊,1998,17(2):59-64
    [44]傅懋毅,曹群根.竹林养分循环:Ⅱ.毛竹林内降水的养分输入及其林地径流的养分输出.林业科学研究,1992,5(5):497-505
    [45]陈双林,萧江华.现代竹业栽培的土壤生态管理.林业科学研究,2005,18(3):351-355
    [46] Nambiar E K S, Squire R, Cromer R T, et al. Management of water and nutrient relations to increase forest growth. Forest Ecology and Management, 1990, 30: 480-486
    [47] Ueda K. Studies on the physiology of bamboo with reference to practical application resources. Bureau Reference Data Japan, 1960, 34: 103-143
    [48]熊文愈,张献义.毛竹林丰产培育施肥试验.南京林学院学报,1957,2(2):17-23
    [49]高志勤,傅懋毅.不同毛竹林土壤碳氮养分的季节变化特征.竹子研究汇刊,2006,22(3):248-254
    [50]孟承安,陈黎,方乐金.毛竹实生苗造林基肥种类比较研究.竹子研究汇刊,2004,23(1):24-27
    [51]陈乾富.毛竹林不同经营措施对林地土壤肥力的影响.竹子研究汇刊,1999,18(3):19-24
    [52]郭晓敏,牛德奎,张斌,等.集约经营毛竹林平衡施肥效应研究.西南林学院学报,2005,25(4):84-89
    [53]吴礼栋,翁益明,邱永华,等.毛竹林地施厩肥效应试验初报.世界竹藤通讯,2005,3(3):33-35
    [54]顾小平,吴晓丽,汪阳东.毛竹材用林高产优化施肥与结构模型的建立.林业科学,2004,40(3):96-101
    [55]李昌栋.不同垦复时间和深度对毛竹生长发育的影响.安徽林业,2004,(2):17
    [56]董晨玲.毛竹扩鞭成林新竹生长效果研究.竹子研究汇刊,2003,22(4):30-33
    [57]陈双林,杨清平.散生类竹子地下鞭系生长影响因子研究综述.林业科学研究,2003,16(4):473-478
    [58]陶芳明,李昌栋.不同垦复时间和深度在毛竹林生长发育中的作用.竹子研究汇刊,1994,13(2):61-65
    [59]詹祖仁,张文勤.毛竹枯梢病综合治理技术的应用.林业科技开发,1998,29(2):56-57
    [60]王明旭,戴良英,陈良昌.毛竹枯梢病病原菌致病机制及防治技术.森林病虫通讯,2000,19(5):8-10
    [61]姚筱羿,刘素芬,董月发.杨歧山毛竹枯梢病发生规律及综合防治技术.江西林业科技,2001,(6):26-27
    [62]高清贵.浅谈毛竹山的水土保持.亚热带水土保持,2006,18(2):39-40
    [63]杨校生,黄衍串,梁文焰.毛竹纸浆林分类栽培及效果研究.林业科学研究,1999,12(3):268-274
    [64]张咸进.毛竹丰产措施效益研究.安徽林业,2004,(3):15
    [65]吴承祯,洪伟.杉木数量经营学引论.北京:中国林业出版社,2000
    [66]黄衍串.毛竹天然混交林的经营及效益.竹子研究汇刊,1993,12(4):17-18
    [67]林振清.竹阔混交林毛竹生产力与经济效益的研究.竹子研究汇刊,2000,19(4):42-45
    [68]郑郁善.21世纪毛竹林生态经营战略.竹子研究汇刊,2001,20(3):15-19
    [69]陈存及.竹木混交林的科学经营.竹子研究汇刊,2001,20(1):5-9
    [70]傅懋毅,傅金和.竹和中国的农用林业.竹子研究汇刊,1997,12(2):28-32
    [71]周芳纯.毛竹林叶面积指数与产量的关系.竹类研究,1982,1(2):38-60
    [72]朱锦懋,黄茂提,陈由强,等.笋材两用毛竹林林分结构数量关系研究.植物生态学报,2000,24(4):483-488
    [73]南京林产工业学院林学系竹类研究室.竹林培育.北京:农业出版社,1974,1-163
    [74]郑郁善,洪伟.毛竹林丰产年龄结构模型与应用研究.林业科学,1998,34(5):32-39
    [75]宣涛涛,陈建寅.不同经营类型毛竹林立竹结构稳定性分析.林业科技开发,2002,16(2):30-31
    [76]张幼法,林世奎,张世渊.毛竹林地下鞭动态生长的研究.竹子研究汇刊,1999,18(3):62-65
    [77]周文伟.垦复对毛竹林鞭系生长影响的研究.竹子研究汇刊,1995,14(3):30-35
    [78]郑郁善,主舒风.毛竹混交林鞭系结构特征的研究.竹子研究汇刊,1999,18(4):30-34
    [79]萧江华.竹林分类经营与定向培育.林业科技开发,1997,(1):8-10
    [80]萧江华.重视发挥竹林的生态功能效益.林业经济,2001,(1):31-34
    [81]吴炳生,周家珩,文华薄.促进实生毛竹幼林成材技术的研究.竹类研究,1990,9(1):68-71
    [82]郑郁善.21世纪毛竹林生态经营战略.竹子研究汇刊,2001,20(3):15-19
    [83]中国科学院中国植物志编委会.中国植物志第九卷第一分册.北京:科学出版社,1996
    [84]李睿,钟章成,M.J.A.维尔格.中国亚热带高大竹类植物毛竹竹笋克隆生长的密度调节.植物生态学报,1997,21(1):9-18
    [85]谢锦忠,傅懋毅,马占兴,等.麻竹人工林水文生态效应.林业科学研究,2005,18(6):682-687
    [86]刘巧云.竹林立竹度和竹龄结构与螨危害的关系.中国森林病虫,2001,20(5):9-11
    [87]林维彬.坡位对毛竹立竹度的影响初探.亚热带水土保持,2009,21(3):32-33,38
    [88]齐泽民,谢玉华,王芳.密度变化对缺苞箭竹生物学特性的影响.内江师范学院学报,2008,23(10):52-56
    [89]鲁叶江,王开运,杨万勤,等.缺苞箭竹群落密度对土壤养分库的影响.应用生态学报,2005,16(6):996-1001
    [90]齐泽民,王开运.川西亚高山不同密度缺苞箭竹对土壤生物学特性的影响.水土保持学报,2007,21(4):154-158,176
    [91]吴福忠,王开运,杨万勤,等.缺苞箭竹密度对其生物量分配格局的影响.应用生态学报,2005,16(6):991-995
    [92]吴福忠,鲁叶江,杨万勤,等.缺苞箭竹密度对养分元素贮量、积累与分配动态的影响.生态学报,2005,25(7):1663-1669
    [93]吴福忠,王开运,杨万勤,等.密度对缺苞箭竹凋落物生物元素动态及其潜在转移能力的影响.植物生态学报,2005,29(4):537-542
    [94]齐泽民,王开运.密度对缺苞箭竹凋落物养分归还及养分利用效率的影响.应用生态学报,2007,18(9):2025-2029
    [95]齐泽民,王开运.密度对川西亚高山针叶林缺苞箭竹种群生物量、碳及养分贮量的影响.林业科学,2008,44(1):7-12
    [96]吴炳生.楠竹不同立竹量光能利用率的研究.竹子研究汇刊,1982,1(1):70-77
    [97]胡超宗.毛竹笋用林立竹密度的研究.竹子研究汇刊,1983,2(2):56-66
    [98]郑郁善,洪伟,陈礼光.毛竹林合理经营密度的研究.林业科学,1998,34(专刊1):5-10
    [99]洪伟,郑郁善,邱尔发.毛竹丰产林密度效应研究.林业科学,1998,34(专刊1):1-4
    [100]陈存及.毛竹林分密度效应的初步研究.福建林学院学报,1992,12(1):98-104
    [101]潘金灿.闽南毛竹林合理经营密度的研究.经济林研究,2000,18(2):20-22
    [102]洪伟,郑郁善,邱尔发.应用列联表研究竹林产出变化规律:Ⅰ.竹林产量与立竹量关系的研究.林业科学,1998,34(专刊1):35-39
    [103]胡晓琼,王建平,张信民,等.光箨篌竹立竹度、轮伐期试验研究.竹子研究汇刊,1995,14(4):81-87
    [104]郑郁善,陈敬芬.密度对肿节少穗竹生长影响的研究.竹子研究汇刊,1998,17(4):40-44
    [105]黄宗安.石竹密度效应研究.竹子研究汇刊,2000,19(2):52-55
    [106]陈存及,代全林,曹永慧,等.茶秆竹林密度效应研究.福建林学院学报,2001,21(2):101-104
    [107]董文渊,黄宝龙,谢泽轩,等.密度调节与轮闲制采笋对筇竹林竹笋-幼竹生长的影响.林业科学,2002,38(5):78-82
    [108]张卓文,蔡崇法,沈宝仙,等.笋用雷竹林引种后新立生长规律与经营密度研究.华中农业大学学报,2004,23(3):348-351
    [109]王琼,苏智先,周平,等.不同生境中慈竹克隆生长的密度调节.西华师范大学学报(自然科学版),2004,25(4):380-387
    [110]方栋龙.不同经营密度红哺鸡竹生长效果分析.西南林学院学报,2009,29(1):49-52
    [111]吴炳生,谢华.毛竹林群落类型水源涵养功能的初步研究.竹子研究汇刊,1992,11(4):18-25
    [112]程金花,张洪江,余新晓,等.贡嘎山冷杉林地被物及土壤持水特性.北京林业大学学报,2004,24(3):45-49
    [113]国家林业局.中华人民共和国林业行业标准——森林土壤分析方法(LY/T 1210~1275).1999:21-25,29-34
    [114]杨海龙,朱金兆,毕利东.三峡库区森林流域生态系统土壤渗透性能的研究.水土保持学报,2003,(3):63-65,69
    [115]赵西宁,吴发启.土壤水分入渗的研究进展和评述.西北林学院学报,2004,19(1):42-45
    [116] Murray C D, Buttle J M. Infiltration and soil water mixing on forested and harvested slopes during spring snowmelt, Turkey Lakes Watershed, Central Ontario. Journal of Hydrology, 2005, 306: 1-20
    [117]胡良平.Windows SAS 6.12 & 8.0实用统计分析教程.北京:军事医学科学出版社,2001
    [118]张文彤.SPSS 11.0统计分析教程(高级篇).北京希望电子出版社,2002
    [119] Evans J. Plantation Forestry in the Tropics (Second Edition). Oxford: Clarendon Press, 1992
    [120]楼一平,吴良如,李瑞成,等.竹木混交林改成毛竹纯林经营后的林分生长动态.林业科学研究,1997,10(1):35-41
    [121]朱国金.毛竹发笋及竹笋高生长与温度相对湿度的关系.湖南林业科技,1979,(5):24-27
    [122]李睿,M.J.A.维尔格,钟章成.施肥对毛竹竹笋生长的影响.植物生态学报,1997,(1):19-26
    [123]楼一平,吴良如,刘耀荣.激素、微肥对毛竹林发笋、成竹数量的影响.竹子研究汇刊,1998,17(2):21-26
    [124]郭晓敏,陈广生,牛德奎,等.平衡施肥对毛竹笋产量的影响效应研究.江西农业大学学报(自然科学版),2003,25(1):48-53
    [125]李睿,钟章成,M.J.A.维尔格.毛竹的无性系生长与立竹密度和叶龄结构的关系.植物生态学报,1997,21(6):545-550
    [126]徐光余,杨爱农,丁钊,等.皖西大别山毛竹退笋分析.河北农业科学,2008,12(2):56-57,59
    [127]高端龙,林忠平,王杰铃,等.绿竹笋及幼竹的生长动态.亚热带植物通讯,2000,29(2):27-30
    [128]李睿,钟章成,M.J.A.维尔格.毛竹竹笋群动态的研究.植物生态学报,1997,21(1):53-59
    [129]徐天森,王浩杰,华正媛.改制毛竹林害虫虫情变动探讨.竹子研究汇刊,1998,(2):1-6
    [130]陈双林.竹林丰产培育措施对竹子主要害虫的防治试验研究.竹子研究汇刊,2001,20(4):24-27
    [131]尹新华,翁益明,董云富,等.毛竹受雨雪冰冻灾害的受损特点.浙江林学院学报,2008,(6):823-827
    [132]苏文会,范少辉,张文元,等.4年生冰冻雪压毛竹弯压材的力学性能.林业科学,2009,45(9):169-173
    [133]苏文会,范少辉,张文元,等.冰冻雪灾对黄山区毛竹林的损害及影响因子.林业科学,2008,44(11):42-49
    [134]何东进,洪伟,吴承帧.毛竹林林分平均胸径模拟预测模型的研究.林业科学,2000,36(专刊1):148-153
    [135]孟宪宇.使用Weibull分布对人工油松林直径分布的研究.北京林业学院学报,1985,1:30-40
    [136]方精云,菅诚.利用Weibull分布函数预测林木的直径分布.北京林业大学学报,1987,9(3):261-269
    [137]郑丽凤,周新年,胡喜生,等.择伐作业体系下天然林直径分布.东北林业大学学报,2009,(9):2-24
    [138]孟京辉,陆元昌,刘刚,等.海南岛热带天然林直径分布模型研究.华中农业大学学报,2010,29(2):227-230
    [139]葛宏立,周国模,刘恩斌,等.浙江省毛竹直径与年龄的二元Weibull分布模型.林业科学,2008,44(12):15-20
    [140] Ackerly D D, Bazzaz F A. Seedling crown orientation and interception of diffuse radiation in tropical forest gaps. Ecology, 1995, 76: 1134-1146
    [141] Poulson T L, Platt WJ. Gap light regimes influence canopy tree diversity. Ecology, 1989, 70: 553-555
    [142] Mcintyre B M, Scholl M A, Sigmon J T A. Quantitative description of a deciduous forest canopy using a photographic technique. Forest Science, 1991, 36: 381-393
    [143] Wang Y S, Miller D R, Welles J M, et al. Spatial variability of canopy foliage in an oak forest estimated with fisheye sensors. Forest Science, 1992, 38: 854-865
    [144] Chen J M, Black T A. Foliage area and architecture of plant canopies from sun fleck size distributions. Agricultural and Forest Meteorology, 1992, 60: 249-266
    [145]黄进,胡海波,张家洋,等.北亚热带毛竹林林冠截留特征的研究.南京林业大学学报(自然科学版),2009,33(2):31-34
    [146]陈双林,吴柏林.笋材两用毛竹林冠层结构及其生产力功能研究.林业科学研究,2001,14(4):349-355
    [147]周芳纯.竹林培育和利用.北京:中国林业出版社,1998
    [148]孙刚,邓文鑫,王陆军,等.安徽肖坑天然毛竹林生产力及其土壤养分特点.经济林研究,2009,27(3):28-32
    [149] Worrell R, Hampson A. The influence of some forest operations on the sustainable management of forest soil-a review. Forestry, 1997, 70: 61-85
    [150]楼一平.毛竹林长期立地生产力评价和预测研究的评述.竹子研究汇刊,1998,17(4):31-35
    [151]楼一平,盛炜彤.我国毛竹林长期立地生产力研究问题的评述.林业科学研究,1999,12(2):172-178
    [152] Stevenson F J. Nitrogen-organic forms In: Methods of Soil Analysis. Agronomy (No. 9. Part2). American Society of Agronomy.Inc.Madison, Wiscons in U.S.A. 1982: 625-643
    [153] Dingman S L. Physical Hydrology. New York: Macmillan, 1994
    [154] Entekhabi D. Recent advances in land atmosphere interaction research. Reviews Geophysics, 1995, 33: 995-1003
    [155] Western A W, Bloschl G. On the spatial scaling of soil moisture. Journal of Hydrology, 1999, 217: 203-224
    [156]周本智,傅懋毅.粗放经营毛竹林鞭系和根系结构研究.林业科学研究,2008,21(2):217-221
    [157]吴炳生.毛竹林地下结构与产量初析.竹子研究汇刊,1984,3(1):49-57
    [158]蒋俊明,朱维双,刘国华,等.川南毛竹林土壤肥力研究.浙江林学院学报,2008,25(4):486-490
    [159]徐秋芳,徐建明,刘力,等.安吉县港口乡低产毛竹林肥力分析.浙江林学院学报,2000,17(3):280-284
    [160]徐明岗,于荣,王伯人.土壤活性有机质的研究进展.土壤肥料,2000,(6):3-7
    [161]常庆瑞,王立祥,李新平.宁南地区土壤营养障碍性分析.干旱地区农业研究,1997,15(2):63-68
    [162] Wander M M, Yang X M. Influence of tillage on the dynamics of loose and occluded particulate and humified organic matter fractions. Soil Biology and Biochemistry, 2000, 32: 1151-1160
    [163]北京林业大学.土壤学(上册).中国林业出版社,1981:140-143
    [164]谢建昌.土壤钾素研究的现状与展望.土壤学进展,1981,9(1):1-16
    [165]陈金林,张献义,叶长青,等.毛竹林高产施肥技术探讨.林业科学研究,1996,9(3):323-327
    [166]黎祖尧.土壤对毛竹眉径生长影响的研究.竹子研究汇刊,1993,12(3):29-35
    [167]郭晓敏.毛竹林平衡施肥及营养管理研究.南京林业大学博士论文,2003
    [168]郑郁善,洪伟,陈礼光,等.竹林生长及竹叶养分和土壤肥力相关研究.林业科学,1998,34(专辑):65-68
    [169] Martens D A, Johnson J B, Frankcnberger Jr W T. Production and persistence of soil enzymes with repeated addition of organic residues. Soil Science, 1992, 153: 53-61
    [170]周礼恺,张志明.土壤酶活性的总体在评价土壤肥力水平中的作用.土壤学报,1983,20(4):413-417
    [171] Nannipieri P. The potential use of soil enzymes as indicators of productivity sustainability and pollution. In, Pankhust C.E.,Double B.M. (eds), Soil biota: management in sustainable farming systems. CSIRO. Australia. 1994, 238-244
    [172] Dick R P. Soil enzyme activities as integrative indicators of soil health. In Pankhurst, C. and Doube, B. M. (eds.) Biological Indicators of Soil Health. CAB International, Wallingford. 1997, 121-156
    [173] Bandick A K, Dick R P. Field management effects on soil enzyme activities. Soil Biology and Biochemistry, 1999, 31: 1471-1479
    [174] Bergstrom D W, Monreal C M, King D J. Sensitivity of soil enzyme activities to conservation practices. Soil Science Society of America Journal, 1998, 62: 1286-1295
    [175]曹慧,孙辉,杨浩,等.土壤酶活性及其对土壤质量的指示研究进展.应用与环境生物学报,2003,9(1):105-109
    [176]万忠梅,吴景贵.土壤酶活性影响因子研究进展.西北农林科技大学学报(自然版),2005,33(6):87-92
    [177]胡月明,万洪富,吴志峰,等.基于GIS的土壤质量模糊变权评价.土壤学报,2001,38(3):266-274
    [178]张华,张甘霖.土壤质量指标和评价方法.土壤,2001,(6):326-330
    [179] Burger J A, Kelting D L. The Contributions of Soil Science to the Development of and Implementation of Criterion and Indicators for Sustainable Forest Management. Soil Science Society of America Journal, 1998, 53: 1-67
    [180]王建国,杨林章,单艳红.模糊数学在土壤质量评价中的应用研究.土壤学报,2001,38(2):176-183
    [181] Kandeler E, Tscherko D, Spiegel H. Long-term monitoring of microbial biomass, N mineralization and enzyme activities of a Chernozem under different tillage management. Biology and Fertility of Soils,1999, 28: 343-351
    [182] Wardle D A. Controls of temporal variability of the soil microbial biomass: A global synthesis. Soil Biology and Biochemistry, 1998, 30: 1627-1637
    [183]刘崇洪.几种土壤质量评价方法的比较.干旱环境监测,1996,10(1):26-63
    [184]李红鹰,王哉,孟昭明.层次分析法在农业生态环境质量评价中的应用.北方环境,1999,(3):23-27
    [185]孙波,赵其国.红壤退化中的土壤质量评价指标及评价方法.地理科学进展,1999,18(2):118-128
    [186]许明祥.黄土丘陵区生态恢复过程中土壤质量演变及调控.中科院水土保持研究所博士论文,2003
    [187]余林.平衡施肥对油茶林土壤性质及养分空间变异性的影响研究.江西农业大学硕士论文,2008
    [188]刘广路.毛竹林长期生产力保持机制研究.中国林业科学研究院博士论文,2009
    [189] Nelson B W, Mesquita R, Pereira J L G, et al. Allometric regressions for improved estimate of secondary forest biomass in the central Amazon. Forest Ecology Management, 1999, 117: 149-167
    [190] Fang J Y, Chen A P, Peng C H, et al. Changes in forest biomass carbon storage in China between 1949 and 1998. Science, 2001, 292: 2320-2322
    [191] Fang J Y, Wang G G, Liu G H, et al. Forest biomass of China: an estimate based on the biomass-volume relationship. Ecological Applications, 1998, 8: 1984-1991
    [192] Zhou G S, Wang Y H, Jang Y L, et a1. Estimating biomass and net primary production from forest inventory data: A case study of China's Larix forests. Forest Ecology and Management, 2002, 169: 149-157
    [193]鲁顺保,饶玮,彭九生,等.立地条件对毛竹生物量的影响研究.浙江林业科技,2008,28(4):22-27
    [194]黎曦,鲍雪芳,王福升.赣南毛竹生物量研究.安徽林业科技,2007,131(Z1):9-11
    [195] Andariese S W, Covington W W. Changes in understory production for three prescribed burns of different ages in Pinderosa Pine. Forest Ecology and Management, 1986, 14: 193-203
    [196] Oswald B P, Covington W W. Changes in understory production following a wildfire in southwestern Pinderosa Pine. Journal of Range Manage, 1983, 36: 507-509
    [197] Harris G R, Covington W W. The effect of a prscibed fire on nutrient concentration and standing cropof understory vegetation in Pinderosa Pine. Canadian Journal of forest, l983, 13: 501-507
    [198]吴承祯,洪伟,姜志林,等.我国森林凋落物研究进展.江西农业大学学报,2000,22(3):405-410
    [199]赵艳云,程积民,万惠娥,等.林地枯落物层水文特征研究进展.中国水土保持科学,2007,5(2):130-134
    [200]李志辉,李跃林,谢耀坚.巨尾桉人工林营养元素积累、分布和循环的研究.中南林学院学报,2000,20(3):11-19
    [201]刘洋,张健,冯茂松.巨桉人工林凋落物数量、养分归还量及分解动态.林业科学,2006,42(7):1-10
    [202] Ebermayer E. Die Qesamte Lehre der Woldstreu mit Rucksicht auf die Chemische Static des Woldbaues. Berlin: Julius Spriuger, 1876: 116
    [203]张昌顺,李昆.人工林养分循环研究现状与进展.世界林业研究,2005,18(4):35-39
    [204]张文元.毛竹根际土壤肥力质量变化及苗期营养管理研究.中国林业科学研究院博士论文,2009
    [205]黄建辉,陈灵芝.北京百花山附近杂灌丛的化学元素含量特征.植物生态学与地植物学学报,1991,15(3):224-233
    [206]吴家森,周国模,钱新标,等.不同经营类型毛竹林营养元素的空间分布.浙江林学院学报,2005,22(5):486-489
    [207]姜培坤,俞益武.雷竹叶营养元素含量与土壤养分的关系.浙江林学院学报,2000,17(4):360-363
    [208]吴家森,周国模,徐秋芳,等.不同年份毛竹营养元素的空间分布及与土壤养分的关系.林业科学,2005,41(3):171-173
    [209]田大伦.马尾松杆材阶段养分循环及密度关系的研究.林业科学,1989,25(2):106-112
    [210]潘维俦,田大伦,雷志星,等.杉木人工林养分循环的研究——(二)丘陵区速生杉木林的养分含量、积累速率和生物循环.中南林学院学报,1983,3(1):1-17
    [211]方海波,田大伦.杉木人工林间伐后林下植被养分动态的研究Ⅰ:林下植被营养元素含量特点与积累动态.中南林学院学报,1998,18(2):1-5
    [212] Outcalt K W, White E H. Understory biomass and nutrients 2 years after timer harvest in northern Minnesota. Canadian Journal of Forest Research, 1981, 11: 305-308
    [213]罗天祥,李治基,黎向东.龙胜里骆杉木林林下植物营养元素循环的初步研究.广西农学院学报,1990,9(1):37-44
    [214]阮宏华,俞元春,费世民,等.苏南丘陵地区主要森林类型养分生物循环的研究.中国森林生态系统定位研究.哈尔滨:东北林业大学出版社,1994,104-111
    [215]刘世荣.东北东部山区落叶松人工林潜在地力衰退的趋势及其防治对策.人工林地力衰退研究.中国林业出版社,1996,284-289
    [216]高志勤,傅懋毅.毛竹林凋落物养分状况的林型变异特征.林业科学,2007,43(增刊1):95-100
    [217]高志勤.北亚热带几种林分类型对土壤养分状况的影响.南京林业大学硕士学位论文,1993
    [218]田均良,刘普灵,李雅其,等.西藏高原土壤-植物系统分布特征研究.环境科学学报,1996,16(1):37-43
    [219]陈永瑞.千烟洲试区人工林营养元素生物积累的研究.自然资源学报,1999,14(1):84-88
    [220]刘茜,项文化,蔡宝玉,等.湿地松人工林养分循环及密度关系的研究.林业科学,1998,34(3):11-17
    [221]刘世荣,孙鹏赢,温远光.中国主要森林生态系统水文功能的比较研究.植物生态学报,2003,27(1):16-22
    [222]刘世荣,王兵,李春阳.森林生态系统水文生态功能总论:全球水文循环、水资源极其危机.中国森林生态系统结构与功能规律研究.北京:中国林业出版社,l996,7-15
    [223]刘世荣,温远光,王兵,等.中国森林生态系统水文生态功能规律.北京:中国林业出版社,1996
    [224]陈双林,萧江华,薛建辉.竹林水文生态效应研究综述.林业科学研究,2004,17(3):399-404
    [225]张振明,余新晓,牛健植,等.不同林分枯落物层的水文生态功能.水土保持学报,2005,19(3):139-143
    [226]马雪华.森林水文学.北京:中国林业出版社,1993,398
    [227]孟红明,张振克.我国主要水库富营养化现状评价.河南师范大学学报(自然科学版),2007,35(2):133-136
    [228]漆良华,张旭东,周金星,等.湘西北小流域典型植被恢复群落土壤贮水量与入渗特性.林业科学,2007,43(4):1-8
    [229]姜海燕,赵雨森,陈祥伟,等.大兴安岭岭南几种主要森林类型土壤水文功能研究.水土保持学报,2007,21(3):149-153
    [230]程金花,张洪江,史玉虎,等.三峡库区几种林下枯落物的水文作用.北京林业大学学报,2003,25(2):8-13
    [231]范少辉,刘广路,官凤英,等.不同管护类型毛竹林土壤渗透性能的研究.林业科学研究,2009,22(4):568-573
    [232]刘广路,范少辉,漆良华,等.不同类型毛竹林土壤渗透性研究.水土保持学报,2008,22(6):44-47,56
    [233]张昌顺,范少辉,官凤英.闽北毛竹林的土壤渗透性及其影响因子.林业科学,2009,45(1):36-42
    [234]王棣,吕皎.油松混交林的水土保持及水源涵养功能研究.水土保持学报,2001,15(4):44-46
    [235]武伟,唐明华,刘洪斌.土壤养分的模糊综合评价.西南农业大学学报,2000,22(3):270-272
    [236]张昌顺.闽北不同类型毛竹林生态功能研究.中国林业科学研究院博士论文,2008
    [237]陈存及,董建文,江其祥.福建毛竹低产林成因、类型及改造.福建林学院学报,1994,14(4):366-370
    [238]陆志敏,褚余庭.宁波市毛竹林立地质量评价与分类经营.竹子研究汇刊,1997,16(1):41-44
    [239]舒常庆,曹流清.湖南省会同县肖家乡毛竹立地分类及土壤养分状况的研究.华中农业大学学报,1999,18(3):280-282
    [240]朱教君,刘足根.森林干扰生态研究.应用生态学报,2004,15(10):1703-1710
    [241]于立忠,朱教君,孔祥文,等.人为干扰(间伐)对红松人工林林下植物多样性的影响.生态学报,2006,26(11):3757-3764
    [242] Hall R L, Calder I R, Gunawardena E R N, et al. Dependence of rainfall interception on drop size 3. Implementation and comparative performance of the stochastic model using data from a tropical site in Sri Lanka. Journal of Hydrology, 1996, 185: 389-407
    [243] Dykes A P. Rainfall interception from a lowland tropical rainforest in Brunei. Journal of Hydrology, 1997, 200: 260-279
    [244] Kimmins J P. A strategy for research on the maintenance of long-term site productivity. IUFRO, The 19th World Congress Proceedings, Division 1, 1990, 1: 206-213
    [245]盛炜彤.我国人工林长期生产力的保持与持续经营.森林可持续经营国际研讨会论文集,1996
    [246]盛炜彤,范少辉.人工林长期生产力保持机制研究的背景、现状和趋势.林业科学研究,2004,17(1):106-115
    [247]范少辉,盛炜彤,马样庆,等.多代连栽对不同发育阶段杉木人工林生产力的影响.林业科学研究,2003,16(5):560-567
    [248] Johonson D W. The effects of harvesting intensity on nutrient depletion in forests. In: Ballard R and Gessel S P (Ed.). IUFRO Symposium on Forest Site and Continuous Productivity. USDA Forest Service, Pacific Northwest Range Experiment Station, Portland, OR., General Technical Report PNW-163, 1983: 157-166
    [249] Messina M G, Dyck W J, Hunter I R. The nutritional consequences of forest harvesting with special reference to the exotic forests in New Zealand. IEA/FE Project CPC-10 Report No.1, 1985: 57
    [250] Evans J. Productivity of second and third rotatins of pine in the Usutu Forest, Swaziland. Commonwealth Forestry Review, 1986, 65: 205-214
    [251] Dyck W J, Cole D W. Requirements for site productivity research. IEA/BE T6/A6 Report No. 2. Forest Research Institute, New Zealand, FRI Bulletin, 1990, 159: 125-137
    [252]方升佐,徐锡增.人工林长期立地生产力研究的现状和前景.1999,12(3):18-23
    [253]罗发潘,林汉洲,周东雄,等.竹阔混交林分毛竹生产力研究.福建林学院学报,1997,17(1):35-38
    [254]李正才,傅懋毅,谢锦忠,等.毛竹竹阔混交林群落地力保持研究.竹子研究汇刊,2003,22(1):32-37
    [255]林鸿基.闽东竹阔混交林毛竹生产力研究.山东林业科技,2006,166(5):40-41
    [256]李国雷,刘勇,徐扬,等.间伐强度对油松人工林植被发育的影响.北京林业大学学报,2007,29(2):70-75
    [257]李国雷.密度调控对针叶人工林地被和土壤影响的研究.北京林业大学博士论文,2007

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700