黄芩苷对实验性大鼠脑出血神经保护作用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
脑出血(Intracerebral Hemmorhage, ICH)以高发病率、致残率和病死率严重危害人民的身心健康。ICH后损伤机制十分复杂,尚未完全阐明。已有研究普遍认为,脑出血后血肿凝固产生的凝血酶在继发性脑损伤中占有非常重要的地位,与出血后脑水肿、炎症反应、细胞凋亡及兴奋性氨基酸毒性等损伤因素关系密切。ICH一直缺乏循证医学确切有效的治疗手段,疗效至今不令人满意,寻找切实有效的神经保护药物一直是脑出血研究领域的重要方向。ICH后血肿产生的凝血酶通过作用于脑组织内蛋白酶激活受体-1(PAR-1)而发挥细胞毒性作用。我们既往的研究发现黄芩等中药对实验性大鼠脑出血后PAR-1的表达具有抑制作用。黄芩苷(baicalin)是从传统中药黄芩根部提取的主要活性成分,对脑缺血性神经损伤具有保护作用,其对脑出血后神经损伤的干预作用报道很少。
     目的:本研究以胶原酶Ⅶ诱导大鼠脑出血后,给予不同剂量的黄芩苷药物干预,观察脑出血后的脑组织病理生理动态变化的特点,观察黄芩苷对实验性大鼠脑出血后的神经功能缺损、脑水肿及神经元病理形态学变化的影响,观察黄芩苷对实验性大鼠脑出血后的凝血酶毒性、兴奋性氨基酸毒性、炎症因子、细胞凋亡和基质金属蛋白酶-9(MMP-9)等继发损伤因素的影响;探讨黄芩苷对脑出血后脑组织损伤的神经保护机制,探索脑出血的有效治疗药物。
     方法:健康雄性Wistar大鼠,10~12月龄,体重320-350g,随机分为5组,即假手术组(Group A),脑出血模型组(Group B),脑出血+黄芩苷小剂量组(25mg/kg) (Group C),脑出血+黄芩苷中剂量组(50mg/kg) (Group D),脑出血+黄芩苷大剂量组(100mg/kg) (Group E).采用立体定向技术将1μL的胶原酶Ⅶ(0.5U/1μL)注入大鼠尾状核区制备大鼠大脑内出血模型。脑出血模型组和黄芩苷各剂量组:大鼠右侧尾状核区注射1μL的胶原酶Ⅶ;假手术组:大鼠右尾状核区注射等量的1μL生理盐水。模型制备成功后2h开始给药,黄芩苷各剂量组腹腔注射给予相应剂量的黄芩苷混悬液,假手术组和脑出血模型组均分别腹腔注射给予等容量生理盐水,连续用药,均每日1次。各组在脑出血后不同时间点(1、3、5、10天)进行神经行为缺损评分,每个时间点从各组中随机取6只大鼠处死后,取脑组织,采用干-湿比重法检测脑组织水含量,RT-PCR和’Western blot法检测脑出血周围脑组织PAR-1 mRNA和PAR-1的表达,RT-PCR法检测Caspase-3mRNA和MMP-9mRNA的表达,Western blot法检测兴奋性氨基酸受体(NMDA-NR)的表达,免疫组织化学法检测核转录因子-κB (NF-κB)、Caspase-3和MMP-9的表达,TUNEL原位标记法检测阳性凋亡细胞数量,HE染色法观察脑出血周围脑组织病理形态变化。应用SPSS13.0统计软件包进行数据统计分析。
     结果:(1)黄芩苷小中大剂量组各时间点神经功能评分均低于脑出血模型组各时间点的评分,有明显统计学差异(P<0.05);各时间点的黄芩苷中大剂量组的神经功能评分明显低于黄芩苷小剂量组(P<0.05)。(2)脑出血模型组较假手术组脑组织水含量明显升高(P<0.01),出血后3d时达到高峰,之后缓慢下降,10d仍高于正常;黄芩苷小中大剂量组各时间点脑组织水含量均较脑出血模型组的脑组织水含量明显减少(P<0.01),出血后3d和5d,黄芩苷中大剂量组的脑组织水含量明显低于黄芩苷小剂量组(P<0.05)。(3)脑出血后脑组织PAR-1 mRNA、Caspase-3 mRNA、MMP-9 mRNA和PAR-1、Caspase-3、MMP-9表达及TUNEL阳性凋亡细胞数量,出血后1d均已明显升高,3d时达到高峰,5-10d逐渐降低,在各时间点与假手术组间比较,表达均明显增多(P<0.01);黄芩苷小中大剂量组各时间点的脑组织PAR-1 mRNA、Caspase-3mRNA、MMP-9mRNA和PAR-1、Caspase-3、MMP-9的表达及TUNEL阳性凋亡细胞数量均明显低于脑出血模型组(P<0.01),出血后3d和5d,黄芩苷中大剂量组的表达明显低于黄芩苷小剂量组(P<0.05)。(4)脑出血模型组脑组织NF-κB和NMDA-NR的表达出血后1d时明显增多、达到高峰,3d时仍很多,5-10d逐渐减少,与假手术组间比较有显著差异(P<0.01);黄芩苷小中大剂量组各时间点的脑组织NF-κB和NMDA-NR的表达均较脑出血模型组明显降低(P<0.01),出血后1d和3d,黄芩苷中大剂量组的脑组织NF-κB和NMDA-NR的表达明显低于黄芩苷小剂量组(P<0.05)。(5)病理形态学改变:肉眼观察:ICH后1d和3d,ICH模型组右侧大脑半球肿胀,脑回增宽,脑沟变浅,冠状切面可见血肿位于基底节区,呈不规则球形或椭圆形,与ICH模型组比较,黄芩苷小中大剂量组上述改变有减轻;假手术组两侧大脑半球基本对称,未见脑组织肿胀。HE染色观察:脑出血模型组血肿周围组织疏松,血管周围间隙增宽,神经元数目明显减少,排列紊乱,细胞形态不完整,可见大量炎性细胞浸润并可见被吞噬的核碎片和核溶解现象,神经细胞明显肿胀呈空泡样、细胞质透亮,Nissled体消失,胞核深染、偏位,脑出血后3d最明显,之后渐减轻。黄芩苷各剂量组与同时间点的ICH组比较,血肿周围水肿带缩小,炎症细胞浸润数量减少,神经细胞损伤减轻。假手术组大鼠右侧基底节区细胞形态结构完整,胞核及核仁清晰可见。
     结论:(1)大鼠脑出血后脑水肿、脑组织PAR-1mRNA和PAR-1表达、Caspase-3mRNA、MMP-9mRNA、Caspase-3、MMP-9、NF-κB和NMDA-NR表达、及TUNEL阳性凋亡细胞数量均呈现先上升后渐降的动态变化过程,从变化曲态看,脑出血后神经功能缺损、脑水肿与脑组织PAR-1mRNA、PAR-1表达、血脑屏障通透性增加、炎症反应、细胞凋亡等损伤因素有不同程度的相关性;(2)黄芩苷能有效减低脑出血后脑水肿,对实验性大鼠脑出血后的神经功能缺损有一定程度的促恢复进作用;(3)黄芩苷能有效抑制脑出血后脑组织PAR-1mRNA和PAR-1表达、Caspase-3mRNA、MMP-9mRNA、Caspase-3、MMP-9、NF-κB和NMDA-NR表达,减少TUNEL,阳性细胞数量,这可能是黄芩苷减轻脑水肿、保护神经细胞及改善神经功能缺损的机制之一,可能会成为有效治疗急性脑出血疾病的手段之一。
Intracerebral hemorrhage (ICH) is a devastating neurological disorder with high mortality rate and poor prognosis. ICH-associated brain damage involves numerous mediators, such as thrombin, inflammatory injury, apotosis, matrix metalloproteinase-9, neurotoxicity of excitabilitical amine acid, etc. Thrombin may play an essential role in this process and thrombin-induced extravascular neurotoxicity has been shown to be mediated by protease activated receptors (PARs).
     To date, no curative therapy is available for the treatment of ICH, and supportive therapy is the major option for most cases. Targeting PAR-1 might offer a potential therapeutic option for patients with ICH.
     Baicalin (7-glucuronic acid,5,6-dihydroxyflavone) is one of the major flavonoid compounds isolated from the dry roots of Scutellaria baicalensis Georgi. Numerous studies have shown that baicalin has neuroprotective effects on ischemic cerebral injury. However, little is known about the effects of baicalin on hemorrhagic brain injury. Previous studies have shown that complex prescriptions containing Scutellaria baicalensis Georgi were able to inhibit PAR-1 expression in rat brain after ICH. The aim of this study was to evaluate the effects of baicalin on ICH-induced brain injury using an ICH rat model. In addition, the mechanisms underlying were also investigated.
     Objectives:To observe pathophysiological changes in experimental ICH model of rats. To investigate the effect and mechanisms of baicalin on neurologic impairment, brain edema, neurotic pathomorphology, expression and significance of PAR-1mRNA and PAR-1, Caspase-3 mRNA and Caspase-3, MMP-9 mRNA and MMP-9, NMDA-NR, NF-κB, and number of TUNEL-positive cells in the brain issue of rat with experimental intracerebral hemorrhage, and to explore its possible protective mechanism, to find a effective therapeutic drug.
     Methods:ICH was induced by intracerebral administration of 0.5 U collagenaseⅦin 1μl saline into the right caudate nucleus of rats, sham operation rats were administered with equal volume of saline without collagenaseⅦ. Rats with ICH were randomly divided into five groups: sham-operated group (Group A), ICH group (Group B) and ICH with baicalin small dose (25 mg/kg, Group C), moderate dose (50 mg/kg, Group D), large dose (100 mg/kg, Group E) treatment group. Rats with sham operation were used as controls. Two hours after the ICH induction, saline was intraperitoneally injected into the animals both in sham-operated group and ICH group, while baicalin into the baicalin treatment Group at the indicated doses. The same treatments were conducted once a day thereafter.
     On day 1, day 3, day 5 and day 10, rat neurologic defecit scores were observed, six brain tissue samples were collected from the perihematoma areas. The water content of the brain tissue was quantitated with wet/dry weight measurement. Brain tissue pathomorphology was observed in electron microscope by dyeing the brain tissue slice with HE. The perihematomal brain tissue were extracted to determine the differential expression of PAR-1mRNA, Caspase-3 mRNA and MMP-9 mRNA, and protein levels of PAR-1, NMDA-NR, Caspase-3, MMP-9, and NF-κB by RT-PCR, Western Blot and immunohistochemical methods. Cell apoptosis was evaluated by terminal transferase dUTP nick end labeling (TUNEL) staining. All data were presented as means±SD and analyzed with one-way analysis of variance (ANOVA) and Student's t-test by SPSS 13.0 soft ware package.
     Results:(1) Neurologic deficit scores were higher in ICH group than those in sham-operated group at each time point, peaking on day 1. Baicalin group got lower neurologic defecit scores than that in ICH group at every time points (P<0.05), there was difference between Group C and Group D, E (P<0.05). (2) After ICH, the brain water content was much higher than that in sham-operated group (P<0.01), it increased on day1, peaked on days 3 and then declined gradually, still higher on day5. The brain water content in baicalin group was obviously lower than that in ICH group at each time point (P<0.01), there was difference between Group C and Group D, E at 3d and 5d post-ICH (P<0.05). (3) After ICH, the expression of brain tissue PAR-1mRNA, Caspase-3 mRNA, MMP-9 mRNA and the protein levels of brain issue PAR-1, Caspase-3, MMP-9, and the number of TUNEL-positive cells were much higher than those in sham-operated group (P<0.01), it was higher on day 1, peaked on days 3 and then declined gradually on day5 and day 10. At each time point, baicalin at all doses significantly reduced PAR-1mRNA, Caspase-3 mRNA and MMP-9 mRNA expression, PAR-1, Caspase-3, MMP-9 protein levels and the number of TUNEL-positive cells in comparison with those of the vehicle treated ICH group (P<0.01, respectively). On day 3 and 5, there was significant difference between Group C and Group D, E. (4) After ICH, the brain tissue NF-κB and NMDA-NR expression was significantly higher than that in sham-operated group (P<0.01), it rose on day1 and then reduced gradually on day3 to day 10. The NF-κB and NMDA-NR expression in baicalin group was obviously lower than that in ICH group at each time point (P<0.01), there was difference between Group C and Group D, E at 1d and 3d post-ICH (P<0.05). (5) Observe the gestalt form of the brain:in ICH groups, the right cerebral hemisphere got swollen, the gyri extended and the sulci shallow; the changes in baicalin treatment groups were slighter; the bilateral hemispheres were approximately symmetric in sham-operated group. The hematoma, which was irregularly spheroid or oval, could been viewed at the area of basal nucleus in the coronal slice. Observe the HE-stained tissue with a light-microscope:in ICH groups, the red cells were of integrity, the brain edema and neural injury surrounding the hematoma were observed, inflammatory cells transmigrated, the tissues were loose, nerve cells and cotloidal cells swollen, and vacuoles of different sizes were formed in cell space and the cell space increased, the cell ballooning degeneration and necrosis were observed, that peaked on days 3 and then reduced gradually; in baicalin treatment groups, the brain tissues were swollen and loose around the injected area, inflammatory cells transmigrated, the changes in baicalin treatment groups were slighter. There were not obviously pathological changes in sham-operated groups.
     Conclusions:(1) The results demonstrated that the upregulation expression of PAR-1mRNA, Caspase-3 mRNA, MMP-9 mRNA, PAR-1, Caspase-3, MMP-9, NF-κB, NMDA-NR and the increased number of TUNEL-positive cells after ICH were in a time-dependent manner, and the neurologic deficit and brain edema formation were correlated with brain tissue PAR-1, MMP-9, NMDA-NR, NF-κB expression and cell apoptosis in rats. (2) Baicalin effectively reduced the brain edema, inhibited cell apoptosis and inflammatory injury and improved the neurologic deficit following ICH in a dose- and time-dependent manner, with concomitant suppression of brain tissue PAR-1, Caspase-3 and MMP-9, NF-κB, NMDA-NR expression at both mRNA and (or) protein levels, which may be one of the mechanisms of neuroprotective effects of baicalin on ICH-induced brain injury. (3) The study raised the possibility that baicalin may be a potential agent for ICH therapy.
引文
1. Naval N.S,Nyquist P. A, Carhuapoma J. R. Management of spontaneous intracerebral hemorrhage. Neurol. Clin,2008,26(2):373-384.
    2. Lee KR, Kawai N, Kim S, et al. Mechanisms of edema formation after intracerebral hemorrhage:effects of thrombin on cerebral blood flow, blood-brain barrier permeability, and cell survival in a rat model. Neurosurg,1997,86(2):272-278.
    3. Xi G, Keep RF, Hoff JT. Mechanisms of brain injury after intracerebral haemorrhage. Lancet Neurol.2006,5 (1):53-63.
    4. Wang Ya-nan, Wang De-sheng, Yang Yu-bo, et al. The pathologic study of nuclear factor-kappaB in the perihematomal tissues in human intracerebral hemorrhage. J Apoplexy and Nervous Disease,2009,26(3):274-276.
    5. Gong C., Boulis N., Qian J., et al. Intracerebral hemorrhage-induced neuronal death. Neurosurgery,2001,48:875-882.
    6. Dai Da-wei, Wang De-sheng, Zhang Li-ming, et al. Effect on expression of matrix metalloproteinase-9 by injection of thrombin inrats brains with local mild hypothermia. Chin J Neuroimmunol & Neurol,2008, 15(3):163-166.
    7. Jiang Han-qiu, Li qun, Chen zhi, et al. Effect of the protein expression of MMP-9 and MMP-2 in rats brain after injection thrombin. Chin J Lab Diagn, 2010,14(9):1363-1365.
    8. Qureshi Al, Tuhrim S, Broderick JP, et al. Spontaneous intracerebral hemorrhage. N Engl J Med,2001,344:1450-60.
    9.周庆博,李鲁杨,贾青,等.脑宁康颗粒对脑出血大鼠的保护作用.中国中西医结合杂志,2007,27(9):814-818.
    10. Rosenberg GA, Mun-Bryce S, Wesley M, et al. Collagenase-Induced intracerebral hemorrhage in Rats. Stroke,1990,21(5):801-807.
    11. Longa EZ, Weinstein PR, Carlson S, et al. Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke,1989,20(1):84-91.
    12. Mayne M., Ni W., Yan H. J., Xue M., Johnston J. B., Del Bigio M. R., Peeling J. and Power C. Antisense oligodeoxynucleotide inhibition of tumor necrosis factor-α expression is neuroprotective after intracerebral hemorrhage. Stroke,32:240-248,2001.
    13. Larive LL, Carhuapoma JR. Perihematoma brain metabolism and edema: thus far, an elusive piece of a complex puzzle. J Neurol Sci,2004,224: 1-2.
    14. Hoff JT, Xi G. Brain edema from intracerebral hemorrhage. Acta Neurochir Suppl,2003,86:11-5.
    15. Wu J, Hua Y, Keep RF, et al. Oxidative brain injury from extravasated erythrocytes after intracerebral hemorrhage. Brain Res,2002,953:45-52. 2. Lee KR, Kawai N, Kim S, et al. Mechanisms of edema formation after intracerebral hemorrhage:effects of thrombin on cerebral blood flow, blood—bin barrier permeability, and cell survival in a rat model. J Neurosurg,1997,86(2):272-278.
    16. Fujii Y, Takeuchi S, Harada A, et al. Hemostatic activation in spontaneous intracerebral hemorrhage. Stroke,2001,32:883-890.
    17. Carhuapoma JR, Barker PB, Hanley DF, et al. Human brain hemorrhage: quantification of perihematoma edema by use of diffusion-weighted MR imaging. AJNR Am J Neuroradiol,2002,23:1322-1326.
    18. Heo JH, Han S W, Lee SK. Free radicals as triggers of brain edema formation after Stroke. Free Radic BiolMed,2005,39(1):51-70.
    19. Kimelberg HK. Current concepts of brain edema:Review of laboratory Investigations. J Neur osurg,1995,83(6):1051-1059.
    20. Hua Y, Schallert T, Keep RF, et al. Behavioral tests after intracerebral hemorrhage in the rat. Stroke,2002,33:2478-2484.
    21. Thiex R, Tsirka SE. Brain edema after intracerebral hemorrhage: mechanisms, treatment options, management strategies, and operative indications. Neurosurg Focus,2007; 22:E6.
    22. Xi G, Keep RF, Hoff JT. Pathophysiology of brain edema formation. Neurosurg Clin N Am,2002,13:371-383.
    23. Park HK, Chu K, Lee ST, et al. Granulocyte colony-stimulating factor induces sensorimotor recovery in intracerebral hemorrhage. Brain Res, 2005.1041:125-31.
    24. Lee KR, Betz AL, Keep RF, et al. Intracerebral infusion of thrombin as a cause of brain edema. J Neurosurg,1995,83:1045-1050.
    25. Lee KR, Colon GP, Betz AL, et al. Edema from intracerebral hemorrhage: the role of thrombin. J Neurosurg,1996,84:91-96.
    26. Kawai N, Kawanishi M, Okauchi M, et al. Effects of hypothermia on thrombin-induced brain edema formation. Brain Res,2001,895:50-58.
    27. Wagner KR, Xi G, Hua Y, et al. Early metabolic alterations in edematous perihematomal brain regions following experimental intracerebral hemorrhage. J Neurosurg,1998,88:1058-1065.
    28. Gong C, Hoff JT, Keep RF, et al. Acute inflammatory reaction following experimental ICH in rat. Brain Res,2000,871(1):57-65.
    29. Hua Y, Xi G, Keep RF, et al. Complement activation in the brain after experimental intracerebral hemorrhage. J Neurosurg,2000,92(6): 1016-1022.
    30. Brott T, Broderick J, KothariR, et al. Early hemorrhage growth in patientswith intracerebral hemorrhage. Stroke,1997,28(1):1-5.23.23. Wagner KR, Dean C, BeilerS, et al. Rapid activation ofproinflammatory signaling cascades in perihematomal brain regions in a porcine white matter intracerbral hemorrhage model. J Cereb Blood Flow Metab,2003,23: 277.
    31. Wagner KR, Dean C, Beilers, etal. Rapid activation of proinflammatory signaling cascades in perihematomal brain regions in a porcine white matter intracerebral hemorrhage. J Cereb Blood Flow Metab,2003,23:277.
    32. Holmin S, Mathiese T. Intracerebral and administration of interleukin- 1β and induction of inflammation, apoptosis and vasogenic edema. J Neurosurg,2000,92(1):108-120.
    33. Castillo J, Davalos A, AIvarez-sabin J, et al. Molecular siguatures of brain injury after intracerebral hemorrhage. Neurology,2002,58(4): 624-629.
    34.罗成义,王清华,徐如祥.大鼠大脑损伤后皮质NMDA受体活性变化与脑水肿的关系.中华创伤杂志,1998,14(4):203-205.
    35. Ludwig HC, Feiz-Erfan I, Bockermann V, et al. Expression of nitric-oxide synthase isozymes (NOS Ⅰ-Ⅱ) by immunohistochemistry and DBA in situ hybridization. Correlation with macrophage presence, vascular endothelial growth factor (VEGE) and edema volumetric data in 220 glioblastomas. Anticancer Res,2000,20(1A):299-304.
    36. Castillo J. Physiopathology of cerebral ischemia. Rev Neurol,2000, 30(5):459-464.
    37. Caplan LR. Intracerebral haemorrhage. Lancet,1992,339:656-658.
    38. Kaufmann R, Patt S, Zieger M, et al. The two-recepter system PAR-1/PAR-4 mediates alpha-thrombin-induced Ca2+[i] mobilization in human astrocytoma cells. J cancer Res clin Oncol,2000,126(2):91-94.
    39. Weibo Luo, Yingfei Wang, Georg Reiser. Protease-activated receptors in the brain:Receptor expression, Activation and functions in neurodegeneration and neuroprotection. Brain research review,2007,56: 331-345.
    40. Avala YM, Cantwell AM, Rose T, et al. Molecular mapping of the thrombin-receptor interaction. Protein,2001,45 (2):107-116.
    41. Machenzie JM, Clayton JA. Early cellular events in the penumbra of human spontaneous intracerebral hemorrhage. J Stroke Cerebrovas Dis,1999, 8:1-3.
    42. Power C, Henry S,Del Bigio MR, et al. Intracerebral hemorrhage induces maerophage activation and matrix metalloproteinase. Ann Neurol,2003,53: 731-742.
    34. Guan Jingxia, Sun Shenggang. Effect of thrombin on NF-κB activity after intracerebral injection in rats. Stroke and Nervous Disease.2007, 14(4):223-225.
    44. Zhang Zhao- bo, Jia Bao- xiang. Toxic role of thrombin in intracerebral hamorrhage and current antithrombin treatment. Chin J Neuromed,2006, 5(10):1076-1078.
    45. Frances M, Christian J, Carl W, et al. Thrombin induces apoptosis in cultured neurons and astrocytes via a pathway requiring) tyrosine kinase and rhoA activities. Neurosci,1997,17(14):5316-5326.
    46. Xue M, Del Bigio MR. Acute tissue damage after injection of thrombin and plasmin into rat striatum. Stroke,2001,32 (9):2164-2169.
    47. Zeng Fei, Yu Shao-zu, Zeng Qing-xing Enhancemen t of NMDA receptor sensitivity by thrombin and its relation ship with tissue transglutaminase. Chin J InternMed,2005,44(9):668-671.
    48.李燕华,孙善全.大鼠出血性脑水肿水通道蛋白-4表达的研究.中国危重病急救医学,2003,15(9):538-541.
    49. Kasuya H, Shimizu T, Takakura K, et al. Thrombin activity in CSF after SAH is correlated with the degree of SAH, the persistence of subarachnoid clot and the development of vasospasm. Acta Neruochir,1998,140:579-584.
    50. Tang Y, Cai D, Chen Y. Thrombin inhibits aquaporin 4 expression through protein kinase C-dependent pathway in cultured astrocytes. J Mol Neurosci, 2007,31:83-93.
    51. Sarnico I, Lanzillotta A, BenareseM, et al. NF-kappaB dimers in the regulation of neuronal survival. Int Rev Neurobiol,2009,85:351-362.
    52. Mendelow AD, Bullock R, Teasdale GM, et al. Intracranial haemorrhage induced at arterial pressure in the rat. Part 2:Short term changes in local cerebral blood flow measured by autoradiograhy. Neurol Res,1984, 6:189-193.
    53.叶欣.信号通路与脑出血后的继发性脑损伤.国际神经病学神经外科学杂志,2010,37(2):171-175.
    54. Wu H, Cong Y, Wang D, et al. Correlation of macrophage inflammatory protein-2 expression and brain edema in rats after intracerebral hemorrhage. Int J Clin Exp Pathol,2009,2(1):83-90.
    55. Jian W, Sylvain D. Inflammation after intracerebral hemorrhage. J Cereb Blood Flow Metab,2007,27 (5):894-908.
    56. Aronowski J, HallCE. New horizons for primary intracerebralhemorrhage treatment:experience from preclinical studies. Neurol Res,2005,27(9): 268-279.
    57.刘兵荣,丁新生,张勇,等.大鼠脑出血后核因子-κB的表达及黄芪多糖的干预作用.中国神经免疫学和神经病学杂志,2007,14(2):160-163.
    58. Wu S, Fang C, Kim J, et al. Enhanced pulmonary inflammation following experimental intracerebral hemorrhage. ExpNeurol,2006,200(1):245-259.
    59. Hsieh H, Wu C, Yang C. Bradykinin induces matrix metalloproteinase-9 expression and cell migration through a PKC-dependent ERK /Elk-1 pathway in trocytes. Glia,2008,56(6):619-632.
    60. Hickenbottom SL, Grotta JC, Strong R, et al. Nuclear factor-κB and cell death after experimental intracerebral hemorrhage in rats. Stroke, 1999,30 (11):2472-2477.
    61. Mori T, Wang X, Aoki T, et al. Down regulation ofmatrix metalloproteinase-9 and attenuation of edema via inhibition of ERK mitogen activated protein kinase in traumatic brain injury. J Neurotrauma,2002,19 (11):1411-1419.
    62. Kawai N, KawanishiM, Nagao S. Treatment of cold injury-induced brain edema with a nonspecific matrix metalloproteinase inhibitor MMI270 in rats. Acta Neurochir Suppl,2003,86:291-295.
    63. Campos-Esparza MR, Sanchez-Gomez MV, Matute C. Molecular mechanisms of neuroprotection by two natural antioxidant polyphenols. Cell Calcium, 2009,45 (4):358-368.
    64. Clemens JA, Stephenson DT, Yin T, et al. Drug-induced neuroprotection from global ischemia is associated with prevention of persistent but not transient activation of nuclear factor-kappaB in rats. Stroke,1998,29: 677-682.
    65. Romanic AM, W h ite RF, A rleth AJ, et al. M atrix metalloproteinase expression increases after cerebral focal ischem ia in rats, inhibition of matrix metalloproteinase-9 reduces infarct size. Stroke,1998,29(5): 1020-1030.
    66. Rosenberg GA, Navratil M, Barone F, et al. Proteolytic cascade enzyms increase in focal cerebral ischemia in rat. J Cereb Blood Flow Metab,1996, 16:360-366.
    67. Gasche Y, Fujimura M, Morita-Fujimura Y, et al. Early appearance of activated matrix metalloproteinase-9 after focal cerebral ischemia in mice:a possible role in blood-brain barrier dysfunction. J Cereb Blood Flow Metab,1999,19:1020-1028.
    68. Paul R, Lorenzl S, Koedel U, et al. Matrix metalloproteinase contribute to the blood-brain barrier disruption during bacterial meningitis. Ann Neurol,1998,44:592-600.
    69. Rosenberg GA, Navratil M. Metalloproteinase inhibition blocks edema in intracerebral hemorrhage in the rat. Neurology,1997,48(4):921-926.
    70. Abilleira S, Montaner J, Molina CA, et al. Matrix metalloproteinase-9 concentration after spontaneous intracerebral hemorrhage. J Neurosurg, 2003,99:65-70.
    71. Sumii T, Lo EH. Involvement of matrix metalloproteinase in Thrombolysis-associated hemorrhagic transformation after embolic focal ischemia in rats. Stroke,2002,33:831-836.
    72. Castellanos M, Leira R, Serena J, et al. Plasma metalloproteinase-9 concentration predicts hemorrhagic transformation in acute ischemic stroke. Stroke,2003,34:40-46.
    73. Jiang Han-qiu, Li qun, Liu jin, et al. Effect of MMP-9 and MMP-2 in rats brain after injection thrombin.J Apoplexy and Nervous Diseases, 2006,23(1):75-77.
    74. Zhang Guo-hua, Wang Shan, Shi Fu-ping, et al. Tempora 1 profile of matrix metalloproteinase-9 after spontaneous in tracerebral hemorrhage and the relation ship to clinical outcome. Chin J Crit Care Med,2006, 26(9):641-643.
    75. Liebetrau M, Burggraf D, Wunderlich N, et al. ACE inhibition reduces activity of the plasminogen/ plasmin and MMP systems in the brain of spontaneous hypertensive stroke-prone rats. Neurosci Lett,2005,376: 205-209.
    76. Nelson AR, Fingleton B, Rothenberg ML, et al. Matrix metalloproteinases:biologic activityand clinical implications. Clin Oncol,2000,18 (5):1135-1149.
    77. Bao G, Guo N, Zhang ZG, et al. The experimental study on the cell apoptosis and expression of Bcl-2 protein in intracerebral hemorrhage in model of rats. Acad J Xi'an Jiaotong Univ,2006,18:61-64.
    78. Matsushita K, Meng W, Wallg X, et al. Evidence for apoptosis after intercerebral hemorrhage in rat striatum. J Cereb Blood Flow Metab.2000, 20:396-404.
    79. Xue M, Del Bigio MR. Intracerebral injection of autologous whole blood in rats:time course of inflammation and cell death. Neurosci Lett,2000, 283:230-232.
    80.王景周,周中和,李玮,等.大鼠脑出血血肿周边组织细胞凋亡的动态变化规律研究.中国临床神经科学,2003,11:124-127.
    81. Qureshi AI, Suri MF, Ostrow PT, et al. Apoptosis as a form of cell death in intracerebral hemorrhage. Neurosurgery,2003,52:1041-1047.
    82.周中和,曲方,何祥.局部应用重组水蛭素对大鼠脑出血神经细胞凋亡的 干预作用,临床神经病学杂志,2006,19(4):304-306.
    83. Nakamura T, Keep RF, Hua Y, et al. Intracerebral hemorrhage induces edma and oxidative stress and alters N-methyl-D-aspartate receptor subunits expression. Acta Neurochir Suppl,2005,95(9):421-424.
    84. Gingrich MB, Junge CE, Lyuhoslavsky P, et al. Potentiation of NMDA receptor function by the serine protease thrombin. Neurosci,2000,20(12): 4582-4595.
    85.周中和,曲方,张朝东.脑出血凝血酶的神经毒性机制及其防治策略.中国临床神经科学,2008,16(1):318-323.
    86. DonovanF M, PikeC J, CotmanC W, et al. Thrombin induces apoptosisi ncultued neurons and astrocytes via a pathway requiring tyrosine kinase and Rhoa activities. J Neurosci,1997,17(14):5316-5326.
    87. Takahashi M. Billups B. Rossi D, et al. The role of glutamate trailsporters in glutamate homeostasis in the brain. JExp Biol,1997,200: 401-409.
    88. Xue M, Del Bigio MR. Intracortical hemorrhage injury in rats: relationship between blood fractions and brain cell death. Stroke,2000, 31(7):1721-1727.
    89. Goldstein L, Teng ZP, Zeserson E, et al. Hemin induces an iron-dependent, oxidative injury to human neuron-like cells. J Neurosci Res,2003,73(1):113-121.
    90. Wolf BB, Green DR. Suicidal tendencies:apoptotic cell death by caspase family proteinases. J Biol Chem,1999,274(29):20049-20052.
    91.洪丽蓉,沈国理,喻森明,等.大鼠脑出血后细胞凋亡与Caspase-3、Ref-1表达的相关性.武警医学院学报,2007,16(4):365-368.
    92.吴丹,腾伟禹.大鼠实验性脑出血后脑组织TLR2、NF-B/p65及caspase-3表达变化的研究.中风与神经疾病杂志,2010,27(6):485-488.
    93. Bloch O, Papadopoulos MC, Manley GT, et al. Aquaporin-4 gene deletion in mice increases focal edema associated with staphylococcal brain abscess. J Neurochem,2005,95:254-262.
    94.张艳玲,陈康宁,邵淑琴,等.脑出血后细胞凋亡和Caspase-3的关系.第四军医大学学报,2004,25(1):23-26.
    95.王尧,杜子威,主编.神经生物化学与分子生物学.北京:人民卫生出版社,1997,197--206.
    96. Hopf FW, Waters J, Mehta S, et al. Stability and plasticity of developing synapses in happocampal neuronal cultures. J Neurosci,2002, 22:775-781.
    97.杨水泉,李玲,黄如训,等.脑出血患者血清兴奋性氨基酸水平与神经功能恢复的关系.中国临床康复,2004,8(13):2482-2483.
    98.司银楚,李巾伟,朱培纯,等.三七总皂甙对脑出血大鼠前脑兴奋性氨基酸受体NRl表达的作用.2005,36(4):350-353.
    99.姚干,何宗玉,方泰惠.芩栀胶囊抗病毒和抗菌作用的实验研究.中成药,2006,28(2):225.
    100.张道广,Jimmy K wang,潘胜利,黄芩多糖抗猪生殖和呼吸系统综合征病毒作用的研究.时珍国医国药,2005,16(9):943.
    101.徐珊,王乐,杨巧芳,等.黄芩抗病毒药理作用研究述评.中华中医药学刊,2007,25(7):1355.
    102.陈曦,李凡.Glucosamine Chondroitin与黄芩联合对佐剂性关节炎、大鼠血清PGE2影响的实验研究.中国实验诊断学,2005,9(1):15.
    103.朱伟,孙红光,朱迅,黄芩有效成SBM对炎症模型及免疫功能的影响.中国药理学通报,2008,24(9):1147.
    104.华晓东,巩媛媛,芮菁,等.黄芩素对皮肤过敏治疗作用的实验研究.天津中医药,2007,24(3):24.
    105.杨养贤,延卫东,乔晋.黄芩苷对大鼠脑缺血再灌注脑组织超氧化物歧化酶和丙二醛的影响.中国康复研究2008,8(28):6146.
    106.王富玉.培养乳鼠心肌细胞缺氧/复氧损伤模型与黄芩苷的影响.中国组织工程研究与临床康复,2007,11(34):6765.
    107.匡菊香,雷沛鸿,石江.黄芩苷对人黑色素瘤A375细胞增殖的影响.中华 中医药学刊,2008,26(11):2510.
    108.张转建,李玉根.黄芩苷对胃癌细胞株凋亡作用机制的研究.基础研究,2008,5(14):27.
    109.张学武,崔长旭,陈丽艳,等.黄芩苷抑制肝癌HepG-2细胞增殖的实验研究.时珍国医国药,2008,19(9):2154.
    110.熊娟,欧阳昌汉,黄胜堂.黄芩苷对大鼠脑缺血再灌注损伤的保护作用.时珍国医国药,2007,9(18):2125.
    111.刘萍,李倩,刘菊英.黄芩苷对局灶性脑缺血再灌注大鼠行为学和梗死体积的影响.山东医药,2004,44(29):38.
    112.刘萍,王菊英,李倩.黄芩苷对大鼠脑缺血再灌注损伤后海马神经元HSP70表达的影响.药学学报,2006,41(7):619.
    113. Tu X K, Yang W Z, Shi S S, et al. Neuroprotective effect of baiealin in a rat model of permanent focal cerebral ischemia. Neurochem Res,2009,34(9):1626.
    114.张仁良,任惠民,董强,等.黄芩苷对大鼠脑缺血-再灌注损伤时花生四烯酸代谢的影响及其作用机制.医学研究生学报,2008,21(6):591.
    115.周峻伟.栀子苷、黄芩苷对大鼠局灶性脑缺血模型缺血脑组织单核细胞趋化蛋白(MCP.1)的影响.中医药学刊,2004,12(6):1016.
    116.王文安,蔡定芳,吕传真.黄芩苷对糖尿病大鼠脑缺血再灌注损伤的影响.中国中西医结合急救杂志,2002,2(9):111.
    117. Eguchi Y, Yamashita K, lwamoto T. Effects of brain temperatureon calmodulin and icrotubule-associated protein 2 immunoreactivityin the gerbil hippoeampus following transient forebrain ischemia. Neurot Rauma,1997,14:109.
    118.陈群,曾因明,王建国.黄芩苷的脑保护作用和对微管运动蛋白免疫活性的影响.中国药理学通报,2001,17(1):117.
    119.刘平,傀义双,周乾坤,余嗣明.黄芩苷对实验性脑出血大鼠脑损伤的保护作用.中国中医药信息杂志,2008,15(4):34-35.
    120.周乾坤,余嗣明,刘平,等.黄芩苷对脑出血大鼠脑内氨基酸递质含量的影响.中国中医药信息杂志,2009,4(16):35.
    121.颜晓华,杨于嘉,刘苡.黄芩苷对新生鼠脑血肿继发脑水肿的治疗研究.急 救医学,2004,4:221.
    122.朱陵群,李伟华,王硕仁,等.黄芩苷对神经细胞缺氧缺糖再灌注损伤的保护作用.中草药,2007,38(2):238.
    123.陈忻,张楠,赵晖,等.黄芩苷对鱼藤酮致帕金森大鼠黑质多巴胺能神经的保护作用.中风与神经疾病杂志,2008,25(2):174.
    124.陈忻,张楠,邹海艳,等.黄芩苷MPTP帕金森病小鼠的保护作用.中国中西医结合杂志,2007,27(11):1010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700