脾阳虚证大鼠能量代谢和神经内分泌改变的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
脾阳虚证存在两症状群:①阳虚症状群,表现是畏寒喜温、形寒肢冷、蜷缩倦怠等。中医理论基础是脾失温煦,而生物学基础是能量代谢低下、产热不足;②脾(气)虚症状群,表现是纳少、消瘦、乏力、脘腹胀痛、便溏及腹泻等。中医理论基础是脾失健运,而生物学基础是胃肠消化和吸收功能减退。简而言之,该两大症状群可概括为“不温”和“不运”症状群。
     一、本研究首先系统综述了脾阳虚证理论研究进展、脾阳虚证实验研究进展和脾阳虚证神经内分泌研究进展。重点介绍了脾阳虚证动物模型制备的现状、缺陷与发展方向,系统概述了解偶联蛋白家族(uncoupling proteins, UCPs)在能量代谢(特别是产热)中的作用特点,概括了新的脑肠肽胃生长素(ghrelin)对胃肠消化吸收功能和摄食、能量代谢双重调控的特点。这些进展为本研究寻找创新点提供了前提条件。
     二、实验研究设计的基本思路
     以研创“新型脾阳虚模型”为基点,瞄准脾阳虚证能量代谢改变特征,探索脾阳虚证中最为关键的“阳虚”机制;以现代系统生物学“整体论”思想为理论基础,探索脾阳虚证中桥联“脾失健运”(“不运”)和“脾失温煦”(“不温”)两大板块(症状群)的神经内分泌调控因素。
     (一)建立新型脾阳虚证动物模型
     本研究采用肩胛间棕色脂肪组织(brown adipose tissue, BAT)切除术+高脂饲料喂养+隔日寒冷环境刺激的复合因素造模方法,建立了可靠的脾阳虚证动物模型。其主要特色是加强了“伤阳”设计,通过切除BAT,大幅度减少大鼠产热来源,衰其阳气,使脾阳虚证动物模型造模的阳虚环节坚实,该方法具有创新性。
     (二)脾阳虚证的能量代谢研究
     脾阳虚证患者有形寒肢冷、畏寒喜温等症状和体征,和现代医学理论中的基础代谢率和能量代谢水平下降而导致的产热不足表现相似,从现代生物化学观点看,细胞的物质代谢活动都伴随有能量转化,而三磷酸腺苷(ATP)是机体储能和直接供能的物质,因此,了解脾阳虚证大鼠荷能物质(糖和脂肪)水平、能荷和ATP酶的改变特征对于阐释脾阳虚证阳虚的本质具有重要的意义。
     线粒体是细胞能量代谢和生物氧化的主要场所,UCP约占线粒体内膜蛋白总量的6%-14%,与机体产热作用密切相关。现代生物学研究显示其生理作用是使线粒体膜电位降低,使物质氧化磷酸化和ATP合成解偶联,从而抑制ATP的合成,使能量以热能形式散失,使呼吸过程中由质子梯度形成的电化学势能转变为热能而不产生ATP,即产热而不产能,由于UCP对能量代谢的潜在影响,脾阳虚既然有产热低下的表现,理论上应该和UCP的表达异常有关。
     本课题拟检测血糖、血脂、线粒体能荷、线粒体UCP和骨骼肌肌球蛋白ATP酶活性等能量代谢相关指标,研究脾阳虚证大鼠能量代谢的特征,探讨脾阳虚证阳虚的细胞分子机制。
     (三)脾阳虚证的神经内分泌研究
     现代生物学的最新研究进展表明脑肠肽、胃肠激素和肠神经系统递质对胃肠进行着整合控制。脾阳虚证主要是以消化系统为主的多系统、多器官的功能低下,并与相关神经内分泌调控的改变有着密切的联系,特别是近年新发现的脑肠肽Ghrelin,与胆囊收缩素相似,具有广泛的胃肠功能和摄食、能量代谢双重调控作用。有望成为连接脾阳虚消化吸收功能状态和能量代谢状况的桥梁之一
     因此,本课题拟检测脾阳虚Ghrelin水平,了解脾阳虚证大鼠Ghrelin改变的特征,以探讨Ghrelin作为神经内分泌物质在脾阳虚证发病机制中的作用。
     三、实验研究结果
     (一)异丙肾上腺素致脾阳虚证大鼠产热量效关系的实验研究
     1目的
     采用肩胛间BAT切除术+高脂饲料喂养(高脂饮食)+隔日寒冷环境刺激的多因素造模模式制备脾阳虚证动物模型,然后以异丙肾上腺素作为外部刺激源,观察脾阳虚证动物对异丙肾上腺素适应性产热的反应性和剂量效应相关性。
     2方法
     参考有关对脾阳虚证动物模型的评价,对大鼠序贯施行BAT切除、高脂饮食喂养、隔日寒冷环境刺激的措施,模拟中医学脾阳虚的发生发展过程,观察大鼠曲行为学表现,建立脾阳虚证大鼠模型,在大鼠适宜环境(28℃)下,以异丙肾上腺素对大鼠进行尾静脉注射,测定大鼠肛温、胸部体表温度、肢温,并探索异丙肾上腺素剂量和各部温度变化之间的关系。
     3结果
     异丙肾上腺素刺激大鼠产热的量效关系如下:肛温峰值和曲线下面积EDso分别为0.28 mg/kg和0.106 mg/kg,胸部体表温度峰值以及曲线下面积ED50分别为0.066 mg/kg和0.070 mg/kg,肢温峰值以及曲线下面积ED50分别为0.071mg/kg和0.172 mg/kg,肛温、肢温与胸部体表温度三部分温度之间变化趋势呈正相关。
     4结论
     (1)脾阳虚证大鼠整体上产热能力下降,可能是脾阳虚动物畏冷寒战的原因。采用药物干预可以改善适应性产热低下状况,为主要以温热药组成的附子理中汤干预脾阳虚动物的实验奠定了基础。
     (2)异丙肾上腺素刺激脾阳虚证大鼠产热效能,量效关系正相关,但最佳剂量受环境(如外界温度、噪音和光线等)因素影响而难以确定。
     (二)脾阳虚证大鼠BAT和UCP1关联性的实验研究
     1目的探讨BAT、解偶联蛋白1(uncoupling protein 1,UCP1)、高脂饮食和中药干预在实验动物能量代谢中的关联性和机制。
     2方法
     动物随机分为4组。每组16只。(1)对照组:普通饲料喂养;d70-d98生理盐水10ml/kg/d灌胃。d98检测刺激性产热,观察2h肛温变化曲线和温度峰值,计算温度曲线下面积;(2)阳虚组:d42手术切除肩胛间BAT,余同(1)组;(3)脾阳虚组:d49-d98高脂饲料(83%普通饲料,15%甘油三酯,2%胆固醇)喂养;隔日19℃环境喂养,余同(2)组;(4)中药组:d70-d98附子理中汤5ml/kg/d灌胃。余同(3)组。每周测体重一次。以效能体重增长率、效能产热温度峰值、产热温度曲线下面积为参考指标。取BAT测UCP1表达量。
     3结果
     (1)效能体重增长率
     阳虚组与对照组相比体重增长减慢(P<0.01);脾阳虚组与阳虚组相比体重增长减慢(P<0.01);中药组与脾阳虚组相比,体重增长加快(P<0.01)。
     (2)效能产热温度峰值
     阳虚组与对照组相比效能产热温度峰值降低(P<0.01);脾阳虚组与阳虚组相比效能产热温度峰值升高(P<0.01);中药组与脾阳虚组相比,效能产热温度峰值升高(P<0.01);中药组与脾阳虚组相比,效能体重增长率与效能产热温度峰值变化程度呈正相关。
     (3)产热温度曲线下面积
     阳虚组与对照组相比产热曲线下面积减少(P<0.01);脾阳虚组与阳虚组相比产热曲线下面积增加(P<0.05);中药组与脾阳虚组相比,产热曲线下面积增加(P<0.01)。效能体重增长率与产热温度曲线下面积变化程度呈正相关。
     中药组上调UCP1表达量,和阳虚组以及脾阳虚组相比,差异均具有高度显著性(P<0.01)。
     4结论
     (1)温阳健脾中药促使高脂饮食转化为BAT并提高其产热活性。
     (2)温阳健脾中药上调UCP1在BAT中的表达,通过UCP1的解偶联作用,使BAT分解产热而改善阳虚畏寒的症状。
     (三)脾阳虚证大鼠骨骼肌线粒体能荷和UCP3的关联性研究
     1目的
     研究附子理中汤对脾阳虚证大鼠骨骼肌解偶联蛋白3(uncoupling protein3,UCP3)含量以及骨骼肌能荷的影响。
     2方法
     动物随机分为四组,每组18只,四组动物均饲以普通饲料和饮水喂养至(142,然后取三组造模,剩下一组作为对照组,对照组依然是普通饲料和饮水,对造模的三组采取以下措施:(1)d42,随机取其中一组施行肩胛间BAT切除术,术后饲以普通饮食、饮水,为阳虚组;(2)d42,余下的两组,也施行肩胛间BAT切除术,但术后饲以高脂饲料(83%基本饲料,15%甘油三酯,2%胆固醇),隔日19℃环境喂养;至d82随机从两组中取一组,每只大鼠按照5ml/kg体重每天灌饲附子理中汤,为中药组;另一组为脾阳虚组,全部四组d98取左侧腓肠肌检测指标。
     3结果
     (1)中药组肌能荷值显著低于其他三组,说明合成ATP的量低于其他三组,(和对照组相比P<0.01;和阳虚组比,P<0.05;和脾阳虚组比,P<0.05)。中药组UCP3表达量和ATP酶活性均较脾阳虚组升高(分别为P<0.01,P<0.05)。
     (2)脾阳虚组和对照组相比,能荷值降低(P<0.05);和阳虚组相比,能荷值也降低,但差异没有显著性(P>0.05)。脾阳虚组UCP3表达量升高(与对照组相比P<0.01)。脾阳虚组骨骼肌肌球蛋白ATP酶活性升高(与对照组相比P<0.01)。
     (3)阳虚组和对照组相比,能荷值降低但差异没有显著性(P>0.05)。
     4结论
     本实验结果表明,附子理中汤通过上调骨骼肌UCP3表达和骨骼肌肌球蛋白ATP酶活性以及抑制机体合成ATP(产能),通过UCP3解偶联作用提高产热而发挥温阳作用。
     (四)脾阳虚证大鼠UCP3和血糖、甘油三酯以及总胆固醇关联性实验研究
     1目的
     分析附子理中汤对脾阳虚证大鼠UCP3的影响以及UCP3和血糖、甘油三酯、总胆固醇能量物质之间的内在联系。
     2方法
     实验动物分为4组,每组16只。(1)对照组:普通饲料喂养,饮水;d70-d98灌胃生理盐水10ml/kg/d;(2)阳虚组:d42手术切除BAT,余同(1)组;(3)脾阳虚组:d49-d98高脂饲料(83%普通饲料,15%甘油三酯,2%胆固醇)在28℃和19℃环境隔日交替喂养;余同(2)组;(4)中药组:d70-d98附子理中汤5ml/kg/d灌胃;余同(3)组。全部四组动物d98左颈总动脉插管取血检测血糖、血清甘油三酯、血清总胆固醇含量,取骨骼肌检测UCP3。
     3结果
     (1)各组血糖含量的比较阳虚组与对照组相比血糖降低(P<0.01);脾阳虚组与阳虚组相比血糖升高(P<0.01);中药组与阳虚组相比,血糖升高(P<0.01);中药组与脾阳虚组相比,血糖血糖有下降趋势(P>0.05)。
     (2)各组血清甘油三酯含量的比较阳虚组与对照组相比血清甘油三酯降低(P<0.01);脾阳虚组与阳虚组相比血清甘油三酯增加(P<0.01);中药组与阳虚组相比,血清甘油三酯升高(P<0.01),中药组与脾阳虚组相比,血清甘油三酯有下降趋势(P>0.05)。
     (3)各组血清总胆固醇含量的比较脾阳虚组、中药组与对照组相比血清总胆固醇均升高(P<0.01)。
     (4)各组UCP3表达细胞形态观察
     ①对照组UCP3表达细胞形态镜下对照组骨骼肌肌原纤维排列整齐,肌原纤维有较多阳性颗粒表达。
     ②阳虚组UCP3表达细胞形态镜下阳虚组骨骼肌肌原纤维阳性颗粒表达较对照组少。
     ③脾阳虚组UCP3表达细胞形态镜下脾阳虚组骨骼肌肌原纤维阳性颗粒表达较对照组少。
     ④中药组UCP3表达细胞形态镜下中药组骨骼肌肌原纤维阳性颗粒表达较脾阳虚组和阳虚组多。
     (5)各组骨骼肌UCP3表达量的比较中药组、脾阳虚组、阳虚组与对照组相比,UCP3表达上调(P<0.01);中药组经过中药干预后,UCP3表达上调(P<0.01)。
     4结论
     (1)附子理中汤促使骨骼肌内UCP3增加,UCP3主要促进脂肪酸代谢,使血清甘油三酯降低;增加对葡萄糖的利用及加强其代谢,使血糖水平降低。
     (2)脾阳虚组给于高脂饮食,血清甘油三酯升高,则游离脂肪酸(free fatty acid, FFA)也增多,FFA和葡萄糖作为参与能量代谢物质,相互间存在竞争,FFA水平升高使葡萄糖氧化受抑和摄取减少,表现为血糖升高。
     (3)由于UCP1作用的组织是BAT, UCP3主要作用于骨骼肌,均有高度的专一性,对胆固醇代谢的作用不明显;另外,由于高脂饲料中含有胆固醇,这增加了实验动物胆固醇摄入量,以上两点是脾阳虚组和中药组血清总胆固醇水平比对照组高的原因。
     (4)附子理中汤上调UCP3表达量,通过UCP3对骨骼肌的解偶联作用、促进产热是引起血糖、血清甘油三酯、血清总胆固醇水平变化的核心机制。
     (五)附子理中汤对脾阳虚证大鼠血清胃生长素影响的实验研究
     1目的
     探讨脾阳虚证大鼠血清Ghrelin的变化特征、生理作用机制以及附子理中汤对脾阳虚证大鼠血清Ghrelin的影响。
     2方法
     实验动物体重均衡随机分为4组,每组16只。①对照组:普通饲料喂养,饮水;d70-d98灌胃生理盐水10 ml/kg/d。d98禁食12h后,尾静脉取血,:EDTA-Na2及抑肽酶抗凝,检测血清Ghrelin水平;②阳虚组:d42手术切除BAT,余同①组;③脾阳虚组:d49-d98高脂饲料(83%普通饲料,15%甘油三酯,2%胆固醇)在28℃和19℃环境交替喂养;余同②组;④中药组:d70-d98附子理中汤5ml/kg/d体重灌胃;余同③组。
     3结果
     (1)从各组体重增长率看,阳虚组与对照组相比体重增长减慢(P<0.01);脾阳虚组与对照组相比体重增长减慢(P<0.01);中药组与脾阳虚组相比,体重增长加快(P<0.01)。
     (2)从各组血清Ghrelin含量看,脾阳虚组和对照组相比,血清Ghrelin含量明显降低(P<0.01);中药组与脾阳虚组相比,血清Ghrelin含量明显上升(P<0.01)。
     4结论
     附子理中汤上调脾阳虚证大鼠血清Ghrelin水平,提高Ghrelin的双重调控的效能,从而改善脾阳虚症状:
     (1)附子理中汤上调Ghrelin,加强胃肠消化和吸收功能,这可能是附子理中汤“健脾”功效的神经内分泌基础之一。
     (2)附子理中汤上调Ghrelin.水平,提高食欲促进摄食、增加体重,这可能是附子理中汤“温阳”功效的神经内分泌基础之一。
     四、实验结论
     (一)脾阳虚证中能量代谢改变的特征
     依据上述脾阳虚证大鼠能量代谢的实验结果,进行多因素综合分析可以作出如下推断:
     1脾阳虚证大鼠能量代谢水平下降,荷能物质(血糖和甘油三酯)减少,能量分子(ATP)减少,体温下降。
     2机体在脾阳虚证时,面对能量代谢水平下降,通过整体、器官系统和细胞分子三个水平进行代偿性调节,不断进行自调节和自适应。
     在机体神经-内分泌-免疫网络的调控下,骨骼肌通过寒战前肌紧张、寒战产热、BAT的非寒战产热等措施,代偿能量代谢的下降。在细胞分子水平的表现是,BAT细胞线粒体UCP1和骨骼肌线粒体UCP3的代偿性产热;骨骼肌肌球蛋白ATP酶活性代偿性升高。
     (二)附子理中汤干预脾阳虚的生物学基础包括两个方面:
     1提高机体能量代谢水平,以达到温煦脾阳的目的。主要根据是附子理中汤干预后,与脾阳虚组相比,BAT的UCP1表达量升高、骨骼肌线粒体的UCP3表达量升高、骨骼肌肌球蛋白ATP酶活性升高。
     2提高脑肠肽Ghrelin水平,发挥对胃肠消化吸收功能和摄食、能量代谢的双重正调节效应,以恢复“脾主运化”和“脾主温煦”的功能。
     五、本课题研究的创新点
     (一)立足中医脾阳虚的传统理论,既考虑脾阳虚能量代谢失调方面,也考虑脾阳虚胃肠功能失调方面。采取“肩胛间BAT切除术+高脂饲料喂养+隔日寒冷环境刺激”的多因素序贯干预措施,时间较长,从整体上模拟人体脾阳虚的发生发展过程,建立的“脾阳虚证”证候模型,与人体脾阳虚证的表现吻合度较高,模型可靠。
     (二)以UCPs和能量代谢的关系为主要研究内容,重点观察UCP1、UCP3、能荷以及肌球蛋白ATP酶活性的改变特征,探讨脾阳虚证大鼠能量代谢低下、产热不足的机制。
     (三)选取Ghrelin为研究对象,从神经内分泌角度阐释其对脾阳虚证大鼠的作用及机制、调节方式,角度选取具有新颖性。
There are two types of syndromes about spleen yang deficiency syndrome, one is yang deficiency syndrome whose symptoms include chill, cold limbs, low body temperature, the other is spleen Qi deficiency syndrome which involves with symptoms as weakness, anorexia, weight loss, abdominal pain, diarrhea, lassitude,etc. the above are based on the theory of traditional Chinese medicine while its biological base is disorder of digestion and absorption system, in a word, spleen yang deficiency syndrome include two types of syndromes, one is low ability of heat generating, the other is disorder of digestion and absorption system.
     1 This thesis systemically discusses the development of spleen yang deficiency syndrome.
     At first, the research shows the development of the theory, experimental research and neuroendocrine research of spleen yang deficiency syndrome, and focuses on the present status, deficiency and future to systemically indicate the traits on energy metabolism especially on heat generating about UCPs; meanwhile, summarizes the regulating features of digestion, absorption,feed and metabolism about Ghrelin, which are the foundations for this research.
     2 The original consider about designing the research
     Based on creating a new spleen yang deficiency syndrome model, aiming at the traits during the energy metabolism and exploring the key mechanism in spleen yang deficiency syndrome. To discuss the main factors of disorder of spleen function and low heat generating based on modern systemic biological integration theory.
     2.1 Setting up rat model with spleen yang deficiency syndrome
     Incising BAT, high fatty feeding and cold stimulating every other day to create a reliable spleen yang deficiency syndrome rat model, which emphasizing the traits of reinforce " destroying yang" by incising BAT to decrease the resource of heat generating, which is an innovation in model creating field.
     2.2 Research on energy metabolism in spleen yang deficiency syndrome
     Spleen yang deficiency syndrome includes chill, low body temperature symptoms, which is similar with the symptoms caused by low energy metabolism and basal metabolism rate. In modern biochemistry, during the process of energy metabolism always companied with ATP change which can directly supply energy. Many biologic mole and substance take part in this process of energy metabolism.
     Mitochondrion is main site of cell energy metabolism. the content of UCP is about 6%-14%of total content of inner membrane of mitochondrion which has close relationship with heat generating.
     Uncoupling proteins(UCPs) is a protein family which are involved with heat generating function.Physiologic research has shown it can decrease mitochondrial membrane potential and uncouple the process of oxidation and phosphorylation, in this way, it can inhibit synthesis of ADP even ATP and the result is to make energy to emit by way of heat. During the process, UCPs generates heat but not energy, and it also has close relationship with energy metabolism and is key to maintain body temperature. Since spleen yang deficiency syndrome is involved with low ability of heat generating, then, it should have a relationship with UCPs expression. This thesis will explain the relationship between UCP and spleen yang deficiency syndrome.
     2.3 Research on neuroendocrine in rats with spleen yang deficiency syndrome
     The latest modern biology research shows brain-intestinal, gastric-intestinal hormone and intestinal nervous system controlling the stomach and intestine. Spleen yang deficiency syndrome has a close relationship with neuroendocrine based on main digestion system and multi organs'disorder. Ghrelin and CCK is familiar with regulating the food in-intake and energy metabolism and hopefully to become a bridge between function of digestive system and energy metabolism status.
     3 Conclusions about experimental researches
     3.1 Research on isoproterenol (ISO) inducing heat generating in rats with spleen yang deficiency syndrome
     3.1.1 Objective:
     Creating spleen yang deficiency syndrome rat model by removing interscapular brown adipose tissue, high fatty diet, and coldness stimulating every other day, then, injecting ISO as external stimulating resource and observing the sensibility to heat generating and ISO dose-effect relationship with spleen yang deficient rats.
     3.1.2 Methods:
     Removing interscapular brown adipose tissue, high fatty diet, and coldness stimulating every other day in rats with reference to evaluation on spleen yang deficiency syndrome rat model referencing the process of emergence and development of spleen yang deficiency syndrome according to the theory of traditional Chinese medicine, observing the rats' behavior, setting up spleen yang deficiency syndrome rat model. then, under 28℃circumstance, injecting ISO and recording the rectal temperature,the temperature of chest and rear leg in spleen yang deficiency syndrome rats, and exploring the relationship between ISO dose and the temperature of each part.
     3.1.3 Results:the relationship between ISO dose and effect:effective dose 50(EDso) of the rectal temperature peak and the area under curve is 0.28 mg/kg and 0.106 mg/kg, ED50 of the temperature peak of chest and the area under curve is 0.066 mg/kg and 0.070 mg/kg, ED50 of the temperature of real leg peak and the area under curve is 0.071 mg/kg and 0.172 mg/kg. The changing tendency of the rectal temperature, the temperature of rear leg and chest is direct ratio.
     3.1.4 Conclusions:
     ①totally, spleen yang deficiency syndrome model rats is not that sensible to external heat generating stimulating resource. Low ability of heat generating is probably one of the reasons that rats'slivering and chilling.drugs can improve symptoms of low ability of heat generating which makes an example for how Acotinum Lizhong decoction acts on rats with spleen yang deficiency syndrome.
     ②the tendency of ISO dose-effect of heat generating is direct ratio, but the appropriate dose is not easy to fix due to the change of temperature of circumstance,noise, and light factors etc.
     3.2 Experimental research on the relationship between brown adipose tissue and UCP1 in spleen yang deficiency syndrome
     3.2.1 Objective:
     Exploring the relationship and mechanism about brown adipose tissue, (uncoupling protein 1,UCP1),high fatty diet and Chinese herbal decoction during the process of energy metabolism.
     3.2.2 Methods:the rats are divided into four groups, and each 16 cases.
     ①control group:fed with ordinary food, d70-d98 ig. With 0.9% NaCl 10 ml/kg/d. d98 testing the ability of ISO deducing heat generating and observing variety curve of the rectal temperature and its peak within two hours and recording the area under the curve.
     ②yang deficiency syndrome group:the same as the control group's except removing brown adipose tissue on d42
     ③spleen yang deficiency syndrome group:the same as the yang deficiency syndrome group's except of being fed with high fatty diet (including 83% ordinary diet,15% triglycerides,2% cholesterol)from d49 to d98 and placed in 19℃circumstance every other day.
     ④Chinese herbal decoction group:the same as the spleen yang deficiency syndrome group except of ig.5ml/kg/d with Aconitum Lizhong decoction and recording weight every week. Recording the index of the weight growth rate, the peak of temperature and the area under the curve of temperature. Using brown adipose tissue to test the content of UCP1.
     3.2.3 Results:
     ①weight growth rate compared with control group, in yang deficiency syndrome group weight growth rate got lower (P<0.01), compared with yang deficiency syndrome group, weight growth rate in spleen yang deficiency syndrome group got lower(P<0.01), compared with spleen yang deficiency syndrome group, weight growth rate got higher in Chinese herbal decoction group (P<0.01).
     ②temperature peak of heat generating compared with control group, in yang deficiency syndrome group temperature peak of heat generating got lower (P<0.01), compared with yang deficiency syndrome group, temperature peak of heat generating in spleen yang deficiency syndrome group got higher(P<0.01), compared with spleen yang deficiency syndrome group, temperature peak of heat generating got higher in Chinese herbal decoction group (P<0.01). Variety between weight growth rate and temperature peak of heat generating shows direct ratio.
     ③area under the tempreature curve of heat generating
     Compared with control group, in yang deficiency syndrome group, area under the tempreature curve of heat generating decreasing (P<0.01), compared with yang deficiency syndrome group, area under the tempreature curve of heat generating in spleen yang deficiency syndrome group increasing (P<0.01), compared with spleen yang deficiency syndrome group, area under the tempreature curve of heat generating increasing in Chinese herbal decoction group (P<0.01). Variety between weight growth rate and area under the tempreature curve of heat generating is direct ratio.
     Compared with yang deficiency syndrom group and spleen yang deficiency syndrome group, Chinese herbal decoction group upregulates content of UCP1 and difference has high significance (P<0.01).
     3.2.4 Conclusions:
     ①Chinese herbal decoction with function of heat generating and tonifying spleen is inclined to make high fatty diet turn into brown adipose tissue and advance its activity.
     ②Chinese herbal decoction with function of warming middle energizer and tonifying spleen can upgrade level and expression of UCP1 in brown adipose tissue, and then make brown adipose tissue decomposed by the mechanism of uncoupling with UCP1, finally dispelling coldness from the bodies in the rats with yang deficiency syndrome.
     3.3 Interrelationship between energy charge and UCP3 in mitochondrion of skeletal muscle in rats with spleen yang deficiency syndrome
     3.3.1 Objective:
     Exploring effect of UCP3 and muscle energy charge after administrated Aconitum Lizhong decoction in rats with spleen yang deficiency syndrome.
     3.3.2 Methods:
     Rats are divided into four groups, and each 18 cases. All rats in four groups fed with ordinary food and water for 42 days, then chosen randomly three groups to mock the spleen yang deficiency syndrome, then the left as control group, to the control group always ordinary diet and water. For the three groups:
     ①to choose randomly one group to remove brown adipose tissue(BAT) on d42 and then fed with ordinary diet and water, this group called yang deficiency syndrome group.
     ②the other two groups, also, removed BAT on d42 but both of them are fed with high fatty diet (including 83% ordinary diet,15% triglycerides,2% cholesterol) and placed in the circumstance of 19℃every other day. When on d82, to choose randomly one of groups to ig. Aconitum Lizhong decoction according to the standard of 5ml/kg/d each rat, so this group called Chinese herbal decoction group while the other is called spleen yang deficiency syndrome group. On d98 using the rats blood and skeletal muscle to test indications.
     3.3.3 Results:
     ①energy charge in Chinese herbal decoction group is lower than those in other three groups, which indicates content of ATP is also lower than those in other three groups and compared with control group, difference has highly significance (P<0.01); compared with yang deficiency syndrome group, difference has significance (P<0.05);compared with spleen yang deficiency syndrome group,difference has significance (P<0.05).compared with spleen yang deficiency group, chinese herbal decoction group upgrade the expresson of UCP3 (P<0.01) and acitivity of ATPase (P<0.05)
     ②compared with control group, energy charge in spleen yang deficiency syndrome is lower and difference has significance (P<0.05); compared with yang deficiency syndrome group, energy charge is also lower but there is no significance (P>0.05).compared with control group, activity of ATPase of myosin raises in spleen yang dificency group (P<0.01)
     ③compared with control group,energy charge in yang deficiency syndrome group is lower but there is no significance (P>0.05)
     3.3.4 Conclusions:
     The research shows that the mechanism of dysfunctional heat generating lies in the unbalance between heat generating and energy generating, Aconitum Lizhong decoction increases the content of muscle UCP3 and activity of ATPase of myosin,then inhibits synthesis of ATP (energy generating) to maintain the body temperature by the mechanism of uncoupling of UCP3 finally.
     3.4 Experimental research on the relationship between UCP3 and blood sugar, triglyceride, total cholesterol in rats with spleen yang deficiency syndrome
     3.4.1 Objective:
     Exploring the relationship between UCP3 and blood sugar, triglyceride, total cholesterol after administrated Aconitum Lizhong decoction in rats with spleen yang deficiency syndrome.
     3.4.2 Methods:
     The rats are divided into four groups, and each 16 cases.
     ①control group:fed with ordinary food and water, d70-d98 ig. with 0.9% NaCl 10 ml/kg/d.
     ②yang deficiency syndrome group:the same as the control group's except removing brown adipose tissue on d42
     ③pleen yang deficiency syndrome group:the same as the yang deficiency syndrome group's except that fed with high fatty diet (including 83% ordinary diet,15% triglycerides,2% cholesterol)from d49 to d98 and placed in circumstance of 28℃and 19℃in turn.
     ④Chinese herbal decoction group:the same as the spleen yang deficiency syndrome group's except of ig.5ml/kg/d with Aconitum Lizhong decoction. To draw blood from left common carotid artery in all the rats in the four groups on d98 and then to test the content of blood sugar, triglyceride, total cholesterol. Finally to test the content of UCP3 of skeletal muscle by Immunohistochemistry technology.
     3.4.3 Results:
     ①content of blood sugar compared with control group,content of blood sugar is lower than that in yang deficiency syndrome group (P<0.01); compared with yang deficiency syndrome group, content of blood sugar in spleen yang deficiency syndrome group is higher (P<0.01);compared with yang deficiency syndrome group, content of blood sugar in Chinese herbal decoction group is higher (P<0.01).
     ②content of triglyceride compared with control group,content of triglyceride is lower than that in yang deficiency syndrome group (P<0.01); compared with yang deficiency syndrome group, content of triglyceride in spleen yang deficiency syndrome group is higher (P<0.01); compared with yang deficiency syndrome group, content of triglyceride in Chinese herbal decoction group is higher (P<0.01).
     ③content of total cholesterol compared with control group, content of total cholesterol in both spleen yang deficiency syndrome group and Chinese herbal decoction group is higher (P<0.01).
     ④expression of UCP3 cytomorphology in each group
     Ⅰ. expression of UCP3 cytomorphology in control group under microscope observing muscle cell fiber arranging regular and in muscle cell fiber is full of yellow (means positive) parts.
     Ⅱ. expression of UCP3 cytomorphology in yang deficiency syndrome group under microscope observing muscle cell fiber with yellow parts of muscle cell fiber decreases when compared with that in control group.
     Ⅲ. expression of UCP3 cytomorphology in spleen yang deficiency syndrome group under microscope observing muscle cell fiber with yellow parts of muscle cell fiber decreases when compared with that in control group.
     Ⅳ. expression of UCP3 cytomorphology in Chinese herbal decoction group under microscope observing muscle cell fiber with yellow parts of muscle cell fiber are more than that in both spleen yang deficiency syndrom and yang deficiency syndrom group.
     ⑤compare of relative content of UCP3 in each group compared with control group, relative content of UCP3 is higher in Chinese herbal decoction group, spleen yang deficiency syndrom group and yang deficiency syndrom group,difference has high significance(P<0.01); after administrating Chinese herbal decoction, relative content of UCP3 increases in Chinese herbal decoction group and difference has high significance when compared with yang deficiency syndrome group and spleen yang deficiency syndrome group(P<0.01).
     3.4.4 Conclusions:
     ①Chinese herbal decoction increase content of UCP3, and UCP3 alleviates metabolism of fatty acid, which lower content of triglyceride and increase use of glucose and alleviates its metabolism and then cause its levels lower.
     ②fed with high fatty diet in spleen yang deficiency syndrome group cause content of triglyceride rise, which lead to increase free fatty acid (FFA), but due to competitive with glucose, level of FFA can inhibit use of glucose,which cause level of blood sugar to rise.
     ③UCP1 mainly takes effect in brown adipose tissue and UCP3 act in muscle cell fiber, both of them have high specificity and have slight effect on metabolism of cholesterol, besides, high fatty diet increases level of cholesterol, which cause level of cholesterol to rise,and it is the reason that level of cholesterol in control group is higher than that in both spleen yang deficiency syndrome group and Chinese herbal decoction group.
     ④Chinese herbal decoction raises content of UCP3 and then by the mechanism of uncoupling of UCP3 to improv heat generating, which in turn causing content of blood sugar, triglyceride and total cholesterol to rise, so the mechanism of uncoupling of UCP3 is main and key in this process of metabolism.
     3.5 Experimental research on effects on Ghrelin after administrated Acotinum Lizhong decoction in rats with spleen yang deficiency syndrome
     3.5.1 Objective:
     Exploring effects on Ghrelin after administrated Chinese herbal decoction in rats with spleen yang deficiency syndrome and its physiologic mechanism.
     3.5.2 Methods:
     The rats are divided into four groups, and each 16 cases.
     ①control group:fed with ordinary food and water, d70-d98 ig. with 0.9% NaCl 10 ml/kg/d. On d98 prohibited to take in food for 12 hours, and then to draw blood from caudal vein and to add EDTA-Na2 and Aprotinin Protein inhibitor to the blood, then to test level of serum Ghrelin.
     ②yang deficiency syndrome group:the same as the control group's except removing brown adipose tissue on d42..
     ③spleen yang deficiency syndrome group:the same as the yang deficiency syndrome group's except that fed with high fatty diet (including 83% ordinary diet,15% triglycerides,2% cholesterol)from d49 to d98 and placed in circumstance of 28℃and 19℃in turn.
     ④Chinese herbal decoction group:the same as the spleen yang deficiency syndrome group's except of ig.5ml/kg/d with Aconitum Lizhong decoction.
     3.5.3 Results:
     ①compared with control group, weight growth rate in yang deficiency syndrome group is lower (P<0.01); compared with spleen yang deficiency syndrom group,weith growth rate in Chinese herbal decoction group is higher (P<0.01) difference has high significance.
     ②compared with control group, in spleen yang deficiency syndrome group, the content of Ghrelin decreases, and difference has high significance (P<0.01); while compared with spleen yang deficiency syndrome group, the content of Ghrelin in Chinese herbal decoction group rises, difference high significance (P<0.01). and is close to that of control group (P>0.05).
     3.5.4 Conclusions:
     ①mechanismⅠ:Aconitum Lizhong decoction can raise level of Ghrelin, and then Ghrelin regulates energy metabolism,alleviates gastric acid secretion,raises food intake and growth,which thus can alleviates the symptoms of anorexia, weight loss of spleen yang deficiency syndrome.
     ②mechanismⅡ:Aconitum Lizhong decoction raises level of Ghrelin, and the latter can alleviate disorder of gastrointestinal motility, which also alleviates the symptoms of lack of appetite, weight loss of spleen yang deficiency syndrome.
     4 Summarization for the experimental researches
     4.1 The traits about energy metabolism in spleen yang deficiency syndrome
     With the results of above experiences and by multi-factors analysis, here are some infers:(1) level of energy metabolism lowering, and energy substance such as glucose lowering, ATP and body temperature are also decreasing. (2) Regulating in integration, organ and cell or mole to adapt the changing circumstance in the status of low energy metabolism under the control of neuroendocrineimmune network. And by pre-shivering tone, shivering generating heat and non-shivering generating heat with UCP1 in BAT or UCP3 in skeletal muscle.
     4.2 Two aspects about how Aconitum Lizhong decoction interfering spleen yang deficiency syndrome. (1) elevating the level of energy metabolism to warm spleen yang since it can raise expression of UCP1 of BAT,UCP3 of skeletal muscle and activity of ATPase in myosin. (2) the expression of Ghrelin can regulate digestive and absorption function and energy metabolism to return the normal function of spleen.
     5 Innovations of the research
     5.1 Based on traditional theory of spleen yang deficiency syndrome, and considering both disorder of energy metabolism and disorder of gastric and intestinal function. Firstly remodeling spleen yang deficiency syndrome rat model with removing brown adipose tissue, feeding high fatty food. Coldness stimulating every other day with multi-factors. It takes a long time to create the model and totally considers the course of happening and development of spleen yang deficiency syndrome, for above reasons, the model is reliable and practicable.
     5.2 Ghrelin, UCPs and ATPase are chosen as main indexes, for Ghrelin which is discussed about its physiologic mechanism and the way of regulation from angle of theory of neuroendocrine, which is a new angle deserving further research. For UCPs, CUP1 and CUP3 are related with synthesis of ATP and energy charge, which are viewed as innovations in this research too.
     5.3 Ghrelin is chosen to be research on its mechanism and the methods on spleen yang deficiency syndrome, which is also a creative way or angle for the research.
引文
[1]黄帝内经素问[M].北京:人民卫生出版社,1963,14-22
    [2]灵枢经[M].北京:人民卫生出版社,1963,55,69
    [3]张锡纯.医学衷中参西录(上册)(第2版)[M].石家庄:河北人民出版社,1972,162-163
    [4]张锡纯.医学衷中参西录(下册)(第2版)[M].石家庄:河北人民出版社,1972,470
    [51胡筱娟,乔富渠.近十年对脾虚实质研究的概况[J].中国医药学报,1991,6(5):51-57
    [6]赵金铎.中医证候鉴别诊断学[M].北京:人民卫生出版社,1963,55-129
    [7]孙广仁,刘家义,张安玲,等.中医基础理论难点解析[M].北京:中国中医药出版社,2005,131,179,352-353
    [8]李德新.中医基础理论[M].北京:人民卫生出版社,2008,313-322,444-447
    [9]王忆勤.中医诊断学[M].北京:中国中医药出版社,2004,163-167
    [10]张佳发,张有祥.浅论脾之阴阳[J].国医论坛,2002,17(2):22-23
    [11]田德禄.中医内科学[M].北京:中国中医药出版社,2007,268-277
    [12]冷方南.中医内科临床治疗学[M].上海:上海科学技术出版社,河南:科学技术出版社,1981,319,374-379,675-676
    [13]方药中,邓铁涛,李克光,等.实用中医内科学[M].上海:上海人民出版社,1985,243
    [14]姜建国.伤寒论[M].北京:中国中医药出版社,2004,352-353
    [15]郝万山,李赛美.伤寒论理论与实践[M].北京:人民卫生出版社,2009,199-203
    [16]匡调元.人体体质学—中医学个性化诊疗原理[M].上海:上海科学技术出版社,2003,176-228
    [17]王琦.中医体质学[M].北京:人民卫生出版社,2005,79-87
    [18]向茂然.素体“脾阳虚”人论治规律初探[J].中国中医基础医学杂志,1999,5(4):40-41
    [19]陈小野,邹世洁.脾气虚证多态性的初步探讨[J].中医杂志,1996,37(2):113-116
    [20]杨维益,梁嵘.脾气虚证时肌酸磷酸激酶及其同工酶活性变化的临床研究[J].中国医药学报,1992,7(4):22-25
    [21]邱向红.脾虚证计量诊断的前瞻性研究[J].广州中医学院学报,1994,11(1):13-15
    [22]孙弼纲,刘健,鄢顺琴,等.脾虚证分度定量研究[J].中国中西医结合杂志,1994,14(3):135-138
    [23]朱文峰.证素辨证学[M].北京:人民卫生出版社,2008,1-5,167-169,238-243
    [24]杨雪,杨文思,王勇,等.脾阳虚证中阳虚症状群的实验评价[J].中华中医药杂志,2008,23(3):244-246
    [25]杨雪,杨文思,王勇,等.脾阳虚消化不良症状群客观评价的实验研究[J].中国中医基础医学杂志,2008,14(4):271-272
    [1]胡筱娟,乔富渠.近十年对脾虚实质研究的概况[J].中国医药学报,1991,6(5):51-57
    [2]危北海.脾胃学说与脾虚证研究现状评估[J].中医杂志,1990,31(5):51-52
    [3]陈小野.脾气虚证多态性的初步探讨[J].中医杂志,1996,37(2):113-116
    [4]陈小野.实用中医证候动物模型[M].北京:北京医科大学中国协合医科大学联合出版社,1993,145-157
    [5]严智强,于书庄,舒琪,等.脾虚动物模型的多种体表物理信息及其它生理指标的研究[J].贵州医药,1982,(4):39-40
    [6]陈可冀,周文泉,李春生,等.清官八仙糕治疗脾虚证的临床观察及实验研究[J].中医杂志,1984,25(6):37-39
    [7]李稳,柏云霞,李宝兰,等.脾阳虚动物某些生理指标的变化[J].陕西中医学院学报,1985,8(2):25-28
    [8]张永华,姚念宏,王春银,等.脾肾阳虚证动物模型造型初步实验观察[J].山东医药,1982,(2):2-4
    [9]李传英.脾虚泄泻证动物模型的研究[J].浙江中医杂志,1982,(8):355
    [10]王淑兰,王安民,杨畔农.马属动物驴“脾气虚”证的实验研究[J].中医杂志,1990,31(3):49-51
    [11]阚甸嘉,滕静茹,傅湘琦,等.用耗气破气理论塑造脾气虚动物模型[J].吉林中医药,1990,(2):32-34
    [12]傅湘琦,张琦,唐党生,等.根据中医耗气破气的理论塑造大白鼠“脾气虚证”模型血小板形态变化的电子显微镜观察[J].山西中医,1990,5(1):32-33
    [13]刘汶,张敦义.番泻叶致脾虚证动物模型的造型方法[J].中国中西医结合脾胃杂志,1998,6(4):231-232
    [14]黄埔山,毛翼楷,范隆昌,等.饮食失节所致的脾虚动物模型及中药治疗观察[J].中西医结合杂志,1983,3(5):295-296
    [15]罗光宇,黄秀风,杨明均,等.偏食法塑造大鼠脾气虚证模型的研究[J].中医杂志,1990,31(4):241-243
    [16]谢仰洲,陈琦涛,谢宗岑,等.用过劳和饮食失节法塑造大白鼠脾气虚证模型的研究—生化免疫病理和超微结构观察[J].中医杂志,1987,28(5):57-60
    [17]杨云,陈小野.劳倦与饥饱弓l起的大鼠脾虚证模型的造型及实验研究[J].中国医药学报,1989,4(2):65-67
    [18]梁嵘,杨维益,文平,等.用泻下与劳倦因素塑造大鼠“脾气虚”证模型[J].北京中医学院学报,1992,15(4):33-35
    [19]易杰,李德新.脾虚证动物模型研究思路和方法探析[J].上海中医药杂志,2001,35(5):40-42
    [20]陈小野,吕爱平,苏祖训,等.大鼠醋酸性胃溃疡和脾虚证证病结合模型的病理研究[J].中医杂志,1991,32(2):45-48
    [21]李湛民,李德新.脾阳虚小白鼠胃肠组织细胞超微结构改变的实验研究[J].辽宁中医杂志,1992,(7):44-46
    [22]裴媛,李德新.脾阳虚大白鼠横纹肌线粒体超微结构及血清肌红蛋白含量的实验研究[J].辽宁中医杂志,1991,(5):43-46
    [23]刘艳明,李德新,王晓明,等.脾阳虚证大白鼠模型脂质过氧化速率和抗氧化能力的实验研究[J].辽宁中医杂志,1994,21(1):13-18
    [24]王昕,张永志,孙跃余,等.伤湿所致大白鼠脾阳虚证动物模型及其机理研究[J].辽宁中医杂志,1995,22(4):187-188
    [25]崔家鹏,李德新,朱爱松.脾阳虚证大鼠心、肝、脑组织MAPK活性变化及温补脾阳方药对其影响的实验研究[J].河南中医,2005,25(3):29-31
    [26]羊燕群,郭文峰,李茹柳,等.脾阳虚大鼠模型建立及理中汤疗效观察[J].中药新药与临床药理,2009,20(1):83-86
    [27]王学庆.脾阳虚家兔模型血清胆碱酯酶和胃肠推进运动的实验研究[J].辽宁中医杂志,1991,18(7):41-44
    [28]广州中医学院脾胃研究组.脾虚患者唾液淀粉酶活性的初步研究[J].中华医学杂志,1980,60(5):290-291
    [29]曲瑞瑶,曲柏林,曾文红,等.大鼠实验性脾虚证胃电波和胃运动波的研究[J].中国中西医结合杂志,1994,14(3):156-158
    [30]张兵,张万贷,李黎波,等.脾虚证患者胃运动功能的研究[J].中国中西医结合杂志,1994,14(6):346-348
    [31]马伟丰.脾虚患者胃形态和运动功能的超声图观察[J].浙江中医杂志,1991,26(4):184
    [32]潘志恒,陈国浩,梁九根,等.慢性胃脘痛患者中医证型与核素胃排空功能关系的初步探讨[J].中国中西医结合脾胃杂志,1997,5(1):144-146
    [33]周斌,李乾构,任蜀兵,等.脾虚气滞型运动障碍样消化不良患者胃排空功能测定[J].中国中西医结合脾胃杂志,1997,5(2):84-85,87
    [34]王伟,孟旸,曲瑞瑶,等.加味四君子汤及P物质对脾虚证大鼠离体十二指肠活动变化的影响[J].中国中西医结合杂志,2002,(S1):56
    [35]郭华,曲瑞瑶.实验性脾虚证大鼠回肠电—机械活动变化与P物质及血管活性肠肽的关系研究[J].浙江中医杂志,2001,36(9):389,391
    [36]韦嵩,沈鹰.不同程度脾虚胃脘痛患者胃液成分的变化[J].安徽中医学院学报,1996,15(1):20-21
    [37]杨维益,梁嵘.脾气虚证与胰腺外分泌功能关系的临床研究[J].中国中西医结合杂志,1996,16(7):414-415
    [38]郭文峰,陈蔚文.脾虚证与营养物质吸收[J].新中医,2006,38(8):8-10
    [39]戴小华,孙弼纲.脾虚患者血清游离氨基酸的变化[J].中国中西医结合杂志,1994,14(7):403-405
    [40]易崇勤,孙建宁,张家俊,等.四君子汤调整小鼠运化功能紊乱的实验研究[J].中国中西医结合杂志,1997,17(1):42-44
    [41]熊海,危北海.健脾益气汤对脾虚大鼠肌糖原含量的影响[J].中西医结合杂志,1989,9(2):96-97
    [42]李乐红,谢锦玉.“脾气虚”大鼠骨骼肌细胞化学研究[J].中国医药学报,1990,5(5):16-18
    [43]孙恩亭,谢锦玉.脾气虚大鼠骨骼肌中某些元素,酶及能荷的变化[J].中国中西医结合杂志,1993,13(12):736-738
    [44]杨维益,梁嵘,杨敏,等.健脾理气法对骨骼肌能量代谢影响的研究[J].中国运动医学杂志,1994,13(1):28-31
    [45]杨维益,梁嵘.脾气虚证时肌酸磷酸激酶及其同功酶活性变化的临床研究[J].中国医药学报,1992,7(4):22-25
    [46]郑永峰,杨维益.脾虚证与磷酸肌酸激酶的关系[J].北京中医学院学报,1988,11(1):47-48
    [47]李东安,王普民,贾冬,等.附子理中丸的药理作用研究[J].中成药,1990,12(5):25-26
    [48]胡隐恒,周京滋,符胜光,等.脾虚泄泻动物模型的复制及附子理中丸的调整作用[J].上海中医药杂志,1981,(8):44-45
    [49]严桂珍,郑家铿,许少峰,等.附子理中汤择时用药对脾阳虚家兔免疫功能的影响[J].中医药学刊,2001,19(6):623-624
    [50]Smith RE, Horwitz BA. Brown fat and thermogenesis [J]. Physiol Rev,1969,49 (2):330-425
    [51]Nicholls DG, Locke RM. Thermogenic mechanisms in brown fat [J].Physiol Rev, 1984,64(1):1-64
    [52]Smith G, Jack C, Henry C, et al. The fine structure of human atherosclerotic lesions [J].Am J Pathol,1961,38 (3):263-287
    [53]Heaton GM, Wagenvoord RJ, Kemp A Jr, et al. Brown-adipose-tissue mitochondria:photo affinity labeling of the regulatory site of energy dissipation[J].Eur J Biochem,1978,82 (2):515-521
    [54]姚泰.人体生理学(第3版)[M].北京:人民卫生出版社,2001,420-421,1787-1795
    [55]Gonzalez-Barroso MM, Fleury C. Deletion of amino acids in the brown fat uncoupling protein converts the carrier into a pore [J].Biochemistry,1997, 36(36):10930-10935
    [56]Kates AL, Himms-Hagen J. Defective regulation of thyroxine 5'-deiodinase in brown adipose tissue of ob/ob mice [J]. Am J Physiol,1990,258(1):E7-15
    [57]Baumuratov AS, Abzhalelov BB, Kramarova LI, et al. Cold adaptation modulates Ca2+ signaling in brown preadipocytes [J]. Bull Exp Biol Med,2004,138(1):50-53
    [58]Smith CC, Stanyer L, Betteridge DJ. Soluble beta-amyloid (A beta) 40 causes attenuation or potentiation of noradrenaline-induced vasoconstriction in rats depending upon the concentration employed [J].Neurosci Lett,2004,367(1):129-132
    [59]Oana S, Inagaki M, Suzuki S, et al. Developmental changes of N400 event related potential of a semantic category decision task and modality specific findings in patients with developmental dyslexia[J].No To Hattatsu,2006,38 (6):431-438
    [1]邢玉端.黄帝内经理论与方法论(第二版)[M].北京:人民卫生出版社,2006,262-277
    [2]李德新.中医基础理论[M].北京:人民卫生出版社,2008,105-107,122-126
    [3]韩济生.神经科学纲要[M].北京:人民卫生出版社,2002,878-890
    [4]Zhi-Xi Chen, Xiao-Bin Liu,Ming-Lu Zhou,et al. Effects of jian pi bushen recipe on serum levels of cyclic nucleotide and thyroid hormone in rat models of spleen deficiency[J]. Chinese Journal of Clinical Rehabilitation,2004,8(30):67-79
    [5]钱会南,沈丽波,胡雪琴,等.脾虚大鼠模型脑内胆囊收缩素、P物质、血管活性肠肽变化及归脾汤的影响[J].中国实验方剂学杂志,2006,12(5):29-31
    [6]陈家旭,陈易新,季绍良,等.泻下、劳倦因素致脾气虚大鼠下丘脑、血浆NPY含量的变化[J].北京中医药大学学报,2002,2(6):22-24
    [7]姚泰.生理学[M].北京:人民卫生出版社,2005,1-11,520-523
    [8]关新民.医学神经生物学[M].北京:人民卫生出版社,2002,105-107
    [9]周吕,柯美云.神经胃肠病学与动力—基础与临床[M].北京:科学出版社,2005,3-22,45-50,116-200,412-425
    [10]危北海.脾胃学说与脾虚证研究现状评估[J].中医杂志,1990,31(5):51-52
    [11]姚泰.人体生理学(第3版)[M].北京:人民卫生出版社,2001,420-421
    [12]郭静,高颖,朱陵群,等.醒脾开郁方对抑郁症大鼠模型的中枢单胺类递质的影响[J].北京中医药大学学报,2005,28(3):55-56
    [13]陆佰荣,张晓杰,田杰,等.脾虚大鼠延髓网状结构小泡乙酰胆碱转运体免疫 组化研究[J].中国中西医结合消化杂志,2002,1(4):209-211
    [14]王学庆,李德新.脾阳虚家兔模型血清胆碱酯酶和胃肠推进运动的实验研究[J].辽宁中医杂志,1991,(7):41-44
    [15]尹光耀,何雪芬,尹玉芬,等.脾虚证患者胃黏膜线粒体超微结构,微量元素及相关因素的研究[J].中国中西医结合杂志,1995,15(12):719-723
    [16]赵燕玲,张仲海,夏天,等.脾虚大鼠胃窦、十二指肠组织5-HT细胞的变化及意义[J].安徽中医学院学报,2001,20(3):41-43
    [17]曲瑞瑶,刘素梅,王伟,等.实验性脾虚证胃肠动力学与胃肠肽关系的研究[J].深圳中西医结合杂志,1997,7(3):24-27
    [18]王伟,孟旸,曲瑞瑶,等.加味四君子汤及P物质对脾虚证大鼠离体十二指肠活动变化的影响[J].中国中西医结合杂志,2002,(S1):56
    [19]郭华,曲瑞瑶,常延滨,等.实验性脾虚证大鼠回肠P物质和血管活性肠肽含量的变化[J].首都医科大学学报,2001,22(3):199-200
    [20]张忠兵,张学庸,陈希陶,等.脾虚泄泻患者肠粘膜中SP和VIP初步探讨[J].中国中西医结合杂志,1991,11(3):144-146
    [21]刘素梅,曲瑞瑶,王伟,等.实验性脾虚证大鼠胃窦部SP、VIP、CGRP含量的研究[J].首都医科大学学报,1998,19(2):105-108
    [22]胡娜.升阳法对脾虚大鼠神经内分泌免疫网络影响的实验研究[J].贵阳中医学院学报,2008,30(1):28-30
    [23]严茂祥,陈芝芸,项柏康,等.脾虚证大鼠血及结肠组织胃肠激素的变化[J].中国医药学报,2003,18(2):71-72
    [24]修宗昌,陈群,尚文瑶,等.脾气虚证小肠运动异常的VIP/NO信号转导机制初探[J].上海中医药杂志,2006,40(2):55-56
    [25]郭华,曲瑞瑶,王伟,等.实验性脾虚证大鼠回肠电—机械活动变化与P物质及血管活性肠肽的关系研究[J].浙江中医杂志,2001,36(9):389-391
    [26]刘凯,齐清会.实验性脾虚证平滑肌细胞VIP受体信号传导障碍[J].天津中医药,2003,20(6):52-55
    [27]李刚,梁红娟,张贺龙,等.脾虚证大鼠各脑区和血清亮氨酸—脑啡肽的变化[J].安徽中医学院学报,2002,21(2):37-39
    [28]钱会南,沈丽波,胡雪琴,等.脾虚模型大鼠学习记忆障碍及归脾汤的改善作用[J].中国行为医学科学,2006,(15)3:202-204
    [29]凌江红,黄李平,陈业强,等.功能性消化不良肝胃不和、脾胃虚弱型患者血浆脑肠肽水平的研究[J].中华实用中西医杂志,2003,16(5):610-612
    [30]郑樨年,黄玉芳,丁金芳,等.脾虚证胃痛与胃窦粘膜G细胞关系的研究[J].
    南京中医学院学报,1989,(2):37-39
    [31]金敬善,王广才,张绳祖,等.血清中胃泌素水平与脾虚证的关系[J].中西医结合杂志,1982,(1):25-26
    [32]曾益宏,刘友章,徐升.益气健脾法对脾虚证模型大鼠血清胃泌素含量的影响[J].广州中医药大学学报,2008,25(3):239-240,243
    [33]王昕宇,马成.平胃散对脾虚湿困大鼠体重、血清胃泌素(GAs)的影响[J].中华实用中西医杂志,2007,20(5):409-411
    [34]徐世军,代渊,张三印,等.益气增液颗粒对脾虚SD大鼠胃肠粘膜分泌及免疫功能影响的初步研究[J].中药药理与临床,2004,20(1):20-21
    [35]郭小兰.健脾止泻散对脾虚泄泻小鼠血清胃泌素、尿淀粉酶的含量影响[J].陕西中医学院学报,2007,30(4):63-65
    [36]王昕,滕静如,逯波,等.针刺“足三里”对脾虚证大鼠血清中胃泌素、皮质醇含量的影响[J].针刺研究,2007,32(2):125-127
    [37]黄可儿,李燕舞,王汝俊,等.黄芪总苷对脾虚大鼠壁细胞胃泌素受体作用的研究[J].广州中医药大学学报,2006,23(1):42-44
    [38]杨凤江,王景杰.针刺足三里穴对实验性脾虚大鼠胃黏膜血流量及胃肠激素水平的影响[J].武警医学,2008,19(8):716-718
    [39]吴湘,刘磊,郝悦,等.针刺“足三里”对实验性脾虚大鼠胃排空及胃肠激素的影响[J].实用医学杂志,2008,24(11):1896-1897
    [40]刘芳,任平,李月彩,等.脾虚证与MOT的关系研究[J].中医药学刊,2004,22(11):2028-2030
    [41]任平,黄熙,蒋永培,等.四君子汤对脾虚大鼠胃动素及川芎嗪药物动力学特征的影响[J].中国中西医结合杂志,1997,17(1):45-47
    [42]郑学宝,吴丹,戴世学,等.枳术汤对脾虚便秘小鼠胃动素和降钙素基因相关肽靶向调控的实验研究[J].中国药物与临床,2008,8(11):869-872
    [43]丘剑锋,刘义海,叶振宇,等.脾虚症大鼠模型的建立及中药复方疗效观察[J].实验动物科学管理,2006,23(4):13-15
    [44]刘凯,齐清会.脾气虚证平滑肌细胞的胃动素信号传导障碍[J].中国中西医结合外科杂志,2004,10(4):300-302
    [45]郑樨年,黄玉芳,丁金芳,等.脾虚证胃痛与胃窦粘膜D细胞关系的探讨[J].江苏中医,1990,11(1):36-38
    [46]任平,刘芳,黄熙,等.脾虚大鼠生长抑素、胃动素、胆囊收缩素内分泌细胞的变化[J].成都中医药大学学报,2001,24(1):35-37
    [47]马建伟,都刚,徐丽梅,等.大鼠脾虚模型血浆及胃肠组织中生长抑素含量的 实验研究[J].辽宁中医杂志,1992,19(8):42-45
    [48]王洪海,谢鸣.复合因素致脾虚证模型大鼠血中胃肠激素含量的变化[J].中国实验方剂学杂志,2006,12(10):31-35
    [49]夏天,李刚,王宗仁,等.脾虚大鼠下丘脑-垂体-甲状腺轴功能的变化[J].安徽中医学院学报,2001,20(4):42-45
    [50]曾昭明,陈芝喜,赵慧,等.补中益气丸对脾虚大鼠甲状腺激素水平的影响[J].广州中医药大学学报,2007,24(4):320-322
    [51]李志强,陈津岩,何赞厚,等.四君子汤对脾虚证大鼠血清性激素和甲状腺激素水平的影响[J].河南中医,2008,28(3):36-38
    [52]Kanatani A,Mashiko S,Mural N,et al.Role of the Yl receptor in the regulation of neuropeptide Y-mediated feeding:comparison of wild-type, Yl receptor-deficient, and Y5 receptor-deficient mice [J].Endocrinology,2000,141(3):1011-1016
    [53]Sato N,Takahashi T,Shibata T,et al. Design and synthesis of the potent, orally available, brain-penetrable arylpyrazole class of neuropeptide Y5 receptor antagonists[J]. J Med Chem,2003,46(5):666-669
    [54]Baran K,Preston E,Wilks D,et al. Chronic central melanocortin-4 receptor antagonism and central neuropeptide-Y infusion in rats produce increased adiposity by divergent pathways[J].Diabetes,2002,51(1):152-158
    [55]刘群,蔡淦.“脾虚证”大鼠下丘脑及结肠组织生长抑素和胆囊收缩素-8含量的变化[J].中西医结合学报,2007,5(5):555-558
    [56]韩济生.神经科学纲要[M].北京:北京医科大学中国协和医科大学联合出版社,1993,85
    [57]Deschenes RJ,Haun RS,Funckes CL,et al.A gene encoding rat cholecystokinin isolation,nucleotide sequence and promoter activity[J].J Biol Chem,1985,260(2): 1280-1286
    [58]封吉化,尚虎虎,黄熙,等.脾虚早期与脾虚期大鼠组织和血浆中SS、CCK、MOT含量变化的探讨[J].武警医学,2005,16(5):336-339
    [59]Kojima M,Hosoda H,Date I,et al,Ghrelin is a growth-hormone-releasing acylated peptide from stomach[J].Nature,1999,402(6762):656-660
    [60]Nakazato M,Murakami N,Date Y, et al.A role for Ghrelin in the central regulation of feeding[J].Nature,2001,409(6817):194-198
    [61]Tschop M, Smiley N, Date Y, et al. Ghrelin in induces adiposity in rodents [J]. Nature,2000,407(6806):908-913
    [62]Diegez C, Casanueva FF. Ghrelin:a step forward in the understanding of somatotroph cell function and growth regulation[J]. Eur J Endocrinol,2000, 142(5):413-417
    [63]Korbonits M, Bustin SA, Kojima M,et al. The expression of the growth hormone secretagogogue receptor lignd in normal and abnormal human pituitary and other neuroendocrine tumors [J]. Clin Endocrinol Metab,2001,86(2):881-887
    [64]Mori K, Yoshimoto A, Takaya K, et al. kidney produces a novel acylated peptide ghrelin[J]. FEBS Lett,2000,486(3):213-216
    [65]Peino R,Baldelli R, Rodriguez-Garcia J, et al. Ghrelin induced growth hormone secretion in humans[J]. Eur J Endocrinol,2000,143(6):R11-R14
    [66]Frohman LA,Kineman RD,Kamegai J,et al.Secretagogues and the somatotrope: signaling and proliferation[J]. recent Prog Horm Res,2000,55:269-290(discussion 290-291)
    [67]Inui A, Asakawa A, Bowers CY, et al. Ghrelin, appetite and gastric motility:in the emerging role of the stomach and Endocrine organ [J].FASEB J,2004, 18(3):439-456
    [68]Cassoni P, Papotti M, Ghe C, et al. Identification,characterization, and biological activity of specific receptors for natural (Ghrelin) and synthetic growth hormone secretagogues and analogs in human breast carcinomas and cell lines[J].J Clin Endocrinol Metab,2001,86(4):1738-1745
    [69]Date Y, Nakazato M, Murakami N, et al. Ghrelin acts in the central nervous system to stimulate gastric acid secretion[J]. Biochem Biophys Res Commun, 2001,280(3):904-907
    [70]Asakawa A, Inui A, Kaga T, et al. Ghrelin is appetite stimulatory signal from stomach with structural resemblance to motilin[J]. Gastroenterology,2001,120(2): 337-345
    [71]Kitazawa T,Desmet B,Verbeke K,et al.gastricmotor effects of peptideandnon-peptide ghrelin agonistsinmiceinvi-voandinvitro[J].Gut,2005,54(4):10788-10842
    [72]Tannenbaum GS,Epelbaum J,Bowers CY,et al. Interrelationship between the novel peptide ghrelin and somatostatin/growth hormone-releasing hormone in regulation of pulsatile growth hormone secretion [J].Endocrinology,2003,144(3): 967-974
    [73]Xu L,Depoortere I,Tomasetto C,et al.Evidence for the presence of motilin,ghrelin,and the motilin and ghrelin receptor in neurons of the myentericplexus[J].Regul pept,2005,124(4):119-125
    [74]Edholm T, Levin F, Hellstrom PM, et al. Ghrelin stimulates motility in the small intestine of rats through intrinsic cholinergic neurons [J].Regul pept,2004,121 (1-3):25-30
    [75]Tebbe JJ, Mronga S,Tebbe CG, et al. Ghrelin-induced stimulation of colonic propulsion is dependent on hypothalamic neuropeptide Yl-and corticotrophin-releasing factor 1 receptor activation [J].Neuroendocrinol,2005,17(9):570-576
    [75]Tolle V, Zizzari P, Tomasetto C, et al.In vivo effects of ghrenlin/motilin-related peptide on growth hormone secretion in the rat[J]. Neuroendocrinology,2001,73 (1):54-61
    [76]Asakawa A,Inui A,Kaga T,et al. Antagonism of ghrelin receptor reduces food intake and body weight gain in mice [J].Gut,2003,52(7):947-952
    [77]Tschop M,Weyer C,Tataranni PA,et al. Circulating ghrelin levels are decreased in human obesity [J].Diabetes,2001,50(4):707-709
    [78]Cummings DE,Weigle DS,Frayo RS,et al.Plasma ghrelin levels after diet-induced weight loss or gastric bypass surgery[J].N Engl J Med,2002,346(21):1623-1630
    [79]周吕,柯美云.神经胃肠病学与动力—基础与临床[M].北京:科学出版社,2005.116-129
    [80]武颂文,杨年红,刘小立,等.高脂饮食对大鼠胃促生长素表达的影响[J].营养学报,2007,29(2):127-130
    [1]修芸,曹济民.β3肾上腺素受体研究进展[J].医学研究杂志,2007,36(3):80-83
    [2]Smith RE, Horwitz BA. Brown fat tissue and thermogenesis [J]. Physiol Rev,1969,49 (2):330-425
    [3]Nicholls DG, Locke RM. Thermogenic mechanisms in brown fat [J].Physiol Rev,1984,64 (1):1-64
    [4]王玉良.中医“脾虚证”动物模型实验研究的进展[J].辽宁中医杂志,1984,(5):40
    [5]杨雪,杨文思,王勇.等.脾阳虑证中阳虚症状群的实验评价[J].中华中医药杂
    [6]杨雪,杨文思,王勇,等.脾阳虚消化不良症状群客观评价的实验研究[J].中国中医基础医学杂志,2008,14(4):271-272
    [7]Cannon B, Nedergaard J. Brown adipose tissue:function and physiological significance [J]. Physiological Review,2004,84(1):277-279,358
    [8]Kondratiev TV, Blyhre ESP, Simonsen Q, et al. Cardiovascular effects of epinephrine during rewarming from hypothermia in an intact animal model [J]. Journal of Applied Physiology,2006,100(2):457-464
    [9]Almeida MC, Steiner AA, Coimbra NC, et al. Thermoeffctor neuronal pathways in fever:a study in rats showing a new role of the locus coeruleus [J]. J Physiology,2004,558(Pt 1): 283-294
    [10]卢耀增.实验动物学[M].北京:北京医科大学中国协和医科大学联合出版社,1995,383
    [11]覃筱燕,杨林,张淑萍,等.常用麻醉药物麻醉效果的比较[J].中央民族大学学报(自然科学版),2005,14(3):264-268
    [12]黄梦娣,边春鸽.2种不同麻醉前用药方式的比较[J].现代中西医结合杂志,2008,17(23):3664-3665
    [13]李晋.实验动物的麻醉方法与简介[J].生物学通报,1987,6(7):20-23
    [14]Hudson G Warming up to better surgical outcomes [J]. Aorn J,1999,69(1):251-253
    [1]Cannon B, Nedergaard J. Brown adipose tissue:function and physiological signifacance [J]. Physiological Review,2004,84(1):277-279,358
    [2]Kondratiev TV, Blyhre ESP, Simonsen Q, et al. Cardiovascular effects of epinephrine during rewarming from hypothermia in an intact animal model [J]. Journal of Applied Physiology,2006,100(2):457-464
    [3]WanG Y, Li WQ, Yang X, et al.Fat diet contributed by senna aggravates the hypothermogenesis in hypothyroid rats [J].Space Medicine & Medical Engineering (Beijing),2008,21(2):108-111
    [4]张颖,姜首彦.附子理中丸临床用药方案研究[J].首都医药,2007,14(11):53
    [5]黄鹤洁.附子理中丸儿科应用4则[J].中国现代医药杂志,2006,8(12):123
    [6]周贻谋.脾胃虚寒者可用附子理中丸[J].老年人,2006,(5):58
    [7]闫风兰.人参健脾丸和附子理中丸治疗慢性肠炎[J].石河子科技,1999,(5):51
    [8]李东安,王普民,贾冬,等.附子理中丸的药理作用研究[J].中成药,1990,12(5):25.26
    [9]胡隐恒,周京滋,符胜光,等.脾虚泄泻动物模型的复制及附子理中丸的调整作用[J].上海中医药杂志,1981,(8):44-45
    [10]Madden CJ, Morrison SF.Endogenous activation of spinal 5-hydroxytryptamine (5-HT) receptors contributes to the thermoregulatory activation of brown adipose tissue [J].Am J Physiol Regul Integr Comp Physiol,2008,298(3):R776-783
    [11]Smith G, Jack C, Henry C, et al. The fine structure of human atherosclerotic lesions [J].Am J Pathol,1961,38 (3):263-287
    [12]Heaton GM, Wagenvoord RJ, Kemp A Jr, et al. Brown-adipose-tissue mitochondria: photo affinity labeling of the regulatory site of energy dissipation[J].Eur J Biochem, 1978,82 (2):515-521
    [13]Nisoli E,Tonello C,Carruba MO.Nerve growth factor,beta3-adrenoceptor and uncoupling protein 1 expression in rat brown fat during postnatal development [J]. Neurosci Lett, 1998,246(1):5-8
    [14]Rippe C, Berger K, Boiers C, et al. Effect of high-fat diet, surrounding temperature, and enterostatin on uncoupling protein gene expression [J].Am J Physiol Endocrinol Metab, 2000,279(2):E293-300
    [1]李乐红,谢锦玉.“脾气虚”大鼠骨骼肌细胞化学研究[J].中国医药学报,1990,5(5):16-18
    [2]杨维益,梁嵘,文平,等.脾气虚证大鼠骨骼肌的形态学和形态计量研究[J].中国运动医学杂志,1993,12(3):157-192
    [3]裴媛,李德新.脾阳虚大白鼠横纹肌线粒体超微结构及血清肌红蛋白含量的实验研究[J].辽宁中医杂志,1991,18(5):43-44
    [4]姚泰.生理学[M].北京:人民卫生出版社,2005,73-84
    [5]Lombardi A, Busiello RA, Napolitano L, et al. Uncoupling protein-3 (UCP3) translocates lipid hydroperoxide and mediates lipid hydroperoxide-dependent mitochondrial uncoupl-ing [J]. J Biol Chem,2010,10(Epub ahead of print)
    [6]熊海,危北海.健脾益气汤对脾虚大鼠肌糖原含量的影响[J].中西医结合杂志,1989,9(2):96-97
    [7]孙恩亭,谢锦玉.脾气虚大鼠骨骼肌中某些元素,酶及能荷的变化[J].中国中西医结合杂 志,1993,13(12):736-738
    [8]Cannon B, Nedergaars J. Brown adipose tissue:function and physiological significance [J]. Physiol Rev,2004,84(6):277-359
    [9]Bezaire V, Seifert EL, Harper ME. Uncoupling protein-3:clues in an ongoing mitochondrial mystery[J]. FASEB J,2007,21(2):312-324
    [10]Sprague JE, Yang XM, Sommer J, et al. Roles of norepinephrine, free fatty acids, thyroid status, and skeletal muscle uncoupling protein 3 expression in sympathomimetic-induced thermogenesis [J]. J Pharmacol Exp Ther,2007,320(7):274-280
    [11]Schrauwen P, Hesselink MK. The role of uncoupling protein 3 in fatty acid metabolism: protection against lipotoxicity? [J].Proc Nutr Soc,2004,63(2):287-292
    [12]Chou CJ, Cha MC, Jung DW, et al. High-fat diet feeding elevates skeletal muscle uncoupling protein 3 levels but not its activity in rats[J]. Obes Res,2001,9(5):313-319
    [1]田德禄.中医内科学[M].北京:中国中医药出版社,2007,576-584
    [2]张晨,赵冰.试论高脂血症与脾虚的关系[J].湖北中医学院学报,2003,5(1):9-11
    [3]姚泰.生理学[M].北京:人民卫生出版社,2005,5-11,315-318
    [4]Randle PJ, Garland PB, Hales CN, et al.The glucose fatty acid cycle:Its role in insulin sensitivity and themetabolic disturbances of diabetesmellitus [J].Lancet,1963, 1(3):785-789
    [5]青华,李启富.游离脂肪酸和胰岛素的分泌[J].医学综述,2004,10(11):687-688
    [6]Rippe C, Berger K, Boiers C, et al. Effect of high-fat diet, surrounding temperature, and enterostatin on uncoupling protein gene expression [J].Am J Physiol Endocrinol Metab, 2000,279(2):E293-300
    [7]韩萍,卢雁,张咏言,等.不同脂肪酸对肝脏胰岛素抵抗和蛋白激酶C-δ活性的影响[J].中国医科大学学报,2007,36(2):194-196
    [1]周吕,柯美云.神经胃肠病学与动力一基础与临床[M].北京:科学出版社,2005,3-22,45-50,116-200,412-425
    [2]Li S,Zhang Z,Wu L,et al.Understanding ZHENG in traditional Chinese medicine in the context of neuro-endocrine-immune network[J].IET Systems Biology,2007,1(1):51-60
    [3]Kojima M,Hosoda H,Date I,et al,Ghrelin is a growth-hormone-releasing acylated peptide from stomach[J].Nature,1999,402(6762):656-660
    [4]Nakazato M,Murakami N,Date Y, et al.A role for Ghrelin in the central regulation of feeding[J].Nature,2001,409(6817):194-198
    [5]Tschop M,Smiley N, Date Y,et al.Ghrelin in induces adiposity in rodents [J]. Nature,2000,407(6806):908-913
    [6]Cassoni P, Papotti M, Ghe C, et al.Identification,characterization,and biological activity of specific receptors for natural (Ghrelin) and synthetic growth hormone secretagogues and analogs in human breast carcinomas and cell lines[J].J Clin Endocrinol Metab,2001,86(4): 1738-1745
    [7]Tolle V,Zizzari P,Tomasetto C,et al.In vivo effects of ghrenlin/motilin-related peptide on growth hormone secretion in the rat[J].Neuroendocrinology,2001,73(1):54-61
    [8]Asakawa A,Inui A,Kaga T,et al. Antagonism of Ghrelin receptor reduces food intake and body weight gain in mice [J].Gut,2003,52(7):947-952
    [9]Inui A, Asakawa A, Bowers CY, et al. Ghrelin, appetite and gastric motility:in the emerging role of the stomach and endocrine organ [J].FASEB J,2004,18(3):439-456
    [10]Tschop M,Weyer C,Tataranni PA,et al. Circulating Ghrelin levels are decreased in human obesity [J].Diabetes,2001,50(4):707-709
    [11]Cummings DE, Weigle DS, Frayo RS, et al. Plasma Ghrelin levels after diet-induced weight loss or gastric bypass surgery [J].N Engl J Med,2002,346(21):1623-1630
    [12]Kamegai J, Tamura H, Shimizu T, et al. Chronic central infusion of Ghrelin increases hypothalamic neuropeptide Y and agouti-related protein mRNA levels and body weight in rat [J]. Diabetes,2001,50(11):2438-2442
    [13]Wren Am, Seal LJ, Cohen MA,et al. Ghrelin enhances appetite and increases food intake in humans [J] J Clin Endocrinol Metab,2001,86(12):5992-5995
    [14]Date Y, Nakazato M, Murakami N, et al. Ghrelin acts in the central nervous system to stimulate gastric acid secretion [J]. Biochem Biophys Res Commun,2001,280(3): 904-907
    [15]Tannenbaum GS,Epelbaum J,Bowers CY,et al. Interrelationship between the novel peptide Ghrelin and somatostatin/growth hormone-releasing hormone in regulation of pulsatile growth hormone secretion [J].Endocrinology,2003,144(3):967-974
    [16]Xu L,Depoortere I,Tomasetto C,et al.Evidence for the presence of motilin,Ghrelin,and the motilin and Ghrelin receptor in neurons of the myentericplexus [J]. Regul pept,2005, 124(4):119-125
    [17]Edholm T, Levin F, Hellstrom PM, et al. Ghrelin stimulates motility in the small intestine of rats through intrinsic cholinergic neurons [J].Regul pept,2004,121(1-3):25-30
    [18]Tebbe JJ, Mronga S,Tebbe CG, et al. Ghrelin-induced stimulation of colonic propulsion is dependent on hypothalamic neuropeptide Y1-and corticotrophin-releasing factor 1 receptor activation[J].Neuroendocrinol,2005,17(9):570-576

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700