基于Coriolis质量流量计和同轴电导传感器的含油率测量研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
油、水两相流广泛存在于原油的开采及输送过程中。含油率是油、水两相流动过程中一个非常重要的参数。本文对利用双U型Coriolis质量流量计和同轴电导传感器测量油、水两相流的持油率以及测量持油率与实际含油率之间关系进行了研究,本文主要完成工作有:
     1.利用Coriolis质量流量计测量油、水两相流持油率的实验发现:装置参考含油率与测量持油率的比值Y随着含油率的增加,呈现一种先变大后变小的规律。由于U型管的结构复杂,不能从理论上直接分析倒U型规律是否为U型管Coriolis质量流量计测量油、水两相流的固有规律。接下来,本文从油、水两相流的流动机理及质量流量计测量原理出发,对U型管Coriolis质量流量计测量油、水两相流持油率进行了三维计算流体力学(Computational Fluid Dynamics, CFD)仿真研究。仿真得到的持油率与含油率之间的关系也存在与实验测量结果相似的变化规律,表明了利用U型管Coriolis质量流量计测量油、水两相流的持油率与实际含油率间确实存在这种先增大后减小的规律。
     2.在考察现有电导传感器结构基础上,设计了带有保护电极的同轴电导传感器及测量系统,并对同轴电导传感器的结构尺寸进行了优化设计。之后利用按照优化的结构、尺寸加工的同轴电导传感器对油、水两相流进行了实验研究。将同轴电导传感器测量结果代入不同的模型计算持油率,发现在含油率低于50%时,使用Maxwell模型测量持油率与参考含油率之间的偏差最小,均在2%以内;含油率在50%~70%之间,使用Maxwell模型与Brrugenman模型的均值作为测量值效果较好,测量持油率与含油率的偏差在6%以内。
     3.对垂直安装的同轴电导传感器测量油、水两相流的持油率与含油率之间的关系进行了研究。实验发现垂直上升管与垂直下降管中,都存在含油率与持油率的比值Y随着含油率的增加由大于1变为小于1的变化规律。进一步分析表明该规律是由垂直管道中油、水两相流的分布引起的,是垂直管中测量持油率与含油率关系的固有规律。
Oil-water two-phase flow is widely present in the exploitation and transport of crude oil. Oil volume fraction is a significant parameter in the oil-water two-phase flow measurement. The oil holdup was measured by the Coriolis mass flowmeter and the coaxial conductivity sensor in this paper. Besides, the relationship between the real oil volume fraction and the oil holdup measured was investigated. The main contributions of this paper are shown as followed:
     1. The oil holdup of the oil-water two-phase flow was experimentally measured using Coriolis mass flowmeter. The ratio between the real oil volume fraction and the oil holdup measured exhibited a reverse U-shape characteristic with the increase of oil volume fraction, which increases at first and then decreases. Due to the complex geometry of the U tube, it was impossible to theoretically analyze this phenomenon in the Coriolis mass flowmeter. However, based on the flow dynamic of the oil-water two-phase flow and the principle of Coriolis mass flowmeter, 3D Computational Fluid Dynamics (CFD) of the U-shaped Coriolis mass flowmeter was carried out. The results from 3D CFD showed similar trend with the experimental results, which proves that the reverse U-shape between the oil volume fraction and the oil holdup is the intrinsic characteristic of the U tube Coriolis mass flowmeter.
     2. Based on the investigation on the geometry of the conductivity sensor used now, a coaxial conductivity sensor with guard electrodes and the corresponding measurement system were designed. Besides, the geometry of the conductivity sensor was optimized. The coaxial conductivity sensor was manufactured as optimized. In order to verify the applicability of the coaxial sensor, a series of oil-water two-phase flow tests was conducted in vertical upward and downward pipes on the multiphase flow test rig at Tianjin University. The measurement results of the coaxial conductivity sensor were used to calculate the oil volume fraction using different models. When the oil volume fraction was lower than 50%, the minimum error between the oil holdup measured and the real oil volume fraction could be obtained by the Maxwell model, which is within 2%. When the oil volume fraction was between 50% and 70%, best performance can be gotten using the mean value between the Maxwell model and Brrugenman model, the error of which is within 6%.
     The relationship between the oil holdup and the oil volume fraction of the oil-water two-phase flow was investigated using the vertical installed coaxial conductivity sensor. A trend happened both in the vertical upward and downward flow: with the increase of the oil volume fraction, the ratio between the real oil volume fraction and the oil holdup measured changed from larger than 1 to smaller than 1. This rule is caused by the oil-water distribution in the vertical pipe. It is an inherent phenomenon when measuring the oil volume fraction and the oil holdup in the vertical pipe.
引文
[1]Hetsroni G (editor-in-chief), Handbook of multiphase systems, Washington: Hemisphere Publication Corporation; New York: Mcgraw-Hill, 1982
    [2]陈学俊,多相流热物理研究的进展,西安交通大学学报,1994,28(5):1~8
    [3]李海青,两相流参数检测及应用,杭州:浙江大学出版社,1991
    [4]吴东月,用于高含水两相流的同轴电容含率测量初探:[硕士学位论文],天津;天津大学,2008
    [5]王振亚,垂直上升油水及油气水多相流流动参数测量方法研究:[博士学位论文],天津;天津大学,2010
    [6]王莉田,王玉田,史锦珊等,原油含水率测量仪的研究,传感技术学报,2000,13(1):44~47
    [7]Guidance notes for petroleum measurement, Department of Trade and Industry (UK), 2003, 7: 8~9
    [8]李庆红,多相流量计量进展,油气田地面工程,2007,26(3):41~43
    [9]杨向东等,多相流量计的原理与开发应用简介,计量标准化,2004.4:26~28
    [10]曹学文,林宗虎,在线多相流量计测量技术研究,中国海上油气工程,2002,14(2):37~39
    [11]刘圣志,苏春梅,石油工业多相计量技术进展,石油规划设计,2006,17(1):1~4
    [12]宗艳波,倾斜及水平油水两相管流流动特性测量:[博士学位论文],天津;天津大学,2009
    [13]Hasson D, Mann U, Nir A, Annular flow of two immiscible liquids, The Canadian Journal of Chemical Engineering, 1970, 48(5): 514~520
    [14]Arirachakaran S, Oglesby K D, Malinowski M S, et al, An analysis of oil/water phenomena in horizontal pipes, SPE Productions Operations Symp, SPE 18836, 1989
    [15]Trallero J L, Sarica C, Brill J P, A study of oil-water flow patterns in horizontal pipes, SPE Production & Facilities, 1997, 12(3):165~172
    [16]Nadler M and Mewes D, Flow induced emulsification in the flow of two immiscible liquids in horizontal pipes, International Journal of Multiphase Flow, 1997, 23(1): 55~68
    [17]Hapanowicz J, Troniewski L and Witczak S, Flow patterns of water-oil mixture flowing in horizontal pipes, International Symposium on Liquid-Liquid Two-Phase Flow and Transport Phenomena, Antalya, Turkey, 3-7 Nov, 1997
    [18]Angeli P and Hewitt G F, Pressure gradient in horizontal liquid-liquid flows,International Journal of Multiphase Flow, 1999, 24(7): 1183~1203
    [19]Shi H, Cai J, Jepson W P, Oil-water two-phase flows in large-diameter pipelines, Journal of Energy Resources Technology, 2001, 123(4): 270~276
    [20]Govier G W, Sullivan G A, Wood R K, The upward vertical flow of oil-water mixtures, The Canadian Journal of Chemical Engineering, 1961,39(2): 67~75
    [21]Hasson D, Orell A, Fink M, A study of vertical annular liquid-liquid flow--PartI, laminar conditions, Multi-phase Flow Systems Symposium, The Institution of Chemical Engineers Symposium Series no 38, Paper no. A5, Glasgow, 1974: 1~16
    [22]Zavareh F, Hill A D, Podio A, Flow regimes in vertical and inclined oil/water flow in pipes, SPE Annual Technical Conference and Exhibition, 2~5 October 1988
    [23]Flores J G, Chen X T, Sarica C et al, Characterization of oil-water flow patterns in vertical and deviated wells, SPE 38810, 1997
    [24]Xu Jing-yu, Li Dong-hui, Guo Jun et al, Investigations of phase inversion and frictional pressure gradients in upward and downward oil–water flow in vertical pipes, International Journal of Multiphase Flow, 2010, 36:930~939
    [25]Zhao D J, Guo L J, Hu X W et al, Experimental study on local characterisicts of oil-water dispersed flow in vertical pipe, International Journal of Multiphase Flow, 2006, 32: 1254~126
    [26]Lucas G P, Panagiotopoulos N, Oil volume fraction and velocity profiles in vertical, bubbly oil-in-water flows, Flow Measurement and Instrumentation, 2009, 20: 127~135
    [27]Oddie G, Shi H, Durlfosky L J et al, Experimental study of two and three phase flows in large diameter inclined pipes, International Journal of Multiphase Flow, 2003, 29: 527~558.
    [28]Lum J Y L, Al-Wahaibi T, Angeli P, Upward and downward inclination oil- water flows, International Journal of Multiphase Flow, 2006, 32:413~435
    [29]Xu X, Study on oil–water two-phase flow in horizontal pipelines, Journal of Petroleum Science and Engineering, 2007, 59: 43~58
    [30]秦国昌,李守明,密度对质量流量计测量原油含水率的影响,仪表技术与传感器,2004,9:46~54
    [31]张贵林,用密度法测原油含水率的分析,油田地面工程,1989,8(3):49~62
    [32]于宗文,密度计测量原油含水率的应用及误差分析,石油工业技术监督,1992,5:26~28
    [33]Kumara W A S, Halvorsen B M, Melaaen M C, Single-beam gamma densitometry measurements of oil–water flow in horizontal and slightly inclined pipes, International Journal of Multiphase Flow, 2010, 36: 467~480
    [34]付晓泰,王振平,不同温度,矿化度条件下地层水的密度,大庆石油学院学报,1998,22(2):6~9
    [35]César Marques Salgado, Cláudio M N A, Pereira et al, Flow regime identificationand volume fraction prediction in multiphase flows by means of gamma-ray attenuation and artificial neural networks, Progress in Nuclear Energy, 2010, 52: 555~562
    [36]Mahmoud Meribout, Nabeel Al-Rawahi, Ahmed Al-Naamany et al, Integration of impedance measurements with acoustic measurements for accurate two phase flow metering in case of high water-cut, Flow Measurement and Instrumentation, 2010, 21: 8~19
    [37]王宝春,利用压差式密度计确定含水率的方法,大庆石油地质与开发,1984, 3(2): 285~291
    [38]罗毓珊,李爱华,陈听宽等,差压法测量两相流相含率的研究,工程热物理学报,2004,25(5):789~792
    [39]冯志友,桂兴春,原油含水测量仪的设计新方法,化工自动化及仪表,2005,32(4):65~66
    [40]邢荣亮,基于差压测量方法的油水两相流流动特性研究:[硕士学位论文],天津;天津大学,2006
    [41]姜庆勇,简易分离式油气水三相流量计的研究:[硕士学位论文],天津;天津大学,2008
    [42]Smith R, Sparks D, Riley D et al, A MEMS-Based Coriolis Mass Flow Sensor for Industrial Applications, IEEE Transaction on industrial electronics, 2009, 56 1066~1071
    [43]Samer G, Fan S C, Modeling of Coriolis mass flow meter of a general plane-shape pipe, Flow Measurement and Instrumentation, 2010, 21:40~47
    [44]Anklin M, Drahm W and Rieder A, Coriolis mass flowmeters: Overview of the current state of the art and latest research, Flow Measurement and Instrumentation, 2006, 17: 317~323
    [45]Tombs M, Henry M, Zhou F B et al, High precision Coriolis mass flow measurement applied to small volume proving, Flow Measurement and Instrumentation, 2006, 17: 371~382
    [46]Skea A F, Hall A W R, Effects of water in oil and oil in water on single-phase flowmeters, Flow Measurement and Instrumentation, 1999, 10: 151~157
    [47]张修刚,苏新军,王栋等,Coriolis流量计在油水两相流中的误差特性研究,工程热物理学报,2003,24(3):448~50
    [48]张修刚,张钦明,王栋,林宗虎,应用Coriolis流量计测量油水两相流质量流量和含水率,工程热物理学报,2004,25(6):983~85
    [49]马龙博,张宏建,周洪亮等,CORIOLIS流量计和SVM的油水两相流质量流量测量的研究,高校化学工程学报,2007,21(2):200~205
    [50]马雷,科氏质量流量计在计量站含水计量中的应用,石油工业技术监督,2004,31~33
    [51]张丽辉,孔凡,王林等,科里奥利质量流量计在扶于采油厂的现场测试,中国仪器仪表,2007,2:44~46
    [52]郭子学,王澍虹,王崴,Coriolis质量流量计的原理及其在海上平台原油计量中的应用,中国造船,2007,48:52~58
    [53]API5.6.Measurement of Liquid Hydrocarbons by Coriolis Meters[S]
    [54]OW-201 with coriolis flow METER for 2 phase separator, Agar corporation
    [55]Mubarak A L, A New Method in Calculating Water Cut and Oil and Water Volumes Using Coriolis Meter, Proc. Ann. SPE Tech. Conf. (San Antonio, Texas, 1997, SPE 38786)
    [56]Abbasy I, Field Testing Coriolis Mass Flowmeter in Central Ghawar, Proc. Ann. SPE Tech. Conf. (New Orleans, Louisiana, 2001, SPE 71478)
    [57]胡金海,刘兴斌,用于井下油水两相流测量的新型流量计,测井技术,1999,23(4):292~294
    [58]Hapanowicz J, Troniewski L, Resistance of liquid-liquid two phase flow, Inzyneria Chemiczna I Procesowa, 1998, 19(3): 531~549.
    [59]胡金海,刘兴斌,一种同时测量流量和含水率的电导式传感器,测井技术,2002,26(2):154~157
    [60]董峰,电阻层析成像技术在两相管流测量中的应用:[博士学位论文],天津:天津大学,2002
    [61]Mishra R, Lucas G P, Kieckhoefer H, A model for obtaining the velocity vectors of spherical droplets in multiphase flows from measurements using an orthogonal four-sensor probe, Measurement Science and Technology, 2002, 13(9): 1488~1498
    [62]Panagitopoulos N, Lucas G P, Simulation of a local four-sensor conductance probe using a rotating dual-sensor probe, Measurement Science and Technology, 2007, 18(8): 2563~2569
    [63]Dong F, Liu X P, Deng X et al, Identification of two-phase flow regimes in horizontal, inclined and vertical pipes, Measurement Science and Technology, 2001, 12(8): 1069~1075
    [64]Pietruske H, Prasser H M, Wire-mesh sensors for high-resolving two-phase flow studies at high pressure and temperatures, Flow Measurement and Instrumentation, 2007, 18(2): 87~94
    [65]游佩林,轻质油安全静止电导率的研究,石油学报,1992,8(4):106~111
    [66]伏小石,张平,张化一等,地下水pH值、电导率和浊度实时检测仪器,仪表技术与传感器,2004,11:14~19
    [67]Teyssedou A, Tapucu A, Impedance probe to measure local void fraction profiles, Review of Scientific Instruments, 1988, 59: 631~63
    [68]Liu T J, Bubble size and entrance length effects on void development in a vertical channel, International Journal of Multiphase Flow, 1992, 19(1): 99~113
    [69]Andreussi P, An impedance method for the measurement of liquid holdup in two-phase flow, International Journal of Multiphase Flow, 1988, 14: 777~78
    [70]Zhao Dongjian, Guo Liejin, Hu Xiaowei, Experimental study on local characteristicsof oil-water dispersed flow in a vertical pipe, International Journal of Multiphase Flow, 2006, 32: 1254~268
    [71]Lucas G P, Panagiotopoulos N, Oil volume fraction and velocity profiles in vertical, bubbly oil-in-water flows, Flow Measurement and Instrumentation, 2009, 20: 127~135
    [72]Lovick J, Angeli P, Experimental studies on the dual continuous flow pattern in oil–water flows, International Journal of Multiphase Flow, 2004, 30: 139~157
    [73]Tollefsen J, Hammer E A, Capaciatance sensor design for reducing errors in phase concentration measurements, Flow Measurement and Instrumentation, 1998, 9: 25~32
    [74]Hammer E A, Tollefsen J, Olsvik K, Capacitance transducers for non-intrusive measurement of water in crude oil, Flow Measurement and Instrumentation, 1989, 1(1): 51~58
    [75]刘兴斌,熊江红,吴世旗,电容含水率计测油水两相流含水率,多相流检测技术进展,石油工业出版社,1992,143~147
    [76]Garcia-Golding F, Giallorenzo M, Moreno N et al, Sensor for determining the water content of oil-in-water emulsion by specific admittance measurement, Sensors and Actuators A: Physical, 1995, 47(1), 337~341
    [77]Artur J, Jaworskia, Tomasz Dyakowskib, Measurements of oil–water separation dynamics in primary separation systems using distributed capacitance sensors, Flow Measurement and Instrumentation, 2005, 16: 113~127
    [78]Abdullah A, Kendoush Ghanim K, Abdul-Sada Banipal N et al, A nonintrusive auto-transformer technique for measuring phase volume ratio in oil-water two-phase stratified flow, Journal of Petroleum Science and Engineering, 2006, 54:25~33
    [79]Silva M J D, Schleicher E and Hampel U, Capacitance wire-mesh sensor for fast measurement of phase fraction distributions, Measurement Science and Technology, 2007, 18(7): 2245~2251
    [80]Geraets J J M and Borst J C, A capacitance sensor for two-phase void fraction measurement and flow pattern identification, Int. J. Multiphs. Flow, 1988, 14(3): 305~320
    [81]王一鸣,张宝芬,两相流流量测量中的梯度相关法研究,计量学报,1996, 17(2):149~153
    [82]金锋,路增喜,张宏喜等,一种新型极板结构的电容式相浓度传感器,东北大学学报(自然科学版),1998,19(6):610~613
    [83]Chiang C T and Huang Y C, A semicylindrical capacitive sensor with interface circuit used for flow rate measurement, IEEE Sensors Journal, 2006, 6(6):1564~1570
    [84]Ahmed W H, Capacitance sensors for void-fraction measurements and flow-pattern identification in air-oil two-phase flow, IEEE Sensors Journal, 2006, 6(5): 1153~1163
    [85]庄海军,彭玉辉,刘兴斌等,集流型流体电容含水率计低流速测量原理,测井技术,1995,19(6):411~415
    [86]Huang S F, Zhang X G, Wang D, et al, Water holdup measurement in kerosene-water two-phase flows, Measurement Science and Technology, 2007, 18(12): 3784~3794
    [87]Marco Demori, Vittorio Ferrari, Domenico Strazza, A sensor system for oil fraction estimation in a two phase oil-water flow, Procedia Chemistry, 2009, 1247~1250
    [88]Marco Demoria, Vittorio Ferrari, Domenico Strazza, Pietro Poesio, A capacitive sensor system for the analysis of two-phase flows of oil and conductive water, Sensors and Actuators A, 2010, 163: 172~179
    [89]Oystein Lund Bo, Ebbe Nyfors, Application of microwave spectroscopy for the detection of water fraction and water salinity in water/oil/gas pipe flow, Journal of Non-Crystalline Solids, 2002, 305(3): 345~353
    [90]Mohamed A M O, Elgamal M, Said R A, Determination of water content and salinity from a producing oil well using CPW probe and eigende composition, Sensors and Actuators A: Physical, 2006, 125(2): 133~142
    [91]Meng G,Jaworski A J, Dyakowski T J M, Design and testing of a thick-film dual-modality sensor for composition measurements in heterogeneous mixtures, Measurement Science and Technology, 2005, 16: 942~954
    [92]张春晓,热式油水两相流含油率测量方法研究:[博士学位论文],天津;天津大学,2010
    [93]Zhang C X, Zhang T, Yuan C F, Oil holdup prediction of oil–water two phase flow using thermal method based on multiwavelet transform and least squares support vector machine, Expert System With Applications, 2011, 38: 1602~1610
    [94]张春晓,张涛,基于最小二乘支持向量机和遗传算法的热式油水两相流含油率建模,化工学报,2009,60(7):1651~1655
    [95]Tjugum S A, Hjertaker B T and Johansen G A, Multiphase flow regime identification by multibeam gamma-ray densitometry, Measurement Science and Technology, 2002, 13(8): 1319~1326
    [96]王化祥,郝魁红,徐丽荣等,多相流分相含率检测,仪器仪表学报,2004,25(3):336~339
    [97]白秋果,张学斌,双能γ射线透射法测原油含水含气的分析与计量系统,核电子学与探测技术,2000,20(3):187~190
    [98]李建华,射线型原油含气、含水率自动监测仪及应用,世界仪表与自动化,2005,9(1):66~68
    [99]Luggar R D, Key M J, Morton E J et al, Energy Dispersive X-Ray Scatter for Measurement of Oil/Water Ratios, Nuclear Instruments, 1999, 422(1-3): 938~941
    [100]Fitzgerald J B, Stephenson K E, Continuous Gamma-Ray Densitometry in a Borehole Flow Meter, Nuclear Science Symposium Conference, Portland, Oregon, 2003, 2: 732~736
    [101]Froystein T, Kvandal H, Aakre H, Dual Energy Gamma Tomography System for High Pressure Multiphase Flow, Flow Measurement and Instrumentation, 2005, 16(2-3): 99~112
    [102]Hjertaker B T, Tjugum S A, Hammer E A et al, Multimodality Tomography for Multiphase Hydrocarbon Flow Measurements, IEEE Sensors Journal, 2005, 5(2): 153~160
    [103]Hu B, Stewart C, Hale C et al, Development of an X-Ray Computed Tomography (Ct) System with Sparse Sources: Application to Three-Phase Pipe Flow Visualization, Experiments in Fluids, 2005, 39(4): 667~678
    [104]赵雪英,李鹏,金喜平,原油含水率的测试方法,辽宁大学学报(自然科学版),2003,30(2):145~146
    [105]Tsouris C, Tavlarides L L, Volume fraction measurements of water in oil by an ultrasonic technique, Ind. Eng. Chem. Res., 1993, 32: 998~1002
    [106]Tsouris C, Norato M A, Tavlarides L L, Pulse-echo ultrasonic probe for local volume fraction measurements in liquid–liquid dispersions, Ind.Eng. Chem. Res, 1995, 34: 3154~3158
    [107]徐立军,徐苓安,超声层析成像监测气/液两相泡状流体分布,天津大学学报,1995,28(2):129~135
    [108]段玉波,刘继承,王琼,RBF神经网络在油水两相流含率超声测量中的应用,信息与控制,2005,34(4):476~48
    [109]Guangtian M, Artur J, Jaworski W, Composition measurements of crude oil and process water emulsions using thick-film ultrasonic transducers, Chemical Engineering and Processing, 2006, 45: 383~39
    [110]马飞,刘强,科氏质量流量计在油田计量中的应用,石油工业技术监督,2004,7:22~23
    [111]谷汉军,哥氏力质量流量计在油田计量中的应用,油田地面工程,1994,13(6):46~50
    [112]李建华,薛建兴,刘梦琴等,科氏质量流量计在转油站的应用,自动化博览,2008,25(7):61~63
    [113]胡燕祝,王仰东,林振锋,科里奥利质量流量计在线连续测量流体密度的理论分析,中国机械工程,2002,13(6),467~470
    [114]Jing-yu Xu, Ying-xiang Wu, Fei-fei Feng et al, Experimental investigation onthe slip between oil and water in horizontal pipes, Experimental Thermal and Fluid Science, 2008, 33: 178~183
    [115]FARRAR B, BRUUN H H, A computer based hot-film technique used for flow measurements in a vertical kerosene-water pipe flow, International journal of Multiphase Flow 1996, 22(4): 733~751
    [116]Coney M W E, The theory and application of conductance probes for the measurement of liquid film thickness in two-phase flow, Journal of Physics E: Scientific Instruments, 1973; 6: 903~910
    [117]Dykesteen E, Hallanger A, Hammer E et al, Non-intrusive three-component ratio measurement using an impedance sensor, Journal of Physics E: Scientific Instruments, 1985, 18: 540~544
    [118]Costigan G, Whalley P B, Slug flow regime identification from dynamic void fraction measurements in vertical air-water flows, International journal of Multiphase Flows, 1997, 23: 263~282
    [119]Song C H, No H C, Chung M K, Investigation of bubble flow developments and its transition based on the instability of void fraction waves, International journal of Multiphase Flow, 1995, 21: 381~404
    [120]Song C H, Chung M K, No H C, Measurements of void fraction by an improved multi-channel conductance void meter, Nuclear Engineering and Design, 1998, 184: 269~285
    [121]Jin N D, Zhao X, Wang J et al, Design and geometry optimization of a conductive probe with a vertical multiple electrode array for measuring volume fraction and axial velocity of two-phase flow, Measurement Science and Technology 2008, 19: 045403
    [122]马艺馨,电阻层析成像技术及其在气/液两相泡状流检测中的应用:[博士学位论文],天津;天津大学,1999
    [123]邓湘,基于层析成像技术的智能化两相流测量系统研究:[博士学位论文],天津;天津大学,2001
    [124]Manera A, Ozar B, Paranjape S et al, Comparison between wire-mesh sensors and conductive needle-probes for measurements of two-phase flow parameters, Nuclear Engineering and Design, 2009, 239: 1718~1724
    [125]Prasser, Evolution of interfacial area concentration in a vertical air–water flow measured by wire-mesh sensors, Nuclear Engineering and Design, 2007, 237: 1608~1617
    [126]徐苓安,相关流量测量技术,天津大学出版社,1988
    [127]Schlumberger, Production Looging Interpretation, 1973

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700