新型迈克尔逊型数字剪切散斑干涉术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
数字剪切散斑干涉术可以直接测量位移空间梯度,且具有分辨率高、全场测量、非接触式和抗干扰能力强等优点,在应变测量、振动分析、无损检测等领域均得到了广泛的应用,已成为检测领域的一个研究重点,并出现了很多类型的数字剪切散斑干涉方法与装置。其中,迈克尔逊型数字剪切散斑干涉术具有剪切方向和剪切量容易调节、相移技术容易实现等显著优点,成为应用最广泛的一种类型。但是传统的迈克尔逊型数字剪切散斑干涉存在以下三个方面的问题:一是由于结构的限制导致其视场角较小,不超过28。;二是现有的原位相移标定技术主要采用条纹分析和数学统计等方法,其数学模型的准确性对标定精度影响较大,造成标定数据不可靠;三是现有的迈克尔逊型频闪数字剪切散斑干涉仪应用范围有限,只适用于小目标的测试,无法满足大目标振动测量的要求。
     针对迈克尔逊型数字剪切散斑干涉存在以上三个方面的问题,本论文在全面分析国内外相关研究的基础上,主要开展扩大视场角、原位相移标定技术等方面的研究,研制适用于大面积振动测量的迈克尔逊型频闪数字剪切散斑干涉检测装置,以满足工程应用领域大目标测试和高精度标定的需要。
     概括起来,本论文的主要工作和创新点如下:
     1.提出了一种用4f光学系统扩展迈克尔逊型数字剪切散斑干涉系统视场角的新方法。理论分析与实验研究均表明:基于4f光学系统的新型迈克尔逊型数字剪切散斑干涉系统的视场角不受结构的限制,而只取决于成像镜头的焦距和数字相机中传感器的尺寸,突破了传统迈克尔逊型数字剪切散斑干涉系统视场角最大为28。的限制,实现了大视场角测量。
     2.提出了一种基于光学方法的原位相移标定技术,在迈克尔逊型数字剪切散斑干涉术中实现了在线自动相移标定,避免了模型不准确性带来的标定误差,提高了相移标定的可靠性,且可以实现任意相移角度的标定。
     3.研制出一种基于改进型迈克尔逊结构的频闪数字剪切散斑干涉仪样机,可在1.5m工作距离下对1.2m×0.9m面积物体进行振动测量,实现了大面积的振动测量。论文给出了频闪数字剪切散斑干涉仪具体设计方法,包括光路设计、电子控制系统设计和软件编程等;进行了相应的实验研究,验证了研制干涉测量装置的可行性和有效性。实验结果表明:所研制的剪切散斑干涉仪样机能实现较短工作距离下大面积的振动测量、位移空间梯度测量和无损检测等应用。
ABSTRACT:Digital shearography is a well-established tool for strain measurement, vibration analysis, and non-destructive testing, because it can measure spatial derivatives of displacement directly, and has advantages of high resolution, full-field measurement, non-contact testing, and high interference immunity. It has been a popular research topic and many kinds of shearing devices have been employed in it. Among those shearing devices, the most popular one is the modified Michelson interferometer, with which the digital shearography is called the Michelson-type digital shearography. Michelson-type digital shearography enjoys several advantages, such as being easy to adjust the shear direction and amount, and being easy to carry out the temporal phase shift technique. However, it should be improved in some areas. Firstly, the view angle is limited by the structure and cannot exceed28°. Secondly, the present in situ phase shift calibration techniques are all based on pattern analysis and statistical methods, which will lead to unreliable calibrations in some case. Finally, most digital stroboscopic shearographic devices are not suitable for measurement of large object.
     This thesis focuses on the studies of the Michelson-type digital shearography. A method to enlarge the view angle and an in situ phase shift calibration technique are proposed. A stroboscopic Michelson-type digital shearographic device for vibration measurement of large object is developed.
     The main innovations of this thesis consist of:
     1. A method that embeds a4f optical system into the shearographic system optical arrangement to enlarge the view angle is presented. The theoretical analysis and experimental research both reveal that the new Michelson-type digital shearography with4f optical system can break through the28°view angle limitation. The view angle will no longer be limited by the structure, but only depend on some parameters of the digital camera. Thus wide view angle in Michelson-type digital shearography is easy to achieve.
     2. An in situ phase shift calibration technique based on optical method is introduced. It is an on-line method that can calibrate the phase shift automatically. It uses optical method rather than statistical method, so the calibration results are more reliable and arbitrary phase shift angle can be calibrated.
     3. A stroboscopic digital shearographic prototype based on modified Michelson interferometer is developed. It can achive the vibration measurement on a large erea The measuring field can reach an area of1.2m×0.9m at1.5m work distance. The design details of the prototype, including optical design, electronical design, and programming, are given in the thesis. Some experiments are also conducted to show the performances of the prototype. The experimental results prove that it is suitable for the applications of vibration measurement, displacement derivatives measurement, and non-destructive testing.
引文
[1]P. Hariharan. Speckle patterns:a historical retrospect. Optica Acta.1972.19(9).791-793;
    [2]A. E. Ennos. A look back at the early developments of speckle metrology. Optics and Lasers in Engineering.1997.26(2-3).87-92;
    [3]M. Sjodahl and L. R. Benckert. Electronic speckle photography:analysis of an algorithm giving the displacement with subpixel accuracy. Applied Optics.1993.32(13).2278-2284;
    [4]E. Jakeman. Speckle statistics with a small number of scatterers. Optical Engineering.1984.23. 453-461;
    [5]D. Leger, E. Mathieu, and J. C. Perrin. Optical surface roughness determination using speckle correlation technique. Applied Optics.1975.14(4).872-877;
    [6]J. A. Leendertz. Interferometric displacement measurement on scattering surfaces utilizing speckle effect. Journal of Physics E:Scientific Instruments.1970.3(3).214-218;
    [7]Y. Y. Hung. Digital shearography versus TV-holography for non-destructive evaluation. Optics and Lasers in Engineering.1997.26(4-5).421-436;
    [8]Yau Y. Hung and Charles E. Taylor. Speckle-shearing interferometric camera:a tool for measurement of derivatives of surface-displacement. Proceedings of the Society of Photo-Optical Instrumentation Engineers. San Diego, California.1973.169-175;
    [9]J. A. Leendertz and J. N. Butters. An image-shearing speckle-pattern interferometer for measuring bending moments. Journal of Physics E:Scientific Instruments.1973.6(11).1107-1110;
    [10]Pramod K. Rastogi. Speckle and speckle shearing interferometry-II:at the threshold of a new era. Optics and Lasers in Engineering.1997.26(4-5).279-282;
    [11]Y. Y. Hung and R. M. Grant. Shearography:a new optical method for nondestructive evaluation of tires. Rubber Chemistry and Technology.1981.54(5).1042-1050;
    [12]Wolfgang Steinchen and Lianxiang Yang. Digital shearography:theory and application of digital speckle pattern shearing interferometry. Washington DC, USA. SPIE Express.2003;
    [13]Y. Y. Hung, W. D. Luo, L. Lin, and H. M. Shang. Evaluating the soundness of bonding using shearography. Composite Structures.2000.50(4).353-362;
    [14]J. N. Butters and J. A. Leendertz. A double exposure technique for speckle pattern interferometry. Journal of Physics E:Scientific Instruments.1971.4(4).277-279;
    [15]Y. Y. Hung and J. D. Hovanesian. Fast detection of residual stresses in an industrial environment by thermoplastic-based shearography. Proceedings of the 1990 SEM Spring Conference on Experimental Mechanics.1990. Albuquerque, New Mexico.1990.769-775;
    [16]Y. Y. Hung and H. P. Ho. Shearography:An optical measurement technique and applications. Materials Science and Engineering:R:Reports.2005.49(3).61-87;
    [17]洪友仁,何浩培,何小元.剪切散斑:一种光学测量技术及其应用.实验力学.2006.21(6).667-688:
    [18]W. Steinchen, L. X. Yang, and M. Schuth. TV-shearography for measuring 3D-strains. Strain. 1996.32(2).49-57;
    [19]Angelica Andersson, Nandigana Krishna Mohan, Mikael Sjodahl, and Nils-Erik Molin. TV shearography:quantitative measurement of shear-magnitude fields by use of digital speckle photography. Applied Optics.2000.39(16).2565-2568;
    [20]Antonio Fernandez, Angel F. Doval, Guillermo H. Kaufmann, Abundio Davila, Jesus Blanco-Garcia, Carlos Perez-L6pez, and Jose L. Fernandez. Measurement of transient out-of-plane displacement gradients in plates using double-pulsed subtraction TV shearography. Optical Engineering.2000.39(8).2106-2113;
    [21]U. Paul Kumar, M. P. Kothiyal, and N. Krishna Mohan. Microscopic TV shearography for characterization of Microsystems. Optics Letters.2009.34(10).1612-1614;
    [22]N. Krishna Mohan, H. O. Saldner, and N.-E. Molin. Electronic shearography applied to static and vibrating objects. Optics Communications.1994.108(4-6).197-202;
    [23]Pramod K. Rastogi. An electronic pattern speckle shearing Interferometer for the measurement of surface slope variations of three-dimensional objects. Optics and Lasers in Engineering.1997. 26(2-3).93-100;
    [24]Abundio Davila, Guillermo H. Kaufmann, and Carlos Perez-L6pez. Transient deformation analysis by a carrier method of pulsed electronic speckle-shearing pattern interferometry. Applied Optics.1998.37(19).4116-4122;
    [25]秦玉文,王金起,张福根.电子错位散斑研究.力学学报.1990.22(6).725-731;
    [26]孙平,李爱华,陶春先,张丽,王晓凤,韩青.大剪切电子散斑干涉的载频调制与位移场测量.光学学报.2006.26(3).447-451;
    [27]Yuanhao Huang, Farrokh Janabi-Sharifi, Yusheng Liu, and Y. Y. Hung. Dynamic phase measurement in shearography by clustering method and Fourier filtering. Optics Express.2011. 19(2).606-615;
    [28]Roger M. Groves, Giancarlo Pedrini, and Wolfgang Osten. Real-time extended dynamic range imaging in shearography. Applied Optics.2008.47(30).5550-5556;
    [29]Hedser van Brug. Temporal phase unwrapping and its application in shearography systems. Applied Optics.1998.37(28).6701-6706;
    [30]C. R. Coggrave and J. M. Huntley. Real-time visualisation of deformation fields using speckle interferometry and temporal phase unwrapping. Optics and Lasers in Engineering.2004.41(4). 601-620;
    [31]Ad A. M. Maas and Peter A. A. M. Somers. Two-dimensional deconvolution applied to phase-stepped shearography. Optics and Lasers in Engineering.1997.26(4-5).351-360;
    [32]Frank Chen. Digital shearography:state of the art and some applications. Journal of Electronic Imaging.2001.10(1).240-251;
    [33]D. Francis, R. P. Tatam, and R. M. Groves. Shearography technology and applications:a review. Measurement Science and Technology.2010.21(10).102001.1-102001.29;
    [34]Vanessa Rosso, Yvon Renotte, Serge Habraken, Yves Lion, Fabrice Michel, Vincent Moreau, and Bernard Tilkens. Almost-common path interferometer using the separation of polarization states for digital phase-shifting shearography. Optical Engineering.2007.46(10).105601.1-105601.8;
    [35]Y. H. Huang, S. P. Ng, L. Liu, C. L. Li, Y. S. Chen, and Y. Y. Hung. NDT&E using shearography with impulsive thermal stressing and clustering phase extraction. Optics and Lasers in Engineering.2009.47(7-8).774-781;
    [36]Sijin Wu, Xiaoyuan He, and Lianxiang Yang. Enlarging the angle of view in Michelson-interferometer-based shearography by embedding a 4f system. Applied Optics.2011. 50(21).3789-3794;
    [37]V. M. Murukeshan, Ong Lin Seng, and A. Asundi. Polarization phase shifting shearography for optical metrological applications. Optics and Laser Technology.1998.30(8).527-531;
    [38]W. Steinchen, L. Yang, G. Kupfer, and P. Mackel. Non-destructive testing of aerospace composite materials using digital shearography. Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering.1998.212(1).21-30;
    [39]W. Steinchen, G. Kupfer, P. Mackel, and F. Vossing. Determination of strain distribution by means of digital shearography. Measurement.1999.26(2).79-90;
    [40]W. Steinchen, L. X. Yang, M. Schuth, and G Kupfer. Application of shearography to quality assurance. Journal of Materials Processing Technology.1995.52(1).141-150;
    [41]Kyung-Suk Kim, Ki-Soo Kang, Young-June Kang, and Seong-Kyun Cheong. Analysis of an internal crack of pressure pipeline using ESPI and shearography. Optics and Laser Technology.2003. 35(8).639-643;
    [42]Cuiru Sun, Jinlong Chen, and Hua Lu. Improved phase-shifted digital speckle shearography for time-dependent deformation measurement. Optical Engineering.2008.47(6).065601.1-065601.8;
    [43]Y. Y. Hung, Y. H. Huang, L. Liu, S. P. Ng, and Y. S. Chen. Computerized tomography technique for reconstruction of obstructed phase data in shearography. Applied Optics.2008.47(17). 3158-3167;
    [44]R. A. J. Soden and R. J. Dewhurst. An integrated liquid crystal phase modulator for speckle shearing interferometry. Optics and Lasers in Engineering.1999.31(2).123-134;
    [45]D. Gabor. Laser speckle and its elimination. IBM Journal of Research and Development.1970. 14(5).509-514;
    [46]J. W. Goodman. Some fundamental properties of speckle. Journal of the Optical Society of America.1976.66(11).1145-1150;
    [47]V. M. Murukeshan, Ng Chee Keong, Krishnakumar V, Ong Lin Seng, and A. Asundi. Double shearography for engineering metrology:optical and digital approach. Optics and Laser Technology. 2001.33(5).325-328;
    [48]C. M. Vest. Holographic interferometry. New York. John Wiley and Sons.1979;
    [49]J. R. Tyrer and J. N. Petzing. In-plane electronic speckle pattern shearing interferometry. Optics and Lasers in Engineering.1997.26(4-5).395-406;
    [50]William W. Macy, Jr. Two dimensional fringe-pattern analysis. Applied Optics.1983.22(23). 3898-3901;
    [51]Liangxiang Yang and Yau Y. Hung. Digital shearography for nondestructive evaluation and application in automotive and aerospace industries. Proceedings of 16th World Conference on Non-destructive Testing. Montreal.2004;
    [52]Yau Y. Hung. A speckle-shearing interferometer:A tool for measuring derivatives of surface displacements. Optics Communications.1974.11(2).132-135;
    [53]S.-J. Huang and Y.-T. Lin. Out-of-plane strain measurement in sandwich plates with single fully potted insert by using digital shearography. Strain.2008.44(3).253-258;
    [54]Hubert A. Aebischer and Stephan Waldner. Strain distribution made visible with image-shearing speckle pattern interferometry. Optics and Lasers in Engineering.1997.26(4-5).407-420;
    [55]Cho Jui Tay and Yu Fu. Determination of curvature and twist by digital shearography and wavelet transforms. Optics Letters.2005.30(21).2873-2875;
    [56]F. S. Chau and J. Zhou. Direct measurement of curvature and twist of plates using digital shearography. Optics and Lasers in Engineering.2003.39(4).431-440;
    [57]Pramod K. Rastogi. Measurement of curvature and twist of a deformed object by electronic speckle-shearing pattern interferometry. Optics Letters.1996.21(12).905-907;
    [58]Roger M. Groves, Stephen W. James, and Ralph P. Tatam. Shape and slope measurement by source displacement in shearography. Optics and Lasers in Engineering.2004.41(4).621-634;
    [59]Lianxiang Yang, Wolfgang Steinchen, Gerhard Kupfer, Peter Mackel, and Frank Vossing. Vibration analysis by means of digital shearography. Optics and Lasers in Engineering.1998.30(2). 199-212;
    [60]G. Pedrini, Y.-L. Zou, and H. J. Tiziani. Quantitative evaluation of digital shearing interferogram using the spatial carrier method. Pure and Applied Optics:Journal of the European Optical Society Part A.1996.5(3).313;
    [61]Fernando Santos, Mario Vaz, and Jaime Monteiro. A new set-up for pulsed digital shearography applied to defect detection in composite structures. Optics and Lasers in Engineering.2004.42(2). 131-140;
    [62]Basanta Bhaduri, N. Krishna Mohan, and M. P. Kothiyal. Use of spatial phase shifting technique in digital speckle pattern interferometry (DSPI) and digital shearography (DS). Optics Express.2006.14(24).11598-11607;
    [63]Basanta Bhaduri, Nandigana Krishna Mohan, and Mahendra P. Kothiyal. (1, N) spatial phase-shifting technique in digital speckle pattern interferometry and digital shearography for nondestructive evaluation. Optical Engineering.2007.46(5).051009.1-051009.7;
    [64]Russell M. Kurtz, Michael A. Piliavin, Ranjit D. Pradhan, Tin M. Aye, Gajendra D. Savant, Tomasz P. Jannson, and Steffen Hergert. Reflection shearography for non-destructive evaluation. Proceedings of SPIE 5422.2004.532-540;
    [65]Emilia Mihaylova, Maurice Whelan, and Vincent Toal. Simple phase-shifting lateral shearing interferometer. Optics Letters.2004.29(11).1264-1266;
    [66]Emilia Mihaylova and Vincent Toal. Simple versatile shearing interferometer suitable for measurements on a microscopic scale. Optics and Lasers in Engineering.2009.47(2).271-273;
    [67]Y. Y. Hung. Shearography for non-destructive evaluation of composite structures. Optics and Lasers in Engineering.1996.24(2-3).161-182;
    [68]Y. Y. Hung. Applications of digital shearography for testing of composite structures. Composites Part B:Engineering.1999.30(7).765-773;
    [69]Mette Owner-Petersen. Digital speckle pattern shearing interferometry:limitations and prospects. Applied Optics.1991.30(19).2730-2738;
    [70]Y. Y. Hung and C. E. Taylor. Measurement of slopes of structural deflections by speckle-shearing interferometry. Experimental Mechanics.1974.14(7).281-285;
    [71]Y. Y. Hung and C. Y. Liang. Image-shearing camera for direct measurement of surface strains. Applied Optics.1979.18(7).1046-1051;
    [72]H. Kadono, S. Toyooka, and Y. Iwasaki. Speckle-shearing interferometry using a liquid-crystal cell as a phase modulator. Journal of the Optical Society of America A.1991.8(12).2001-2008;
    [73]C. J. Tay, S. L. Toh, H. M. Shang, and Q. Y. Lin. Multiple-image shearography:a direct method to determine curvatures. Applied Optics.1995.34(13).2202-2206;
    [74]C. J. Tay, H. M. Shang, and D. Choong. Cross influence of coordinate and slope related fringes during shearographic profiling. Optics and Lasers in Engineering.1997.26(2-3).259-278;
    [75]Y. M. He, C. J. Tay, and H. M. Shang. Digital phase-shifting shearography for slope measurement. Optical Engineering.1999.38(9).1586-1590;
    [76]Y. Y. Hung and A. J. Durelli. Simultaneous measurement of three displacement derivatives using a multiple image-shearing interferometric camera. The Journal of Strain Analysis for Engineering Design.1979.14(3).81-88;
    [77]R. K. Mohanty, C. Joenathan, and Rajpal S. Sirohi. Speckle and speckle-shearing interferometers combined for the stimultaneous determination of out-of-plane displacement and slope. Applied Optics.1985.24(18).3106-3109;
    [78]R. S. Sirohi and N. Krishna Mohan. An in-plane insensitive multiaperture speckle shear interferometer for slope measurement. Optics & Laser Technology.1997.29(7).415-417;
    [79]Kaifu Wang, Anh Kiet Tieu, and Enbang Li. Influence of displacement and its first- and second-order derivative components on curvature fringe formations in speckle shearography. Applied Optics.2002.41(22).4557-4561;
    [80]Bernhard Lau, Thorsten Kronthaler, and Ralf Schilling. A microprism array as shearing device for speckle shearing interferometry. Optics and Lasers in Engineering.2001.36(4).389-396;
    [81]Suezou Nakadate, Toyohiko Yatagai, and Hiroyoshi Saito. Digital speckle-pattern shearing interferometry. Applied Optics.1980.19(24).4241-4246;
    [82]R. Krishna Murthy, R. S. Sirohi, and M. P. Kothiyal. Speckle shearing interferometry:a new method. Applied Optics.1982.21(16).2865-2867;
    [83]C. Joenathan and R. Torroba. Simple electronic speckle-shearing-pattern interferometer. Optics Letters.1990.15(20).1159-1161;
    [84]Y. Y. Hung, R. E. Rowlands, and I. M. Daniel. Speckle-shearing interferometric technique:a full-field strain gauge. Applied Optics.1975.14(3).618-622;
    [85]R. K. Mohanty, C. Joenathan, and R. S. Sirohi. Speckle-shear interferometry with double dove prisms. Optics Communications.1983.47(1).27-30;
    [86]R. K. Mohanty, C. Joenathan, and R. S. Sirohi. High sensitivity tilt measurement by speckle shear interferometry. Applied Optics.1986.25(10).1661-1664;
    [87]Yau Y. Hung. Apparatus and method for electronic analysis of test object. United States Patent. 4887899.1989;
    [88]Zhanwei Liu, Jianxin Gao, Huimin Xie, and Philip Wallace. NDT capability of digital shearography for different materials. Optics and Laser in Engineering.2011.49(12).1462-1469;
    [89]H. M. Shang, Y. Y. Hung, W. D. Luo, and Frank Chen. Surface profiling using shearography. Optical Engineering.2000.39(1).23-31;
    [90]J. D. R. Valera, J. D. C. Jones, D. P. Towers, and C. H. Buckberry. Strain and vibration analysis by fibre based speckle shearing interferometry. Optics and Lasers in Engineering.1997.26(4-5). 361-376;
    [91]J. D. Valera and J. D. C. Jones. Phase stepping in fiber-based speckle shearing interferometry. Optics Letters.1994.19(15).1161-1163;
    [92]Soo-Gil Kim. Polarization phase-shifting technique in shearographic system with a Wollaston prism. Journal of the Optical Society of Korea.2004.8(3).122-126;
    [93]Ping Sun, Ruijin Liu, Qing Han, and Xiaofeng Wang. Simultaneous quantitative evaluation of in-plane and out-of-plane deformation by use of a carrier method of large image-shearing shearography. Chinese Optics Letters.2006.4(12).709-711;
    [94]Suezou Nakadate. Phase shifting speckle shearing polarization interferometer using a birefringent wedge. Optics and Lasers in Engineering.1997.26(4-5).331-350;
    [95]S. Debrus. Speckle shearing interferometer using a Savart plate. Optics Communications.1977. 20(2).257-261;
    [96]Yoshihisa Iwahashi, Koichi Iwata, and Ryo Nagata. Single-aperture speckle shearing interferometry with a single grating. Applied Optics.1984.23(2).247-249;
    [97]C. Joenathan and Rajpal S. Sirohi. Holographic gratings in speckle shearing interferometry. Applied Optics.1985.24(17).2750-2751;
    [98]L. Burkle and Charles Joenathan. Electronic speckle pattern shearing interferometer using a holographic grating. Proceedings of SPIE 2622. Chicago, IL, USA.1995.126(4-6).509-513;
    [99]Hector Rabal, Rodrigo Henao, and Roberto Torroba. Digital speckle pattern shearing interferometry using diffraction gratings. Optics Communications.1996.126(4-6).191-196;
    [100]Emilia Mihaylova, Izabela Naydenova, Suzanne Martin, and Vincent Toal. Electronic speckle pattern shearing interferometer with a photopolymer holographic grating. Applied Optics.2004. 23(12).2439-2442;
    [101]Emilia Mihaylova, Izabela Naydenova, Barry Duignan, Suzanne Martin, and Vincent Toal. Photopolymer diffractive optical elements in electronic speckle pattern shearing interferometry. Optics and Lasers in Engineering.2006.44(9).965-974;
    [102]Shuai Zhao and Po Sheun Chung. Digital speckle shearing interferometer using a liquid-crystal spatial light modulator. Optical Engineering.2006.45(10).105606.1-105606.5;
    [103]P. Hariharan. Speckle-shearing interferometry:a simple optical system. Applied Optics.1975. 14(11).2563-2563;
    [104]Charles Joenathan and L. Burkle. Electronic speckle pattern shearing interferometer using holographic gratings. Optical Engineering.1997.36(9).2473-2477;
    [105]Abundio Davila, Jonathan M. Huntley, Guillermo H. Kaufmann, and David Kerr. High-speed dynamic speckle interferometry:phase errors due to intensity, velocity, and speckle decorrelation. Applied Optics.2005.44(19).3954-3962;
    [106]Fernando Labbe, Raul R. Cordero, Amalia Martinez, and Ramon Rodriguez-Vera. Measuring displacement derivatives by electronic speckle pattern shearing interferometry (ESPSI). Measurement Science and Technology.2005.16(8).1677-1683;
    [107]W. S. Wan Abdullah, J. N. Petzing and J. R. Tyrer. Wavefront divergence:a source of error in quantified speckle shearing data. Journal of Modern Optics.2001.48(5).757-772;
    [108]David I. Farrant and Jon N. Petzing. Sensitivity errors in interferometric deformation metrology. Applied Optics.2003.42(28).5634-5641;
    [109]Katherine Creath. Phase-shifting speckle interferometry. Applied Optics.1985.24(18). 3053-3058;
    [110]J.-R. Huang, H. D. Ford, and R. P. Tatam. Phase-stepped speckle shearing interferometer by source wavelength modulation. Optics Letters.1996.21(18).1421-1423;
    [111]Sijin Wu, Nan Xu, Qibo Feng, and Lianxiang Yang. Precision measurement of deformation using a self-calibrated digital speckle pattern interferometry (DSPI). Proceedings of SAE 2010 World Congress & Exhibition. Detroit, USA.2010.2010-01-0958;
    [112]P. Hariharan, B. F. Oreb, and T. Eiju. Digital phase-shifting interferometry:a simple error-compensating phase calculation algorithm. Applied Optics.1987.26(13).2504-2506;
    [113]P. Carre. Installation et utilization du compateur photoelectrique et interferential du Bureau International des Poids et Mesures. Metrologia.1966.2.13-20;
    [114]Cho Jui Tay, Chenggen Quan, and Lujie Chen. Phase retrieval with a three-frame phase-shifting algorithm with an unknown phase shift. Applied Optics.2005.44(8).1401-1409;
    [115]J. Novak. Five-step phase-shifting algorithms with unknown values of phase shift. Optik.2003. 114(2).63-68;
    [116]Chih-Cheng Kao, Gym-Bin Yeh, Shu-Sheng Lee, Chih-Kung Lee, Ching-Sang Yang, and Kuang-Chong Wu. Phase-shifting algorithms for electronic speckle pattern interferometry. Applied Optics.2002.41(1).46-54;
    [117]Wei An and Torgny E. Carlsson. Speckle interferometry for measurement of continuous deformations. Optics and Lasers in Engineering.2003.40(5-6).529-541;
    [118]Arjan J. P. van Haasteren and Hans J. Frankena. Real-time displacement measurement using a multicamera phase-stepping speckle interferometer. Applied Optics.1994.33(19).4137-4142;
    [119]Osuk Y. Kwon. Multichannel phase-shifted interferometer. Optics Letters.1984.9(2).59-61;
    [120]M. Kujawinska and D. W. Robinson. Multichannel phase-stepped holographic interferometry. Applied Optics.1988.27(2).312-320;
    [121]R. S. Sirohi, N. Krishna Mohan, and T. Santhanakrishnan. Optical configuration for measurement in speckle interferometry. Optics Letters.1996.21(24).1958-1959;
    [122]R. S. Sirohi, J. Burke, H. Helmers, and K. D. Hinsch. Spatial phase shifting for pure in-plane displacement and displacement-derivative measurements in electronic speckle pattern interferometry (ESPI). Applied Optics.1997.36(23).5787-5791;
    [123]G. Pedrini, B. Pfister, and H. Tiziani. Double pulse-electronic speckle interferometry. Journal of Modern Optics.1993.40(1).89-96;
    [124]Giancarlo Pedrini and Hans J. Tiziani. Double-pulse electronic speckle interferometry for vibration analysis. Applied Optics.1994.33(34).7857-7863;
    [125]A. Fernandez, A. F. Doval, A. Davila, J. Blanco-Garcia, C. Perez-Lopez, and J. L. Fernandez. Double-pulsed carrier speckle-shearing pattern interferometry for transient deformation analysis. In: M. Kujawinska, R. J. Pryputniewicz, M. Takeda, editors. Laser Interferometry Ⅸ:Techniques and Analysis. Proceedings of SPIE 3478. San Diego, USA.1998.352-358.
    [126]M. Asmad, G. Baldwin, H. Rabal, R. Arizaga, and M. Trivi, Calibration of a low-cost piezoelectrical mirror for DSPI. Optics and Laser Technology.2003.40(1-2).25-31.
    [127]Yeou-Yen Cheng and James C. Wyant. Phase shifter calibration in phase-shifting interferometry. Applied Optics.1985.24(18).3049-3052;
    [128]K. Jambunathan, L. S.Wang, B. N.Dobbins, and S. P.He. Semi-automatic phase shift calibration using digital speckle pattern interferometry. Optics and Laser Technology.1995.27(3). 145-151;
    [129]Noe Alcala Ochoa and Jonathan M. Huntley. Convenient method for calibrating nonlinear phase modulators for use in phase-shifting interferometry. Optical Engineering. 1998. 37(9). 2501-2505;
    [130]Yuji Shen and Jonathan M. Huntley. Simple method to calibrate phase modulators for use in dynamic phase-shifting. Optical Engineering. 2004. 43(12). 2998-3002;
    [131]A. Davila, J. E. A. Landgrave, and G. Garnica. In situ calibration of a Michelson type, speckle-shearing interferometer: Wobbling mirror effect. Optics and Lasers in Engineering. 2007. 45(1). 70-76;
    [132]Wolfgang Steinchen, Gerhard Kupfer, Peter Maeckel, and Frank Voessing. Stroboscopic shearography for vibration analysis. Proceedings of SPIE 3823. 2. 1999;
    [133]陈炳泉.频闪剪切散斑干涉术的研究.光学学报.2004.24(11).1566-1570;
    [134]S. L. Toh, C. J.Tay, H. M. Shang, and Q. Y.Lin. Time-average shearography in vibration analysis. Optics and Laser Technology. 1995. 27(1). 51-55;
    [135]J. D. R. Valera and J. D. C. Jones. Vibration analysis by modulated time-averaged speckle shearing interferometry. Measurement Science and Technology. 1995. 6(7). 965-970;
    [136]K. Habib. Thermally induced deformations measured by shearography. Optics & Laser Technology. 2005. 37(6). 509-512;
    [137]C. Shakher and A. K. Nirala. Measurement of temperature using speckle shearing interferometry. Applied Optics. 1994. 33(11). 2125-2127;
    [138]D. K. Sharma, R. S. Sirohi, and M. P. Kothiyal. Simultaneous measurement of slope and curvature with a three-aperture speckle shearing interferometer. Applied Optics. 1984. 23(10). 1542-1546;
    [139]D. K. Sharma, N. Krishna Mohan, and R.S. Sirohi. A holographic speckle shearing technique for the measurement of out-of-plane displacement, slope and curvature. Optics Communications. 1986. 57(4). 230-235;
    [140]C. J. Tay, S. L. Toh, H. M. Shang, and Q. Y. Lin. Direct determination of second-order derivatives in plate bending using multiple-exposure shearography. Optics & Laser Technology. 1994. 26(2). 91-98;
    [141]K. F. Wang, A. K. Tieu, and E. B. Li. Measurement of pure curvature fringe distribution by using a double whole-field filtering technique. Optics & Laser Technology. 1999. 31(4). 289-294;
    [142]Kaifu F. Wang, A. Kiet Tieu, and Enbang B. Li. Simultaneous measurement of pure curvature and twist distribution fields by a five-aperture shearing and two-Fourier filtering technique. Applied Optics. 2000. 39(16). 2577-2583;
    [143]Basanta Bhaduri, M. P. Kothiyal, and N. Krishna Mohan. Curvature measurement using three-aperture digital shearography and fast Fourier transform. Optics and Lasers in Engineering. 2007.45(10). 1001-1004;
    [144]K. F. Wang, A. K. Tieu, and M. H. Gao. Measurement of curvature distribution using digital speckle three-shearing aperture interferometry. Optics & Laser Technology. 2007. 39(5). 926-928;
    [145]刘战捷.基于电子错位散斑理论的应变检测技术.无损检测.2007.29(3).121-124;
    [146]Y. Y. Hung and J. Q. Wang. Dual-beam phase shift shearography for measurement of in-plane strains. Optics and Lasers in Engineering. 1996. 24(5-6). 403-413;
    [147]Stephen W. James and Ralph P. Tatam. Time-division-multiplexed 3D shearography. Proceedings of SPIE 3744.394.1999;
    [148]Tom O. H. Charrett, Daniel Francis, and Ralph P. Tatam. Quantitative shearography:error reduction by using more than three measurement channels. Applied Optics.2011.50(2).134-146;
    [149]Stephan Waldner and Stefan Brem. Compact shearography system for the measurement of 3D deformation. Proceedings of SPIE 3745.141.1999;
    [150]Ralf Kastle, Erwin Hack, and Urs Sennhauser. Multiwavelength shearography for quantitative measurements of two-dimensional strain distributions. Applied Optics.1999.38(1).96-100;
    [151]Michael Y. Y. Hung, Yun Shen Chen, Siu Pang Ng, Steven M. Shepard, Yulin Hou, and James R. Lhota. Review and comparison of shearography and pulsed thermography for adhesive bond evaluation. Optical Engineering.2007.46(5).051007.1-051007.16;
    [152]Y. Y. Hung, Y. S. Chen, S. P. Ng, L. Liu, Y. H. Huang, B. L. Luk, R. W. L. Ip, C. M. L. Wu, and P. S. Chung. Review and comparison of shearography and active thermography for nondestructive evaluation. Materials Science and Engineering R:Reports.2009.64(5-6).73-112;
    [153]Henry O. Nyongesa, Andrew W. Otieno, and Paul L. Rosin. Neural fuzzy analysis of delaminated composites from shearography imaging. Composite Structures.2001.54(2-3).313-318;
    [154]M. A. Abou-Khousa, A. Ryley, S. Kharkovsky, R. Zoughi, D. Daniels, N. Kreitinger, and G. Stefffes. Comparison of x-ray, millimeter wave, shearography and through-transmission ultrasonic methods for inspection of honeycomb composites. Proceedings of the American Institute of Physics (AIP) Conference.2007.894(1).999-1006;
    [155]Sijin Wu and Lianxiang Yang. A novel digital shearography with wide angle of view for nondestructive inspection. Proceedings of SPIE 7997. Beijing.2011,79972A;
    [156]Michael Schuth, Frank Vossing, and Lianxiang Yang. A Shearographic Endoscope for Nondestructive Test. Journal of Holography and Speckle.2004.1(1).46-52;
    [157]S. L. Toh, H. M. Shang, F. S. Chau, and C. J. Tay. Flaw detection in composites using time-average shearography. Optics and Laser Technology.1991.23(1).25-30;
    [158]C. W. Sim, F. S. Chau, and S. L. Toh. Vibration analysis and non-destructive testing with real-time shearography. Optics & Laser Technology.1995.27(1).45-49;
    [159]T. Santhanakrishnan, P. K. Palanisamy, and R. S. Sirohi. Optical configuration in speckle shear interferometry for slope change contouring with a twofold increase in sensitivity. Applied Optics. 1998.37(16).3447-3449;
    [160]C. J. Tay, H. M. Shang, A. N. Poo, and M. Luo. Measurement of surface coordinates and slopes by shearography. Optics and Laser Technology.1992.24(4).209-213;
    [161]Y. Y. Hung, J. L. Turner, M. Tafralian, J. D. Hovanesian, and C. E. Taylor. Optical method for measuring contour slopes of an object. Applied Optics.1978.17(1).128-131;
    [162]J.-R. Huang, H. D. Ford, and R. P. Tatam. Slope measurement by two-wavelength electronic shearography. Optics and Lasers in Engineering.1997.27(3).321-333;

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700