基于0/π相位模板的景深延拓技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
普通点对点的成像系统不足之处就是当物面和像面不共轭时,图像迅速模糊。光学成像系统景深延拓则意味能包含更多的物方信息,在工业生产和科学研究中有着广泛的应用前景,长期以来倍受研究者关注。本论文研究利用“0/π”二元相位模板实现光学系统景深延拓的成像技术。
     本论文的主要研究工作如下:
     从频谱的角度分析了普通衍射受限成像系统离焦时光学传递函数的计算方法,给出了光学传递函数(OTF)曲线与离焦量的变化关系,分析了随着离焦量的增大,在通频带内会出现相位反转和调制传递函数(MTF)曲线过零点现象,从而导致图像高频细节部分被截止,图像出现模糊。为此提出了利用“0/π”二元相位模板实现通频带内相位的调制,提升截止频率并实现通频带内无零点。
     结合筒长无限显微镜,设计了大景深显微成像系统。将点扩散函数按照归一化光瞳函数的孔径展开,通过分别设置0.1和0.05的对比度,利用0.1和0.01步距相结合的粗搜索和精搜索结合的算法,寻找最大截止频率对应的最佳二元相位模板参数,并从理论上分析了π相位的正、负相位误差对MTF曲线的影响。
     运用ZEMAX软件,设计了筒长无限显微系统,并通过优化得到最佳系统结构参数。分析了点扩散函数和调制传递函数在不同离焦参数,即不同物距变化量下的变化情况,并给出了分辨率板和字符仿真成像结果,比较了在相同物距变化量下,施加相位模板前后的图像清晰度。
     研究了利用液晶空间光调制器实现“”二元相位板模拟的可行性。通过分析空间光调制器实现纯相位调制的原理,设计了利用干涉法测量相位变化的光路图,并提出了利用二元峰-峰值计算相位移动量的算法,通过两组不同偏振角的相位调制实验,得到了相位调制度与输入图像灰度值之间的关系,确定出选取液晶空间光调制器前、后偏振片的角度分别为40°和160°,灰度值设为190时,可得到π相位调制。
     根据理论计算和仿真的“”二元相位模板的最佳半径参数,运用液晶空间光调制器模拟“0/π”二元相位模板,并加入到4f系统中,分别对圆孔、双缝、二维光栅字和字符进行成像实验。
     ZEMAX仿真结果和实际成像实验结果表明,“0/π”二元相位模板能有效延拓景深,即使不采用图像处理,也具有较好的离焦不变性和高分辨率。
Lens imaging system is based on point-to-point imaging, and it has an obviousdisadvantage that when the object and image planes are not in conjugate position, theresultant image is rapidly blurred. An optical imaging system with extended depth of fieldmeans it can include more information of the object,and it can be widely used in mostfields such as: industry manufacture and scientific research. Therefore, it has been anactive research topic to extend the depth-of-field of optical imaging systems. The aim ofthis thesis is to present a0/πbinary phase mask and prove it can extend the depth offield of imaging systems.
     The main research works are as follows:
     The method of calculating the OTF (Optical Transfer Function) of a general defocusdiffraction-limited imaging system is analyzed in terms of frequency spectrum. Therelationship between the OTF and the defocus value is given with some curves. With theincreases of the defocus value, there will appear the phase inversion and amplitudezero-crossing phenomenon in the pass-band, which cut off the high-frequency detail partsof the image. Therefore a binary phase mask is introduced in the pass-band, toenhance the cut-off frequency and keep no zero-crossings within the pass band.
     A micro-imaging system with a large depth of field is designed through adding a
     0, binary phase mask into the infinite tube length microscope. The PSF (Point SpreadFunction) is expanded with the normalize pupil function. A searching algorithm, combinedby global rough search and local careful search, is used to seek an optimal pupil mask thatprovides the largest spatial cut-off frequency band in certain desired contrast values5%and10%. The effect for MTF curves by the positive and negative manufacture errors ofphase is analyzed.
     Using the optical design software ZEMAX, an infinite tube length micro imaging system with the binary phase mask is arranged and optimal parameters are acquired afterseveral optimizations. The MTFs (modulation transfer function) curves and the normalizePSFs of the imaging system corresponding to the different defocus values (i.e.differentobject distance) are analyzed. Imaging results for the objects of letters, resolution and chipsare compared in the cases of without and with the mask for the same defocus position.
     A liquid crystal spatial light modulator is proposed to simulate the0/πbinaryphase mask, and it is feasible method affirmed by the theoretic analyzing. An interferenceoptical system is designed for measuring phase shift, and a method is presented to calculatethe phase shift in terms of the peak-to-peak values of the interference fringes. Twoexperimental results show the relationship between the image gray value and the phasedepth, and the π phase shift can be obtained in the case of angles polarizer φ1=40°,φ2=160°and gray value190.
     According the theoretic calculation and ZEMAX simulated results, the SLM,simulating the optimal binary phase mask, insert the4f optical system which instead of theinfinite tube length microscope. Imaging experiments are performed with the objects ofcircle, dual slit,2-D grating words and letters.
     ZEMAX simulation results and imaging experiments show that binary phasemask can effectively extend the depth of field of the imaging system, which has a highresolution in a long frequency band and can obtain clear images without anypost-processing.
引文
[1] Dowski Edward R., Jr. and Thomas Cathey W.. Extended depth of field throughwave-front coding. Applied Optics,1995,34(11):1859~1866
    [2] Bradburn Sara, Thomas Cathey Wade, Dowski Edward R.. Realizations of focusinvariance in optical-digital systems with wave-front coding. Applied Optics,1997,36(35):9157~9166
    [3] Guillem Carles. Analysis of the cubic-phase wavefront-coding function: Physicalinsight and selection of optimal coding strength. Optics and Lasers in Engineering,2012,50(10):1377~1382.
    [4] Tucker Sara, Thomas Cathey W., Dowski Edward and Jr.. Extended depth of fieldand aberration control for inexpensive digital microscope systems. OpticsExpress,1999,4(11):467~474
    [5] Wach H. B., Dowski E. R.. Control of chromatic focal shift through wave-frontcoding. Applied Optics,1998,37(23):5359~5367
    [6] Marks D.L., Stack R.A., Brady D.J.. Three-dimensional tomography using acubic-phase plate extended depth-of-field system. Optics Letter,1999,24(4):253~255
    [7] Narayanswamy R., Johnson G. E., Silveira P. E. X., Wach H.B.. Extending theimaging volume for biometric iris recognition. Applied Optics,2005,44(5):701~712
    [8] Muyo G., Singh A., Andersson M., Huckridge D., Wood A., Harvey Infraredimaging with a wavefront-coded singlet lens, Optics Express,2009,17(23):21118~21123
    [9] Gonzalo Muyo, Andrew R Harvey. Wavefront coding for athermalization of infraredimaging systems. SPIE,2004,5612,227~235
    [10] Kenneth S. KUbala, Dowski Edward R, Cathy W. T.. Reducing complexity incomputational imaging systems. Optics Express,2003,11(18):2102~2108
    [11] Dowski E. R., Kenneth S. Kubala. Modeling of Wavefront Coded Imaging Systems.SPIE,2002,4736,116~126
    [12] Angel Sauceda, Jorge Ojeda-Castaneda. High focal depth with fractional-powerwave fronts. Optics Letters,2004,29(6):560~562
    [13] Tremblay E. J., Rutkowski J., Tamayo I.. Ford. Relaxing the alignment andfabrication tolerances of thin annular folded imaging systems using wavefront coding.Applied Optics,2007,46(4):6751~6758.
    [14] Nicolas Caron and Yunlong Sheng.Polynomial phase masks for extending the depthoffield of a microscope. Applied Optics,2008,47(22): E39~E43
    [15] Sara Bradburn, W. Thomas Cathey, Edward R. Dowski, Applications of extendeddepth of focus technology to light microscopy systems.http://www.colorado.edu/isl/selnubs.html
    [16] Zhang W. Z., Ye Z., Zhao T. Y., Chen Y. P. and F. H. Yu. Point spread functioncharacteristics analysis of the wavefront coding system. Optics Express,2007,15(8):1543~1552
    [17]陈燕平,张文字,赵廷玉等.波前编码系统成像特性的空间域分析.光学学报,2008,27(8):1425~1429
    [18]杨皓明,张新,方志良等.三次位相板编码系统的频率信噪比分析.光学学报,2008,37(7):1412~1415
    [19]阳庆国,立人,孙建锋等.扩大景深的波前编码成像系统特性分析.光学学报,2006,26(12):1807~1812
    [20]潘超,陈家璧,张荣福等.波前编码成像系统景深延拓扩展率的研究.光学学报,2008,28(5):870~875
    [21] Mino M., Okano Y.. Improvement in the optical transfer function of a defocusedoptical system through the use of shaded apertures. Applied Optics,1971,10(10):2219~2225
    [22] Ojeda-Castaneda J., Andres P. and Diaz A.. Annular apodizers for low sensitivity todefocus and to spherical aberration. Optics Letter,1986,11(8):487~489
    [23] Ojeda-Castaneda J., Berriel-Valdos L. R.and Montes E.. Line-Spread functionrelatively insensitive to defocus. Optics Letter,1983,8(8):458~460
    [24] Eyal Ben-Eliezer, Emanuel Marom, Naim Konforti, and Zeev Zalevsky. Radial maskfor imaging systems that exhibit highresolution and extended depths of field.Applied Optics,2006,45(9):2001~2012
    [25] Wei N., Gong M. and Cui R. L. Numerical solution of sidelobe intensity forphase-shifting apodizers. Japanese Journal of Applied Physics Part1-Regular PapersShort Notes&Rev,2003,42(1):104~108
    [26] Jaime Meneses, Miguel A. Suarez, JoséBraga, and Tijani Gharbi.Extended depth offield using shapelet-based image analysis. Applied Optics,2008,47(2):169~178
    [27] Brigitte Forster, Dimitri Van De Ville, Jesse Berent, et al.. Complex Wavelets forExtended Depth-of-Field: A New Method for the Fusion of MultichannelMicroscopy Images. Microscopy Research and Technique,2004,65(1):33~42
    [28] Zhai Zhongsheng, Ding shanting, Lv qinghua, et al.. Extended depth of field throughan axicon. Journal of Modern Optics,2009,6(11):1304~1308.
    [29] Zhai zhongsheng, Zhao Bin. Diffraction Intensity distribution of an axiconilluminated by polychromatic light. Journal of Optics A: Pure and Applied Optics,2007,9(10):862~867.
    [30]翟中生.基于无衍射光的大景深成像技术研究:[博士学位论文].武汉:华中科技大学,2008
    [31] Charman W. N., Whitefoot H.. Pupil diameter and the depth-of-field of the humaneye as measured by laser speckle. Optica Acta:International Journal of Optics,1977,24(12):1211~1216
    [32] Mezouari S., Harvey A. R.. Phase pupil functions for reduction of defocus andspherical aberrations. Optics Letter,2003,28(10):771~773.
    [33] Pantazis Mouroulis. Depth of field extension with spherical optics. Optics Express,2008,16(17):12995~13004.
    [34] Robinson M. D., Guotong Feng, David G. Stork. Spherical coded imagers:improving lens speed, depth-of-field, and manufacturing yield through enhancedspherical aberration and compensating image processing. Proc. SPIE,2009.7429M-1~7429M-12
    [35] Sun Kai-ge,Kang Ming,Ou-yang Fan,Yue Rui—feng.Variable-focus liquid lenswith suspended conical ring. Optics and Precision Engineering,2009,17(6):1397~1402
    [36] George N., Chi W.. Extended depth of field using a logarithmic asphere. J. Opt. A:Pure Applied Optics,2003,5(5):157~163
    [37] Sheng Liu, Hong Hua.Extended depth-of-field microscopic imaging with a variablefocus microscope objective.Optics Express,2011,19(1):353~362
    [38] Raúl Martínez-Cuenca, Genaro Saavedra, and Manuel Martínez-Corral. Enhanceddepth of field integral imaging with sensor resolution constraints. Optics Express,2004,12(21):5237~5242
    [39] Zalevsky Z., Ben-Yaish S.. Extended depth of focus imaging with birefringent plate.Optics Express,2007,15(12):7202~7210
    [40] Bagheri S. and Javidi B.. Extension of depth of field using amplitude and phasemodulation of the pupil function. Optics Letters,2008,33(7):757~759
    [41] Angela Amphawan. Binary encoded computer generated holograms for temporalphase shifting. Optics Express,2011,19(23):23085~23096
    [42] Leger J. R., Holz M.,Swanson G. J.,et al.. Coherent laser beam addition:Anapplication of binary optics technology. Lincoln Lab,1988,1(2):225~246
    [43] Veldkamp W B. Binary optics:the optics technology of the1990s. CLEO,USA,1990:21~30
    [44]金国藩,严瑛白,邬敏贤.二元光学.北京:国防工业出版社,1998.1~5
    [45]陈松岩,二元光学-90年代的光学技术.物理,1992,21(4):197~201
    [46] Veldkamp W B, Binary optics.McGraw-Hill Yearbook of Science and Technology.New York: McGraw-Holland,1990.34~42
    [47] ShizhuoYin,Mingzhe Lu,ChulungChen,et al.Design of a bipolar composite filterby a simulated annealing algorithm.Optics Letters.1995,20(12):1409~1411
    [48] Gia-Wei Chern,Lon A. Wang. Design of binary long-period fiber grating filters bythe inverse-scattering method with genetic algorlthm optimization.J.Opt.Soc.Am.A,2002,19(4):772~780
    [49] Liu Juan,Dong Bizhen,Gu Beyuan. Polarization-selective diffractive phase elementfor implementing ploarizaiton mode selcting, clor demultiplexing, and spatialfocusing simultaneously.Optik,2000,111(2):49~52
    [50] Jari Lautanen,Marko Honkanen,Ville Kettunen,et al,Wide-angle farfield linegeneration with diffractive optics. Optics Communications,2000,176(4):273~280
    [51] Martin Meister,Richard J.Winfield,Novel approaches to direct search algorithms forthe design of diffractive optical elements.Optics Communications,2002,203:39~49
    [52] Baol N.K., Chen Zhongyu1, Zhang Jingjuan. Phase-only diffractive opticalelement for improving the beam quality of a vertical-cavity surface-emitting laserarray. Optik,2004,115(1):23~27
    [53]杨李茗,虞淑环.任意点阵衍射图形的BOE优化设计.光子学报.1998,27(8):739~743
    [54]鲁建业,李绮,董蕴华.采用混合遗传一模拟退火算法对BOE的直接设计.光电子.激光.2001,12(4):365~367
    [55]张静娟,张艳等.加权串行迭代算法设计衍射光学元件.光电子.激光.2002,13(12):1207~1210
    [56] Cormier G,Boudreeau R,Theriaul T S,Real-coded genetic algorithm for Bragggrating Parameter synthesis. Journal of the Optical Society of America B-OpticalPhysis.2001,18(12):1771~1683
    [57] Joreph N.Mait.Design of Diffractive Optical Element for Optical Signal Processing.Laser and Eelctro-Optics Spciety Annual Meeting. LEOS’93ConferenceProceedings. IEEE,1993.59~60
    [58] Liu Rong,Dong Bizhen.Zhang Yan,et a1.Experiments of diffractive phaseelements capble of realizing desired functions in rotationally symmetric opticalsystem. Optik,1999,110(3):1l8~122
    [59]颜树华.利用二维杨-顾算法设计非对称结构衍射光学元件.光学技术.2004,30(6):690~692
    [60] Thomas J.Suleski,Member,OSA,and Robert D.Te Kolste. Fabrication TrendsforFree-Space Microoptics. Journal of Lightwave Technology,2005,23(2):633~646
    [61] Akio Mizutani, Hisao Kikuta, Koichi Iwata, et al.. Guided-mode resonant gratingfilter with an antireflection structured surface. Journal of the Optical Society ofAmerica A-Optical Physis,2002,19(7):1346~1351
    [62] Hanna Lajunen, Jani Tevo, and Jari Turunen. High-efficiency broadband diffractiveelements based on polarization gratings. Optics Letters,2004,29(8):803~805.
    [63] Cheng Hsin-Chung, Huang Chiung-Fang, Lin Yi, Shen Yung-Kang. Brightness fielddistributions of microlens arrays using micro molding. Optics Express,2010,18(26):26887~26904
    [64] Wippermann Frank, Zeitner Uwe-D, Dannberg Peter, Br uer Andreas, SinzingerStefan. Beam homogenizers based on chirped microlens arrays. Optics Express,2007,15(10):6218~6231
    [65] Jean-Christophe Roulet,Reinhard Vo¨lkel, et al.. Microlens systems for fluoresceencedetection in chemical Microsystems. Optical Engineering,2001,40(5):132~139
    [66] Fromager M.,K.Aǐt Ameur. Transformation of an elliptic into a circular beam usinga diffractive binary optic. Optics Communications,2001,190:45~49
    [67] Tan Qiaofeng,Yan Yingbai,et al,Diffractive optical array element for realizinguniform spot on the plane non-perpendicular to the optical axis with geometricalshape transform. Optics Communications,2000,175(1-3):13~18
    [68]金国蕃,谭峭峰等.二元光学在强激光波面整形中的应用.中国工程科学.2000,2(6):27~39
    [69]谢梦,曾小东.大功率半导体二元光学消像散准直器件设计.红外与激光工程,2007,36(1):102~105
    [70]刘鹏.利用二元光学元件实现激光波前整形:[硕士学位论文].大连:大连理工大学,2008
    [71] Revtial Sheehetr, Yakaov Amitai,and Asher A. Friesem.ComPact vavelengthdivision multiplexers and demultiplexers. Applied Optics,2002,41(7):1256~1261
    [72] Hiorykui Tsuda and Hiorkazu Tkaenouchi. Phootnic encoder and decoder for opticalcode-division multiplxeing with time-to-space converters and angle-multiplxeedholograms. Applied Optics,2002,41(2):290~297
    [73] Sihai Chen,Xinjian Yi,et al.Monolithic integration of diffractive microlens Arraysand infrared focal plane arrays. Infrared and Millimeter Waves,2002,23(5):705~710
    [74] Jim Early,Hyde R.Twenty meter space telescope based on diffractive Frensnel lens.Proc.SPIE,2004,5166.148~156
    [75] Lalanne Ph,Rodier J C, et al.. Imaging with blazed-binary diffractive element.Journal of Optics A:Pure and Applied Optics,2002,4(5): S119~S124
    [76] Pichon P.,Sauvan Ch.,et al..Transmission blazed-binary grating for visible lightoperation:Performances and interferometric characterization. Journal of OpticsA:Pure and Applied Optics,2003,5(5): S244~S249
    [77] Teruo Fujita,et al..Simple and Accurate Propagation-Angle Observation of aCollimated Laser Beam within a Short Optical Path Range by Use of Dual-FocusFresnel Lens. Optical Review,2005,12(3):260~263
    [78] Svetomir Stankvic, Daniel Dias, Mathias Hain, et al.. Integrated optical pickupsystem for axial dual focus. Applied Optics,2001,40(5):614~621
    [79] Ichiro Fujieda, Osamu Mikami, and Atsushi Ozawa. Active optical interconnectbased on liguqid-crystal grating. Applied Optics,2003,42(8):1520~1525
    [80] Brina DeBoo and Jose Sasian. Precise focal-length measuerment technique withreflective Fresnel-zone hologram. Applied Optics,2003,42(19):3903~3909
    [81] Steven Richard Kitchen, Carsten Dam-Hansen, and Michal Linde Jakoben.Quasi-achromatic laser Doppler anemometry systems based on a diffractive beamsplitter. Applied Optics,2003,42(28):5642~5648
    [82] SeGall Marc, Rotar Vasile, Lumeau Julien, Mokhov Sergiy, Zeldovich Boris, GlebovLeonid B. Binary volume phase masks in photo-thermo-refractive glass. OpticsLetters,2012,37(7):1190~1192
    [83]李玉同,张杰,鲁欣等.使用二元相位菲涅尔波带片产生轴向线聚焦.物理学报.2005,54(5):2030~2033
    [84] Wei Jia, Fung Jacky Wen, Yuk Tak Chow, and Changhe Zhou. Binary imageencryption based on interference of two phase-only masks. Applied Optics,2012,51(21):5253~5258
    [85] Jin Won Sung, Heidi Hockel, Jeremiah D. Brown, and Eric G. Johnson.Development of a two-dimensional phase-grating mask for fabrication of ananalog-resist profile. Applied Optics,2006,45(1):33~43
    [86] Feiling Wang. Binary phase masking for optical interrogation of matters in turbidmedia. Optics Letters,2008,33(22):2587~2589
    [87] Xavier Ropagnol, Roberto Morandotti, Tsuneyuki Ozaki, and Matt Reid. THz pulseshaping and improved optical-to-THz conversion efficiency using a binary phasemask. Optics Letters,2011,36(14):2662~2664
    [88] Frédéric Diaz, Mane-Si Laure Lee, Xavier Rejeaunier, Gaelle Lehoucq, Fran oisGoudail, Brigitte Loiseaux, Shailendra Bansropun, Joel Rollin, Eric Debes, andPhilippe Mils.Real-time increase in depth of field of an uncooled thermal camerausing several phase-mask technologies. Optics Letters,2011,36(3):418~420
    [89] Zeev Zalevsky, Amir Shemer, Alexander Zlotnik, Eyal Ben Eliezer, and EmanuelMarom. All-optical axial super resolving imaging using a low-frequencybinary-phase mask. Optics Express,2006,14(7):2631~2643
    [90] Eyal Ben-Eliezer, Zeev Zalevsky, Emanuel Marom and Naim Konforti, All-opticalextended depth of field imaging system. Journal of Optics A: Pure and AppliedOptics,2003,5(5): S164~S169
    [91] Eyal Ben-Eliezer, Emanuel Marom, Naim Konforti, and Zeev Zalevsky.Experimental realization of an imaging system with an extended depth of field.Applied Optics,2005,44(14):2792~2798
    [92] Eyal Ben-Eliezer, Emanuel Marom. Aberration-free superresolution imaging viabinary speckle pattern encoding and processing. Journl of the Optical Society ofAmerica A,2007,4(24):1003~1010
    [93] Eyal Ben-Eliezer, Naim Konforti, E. Marom. Superresolution imaging with noisereduction and aberration elimination via random structured illumination andprocessing. Optics Express,2007,7(15):3849~3863
    [94] Eyal Ben-Eliezer, Naim Konforti, Benjamin Milgrom, Emanuel Marom. An optimalbinary amplitude-phase mask for hybrid imaging systems that exhibit high resolutionand extended depth of field. Optics Express,2008,16(25):20540~20561
    [95] Benjamin Milgrom, Naim Konforti, Michael A. Golub, and Emanuel Marom. Pupilcoding masks for imaging polychromatic scenes with high resolution and extendeddepth of field. Optics Express,2010,18(15):15569~15584
    [96] Hyungbae Moon, Yong-Joong Yoon, Wan-Chin Kim, No-Cheol Park,Kyoung-SuPark, Young-Pil Park. A study on the realization of high resolution solid immersionlens-based near-field imaging optics by use of an annular aperture. Optics Express,2010,18(16):17533~17541.
    [97]吕乃光.傅里叶光学.(第2版).北京:机械工业出版社,2006.148~158
    [98] Goodman J.W. Introduction to Fourier optics.2nd ed., McGraw-Hill,1996.97~101
    [99]郁道银,淡恒英.工程光学.北京:机械工业出版社,2005.386~391
    [100]庄松林,钱振邦.光学传递函数.北京:机械工业出版社,1981.105~155
    [101] Born M., Wolf E.. Principles of optics. Cambridge,1999.95~99
    [102]张以谟.应用光学.(第3版).北京:电子工业出版社,2010.394~405
    [103] http://www.microscopyu.com/articles/formulas/formulasfielddepth.html
    [104]冯玮,涂伟霞.由浅入深学Maple.北京:国防工业出版社,2002.305~343.
    [105] Angela Amphawan. Binary encoded computer generated holograms for temporalphase shifting. Optics Express,2011,19(23):23085~23096
    [106]金国藩,严瑛白,邬敏贤.二元光学.北京:国防工业出版社,1998.1~5
    [107]陈松岩.二元光学-90年代的光学技术.物理,1992,21(4):197~201
    [108] Veldkamp W B, Binary optics.McGraw-Hill Yearbook of Science and Technology.New York: McGraw-Holland,1990.34~42
    [109] Britter J. A, Boyd R. D. Low efficiency gratings for3rd harmonic diagnosticsapplication. SPIE,1995,2633.12~128
    [110] Britten J. A, Herman S. M, Summers. L. J et al. Manufacture, optical performanceand laser damage characteristics of diffractive optics for the national ignition facility.SPIE,1999,3578.337~346
    [111]高福华,曾阳素,谢世伟,郭永康,崔铮.电子束直写制作低效取样光栅.中国激光,2003,30(2):134~136
    [112]张山,影响直角坐标激光直写曝光质量的若干关键技术研究:博士学位论文,哈尔滨:哈尔滨工业大学,2010
    [113] Harry J.Levinson. Principles of Lithgraphy. Third Edition.Washington:Published bySPIE,2010.55~60
    [114] Yoshikazu Yamaguchi,Akimasa Soyano. Motoyuki Shima.Lithography:Its Path ofEvolution and Future Trends. Imaging Science and Photochemistry,2012,30(1):1~8
    [115]赵惠.用于景深延拓的非旋转对称相位板特性研究与新的设计:[博士学位论文].杭州:浙江大学,2009
    [116]王之江.光学技术手册.北京:机械工业出版社,1987.718,959~990
    [117] ZEMAX学习秘笈——葵花宝典.上海:迅技光电科技(上海)有限公司,2005.85~105
    [118]戴树煌.光学仪器设计.北京:国防工业出版社,1991.125~130
    [119] J. M. Geary. Introduction to Lens Design with Zemax. Willmann-Bell,2002.135-138
    [120] Rudolf Kingslake. Optical System Design. Academic Press,1983.98~105
    [121] Daniel Malacara, Zacarias Malacara. Hand Book of Optical Design.2nd Edition.Marcel Dekker,2004.150~156
    [122] Pantazis Mouroulis,John Macdonald. Geometrical Optics and Optical Design.OxfordNew York: Oxford University Press,1997.129~138
    [123]李士贤,郑乐年.光学设计手册.北京:北京理工大学出版社,1990.116~118
    [124] Milton Laikin著,周海宪程云芳译.光学系统设计.北京:机械工业出版社,2011.121
    [125] Hui Zhao,Yingcai Li. Optimized sinusoidal phase mask to extend the depth of fieldof an incoherent imaging system. Optics Letters,2010,35(2):267~269
    [126] McManamon P. F., Dorschner T. A., Corkumet D. L.. Optical phased arraytechnology. Proc. IEEE,1996,84(2).268~298
    [127] Bahaa E. A. Saleh, Kanghua Lu. Theory and design of the liquid crystal TV as anoptical spatial phase modulator. Optical Engineering,1990,29(3):240~246
    [128] Andilla J., MartIn-Badosa E., Vallmitjana S.. Characterization of a Reflective SpatialLight Modulator by Determination of Its Jones Matrix. Proceedings of SPIE,2004,5622.669~675
    [129] Jeffrey A. Davis, Philbert Tsai, et al. Simple Technique for Determining theExtraordinary Ais Direction for Twisted-nematic Liquid Crystal Spatial LightModulators. Optical Engineering,1999,38(5):929~932
    [130]张洪鑫,张健,吴丽莹.泰曼-格林干涉仪测量液晶空间光调制器的相位调制特性.中国激光,2008,35(9):1360~1364
    [131] Zhang H.X., Zhang J., Wu L.Y.. Evaluation of phase-only liquid crystal spatial lightmodulator for phase modulation performance using a Twyman-Green interferometer.Measurement Science and Technology,2007,18(6):1724~1728
    [132]陈怀新,隋展,陈祯培.利用液晶电视(LCTV)的光学调制特性及其应用.中国激光.2000,27(8):741~745
    [133]赵晓风,李大海,陈祯培.利用径向剪切干涉法测量液晶空间光调制器的位相调制特性.四川大学学报(自然科学版),2002,39(4):675~679
    [134]任秀云,蔡春伟,王翥,国承山.横向剪切干涉法共路测量LCSLM的相位调制特性.光子学报.2007,36(5):899~904
    [135] Rensheng Dou, Michael K. Giles. Closed-loop adaptic optics system with a liquidcrystal television as a phase retarder. Optics Letters,1995,20(14):1583~1585
    [136] Kelly T L, Munch J. Phase-Aberration Correction with Dual Liquid-crystal SpatialLight Modulators. Applied Optics,1998,37(22):5184~5189
    [137] Yamauchi M., Marquez A., Davis J. A., and Franich D J. Interferometric PhaseMeasurements for Polarization Eigenvectors in Twisted Nematic Liquid CrystalSpatial Light Modulators. Optics Communications.2000,181(1-3):1~6
    [138] Hongxin Zhang, Jian Zhang, Liying Wu. Measurement of phase and intensity byDual-imaging Interferometry for performance evaluation of liquid crystal spatiallight modulator. Optik-International Journal for Light and Electron Optics.2011,122(14):1249~1253

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700