超声/微波辅助制备纳米TiO_2及光催化性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
半导体多相光催化作为高级氧化技术之一正引起人们的日益重视。光催化反应过程中产生氧化性极强的羟基自由基(·OH),可将难降解有机污染物分解为二氧化碳和水,因此被应用于有机废水处理和空气净化研究中。在各种半导体光催化剂中,二氧化钛(TiO2)因其无毒、化学惰性、廉价、高效等优异特点,成为研究最多的光催化材料。TiO2较宽的禁带宽度和较低的量子效率是限制其实际应用的主要原因,因此高效率的TiO2光催化剂的研究仍是该领域的热点。改进制备方法是提高催化剂活性的途径之一,目前关于超声、微波辅助制备TiO2催化剂的研究较少,因此超声、微波辅助TiO2催化剂制备技术的研究,对于拓展纳米TiO2催化剂制备技术,促进该研究领域的发展具有实际意义。
     本文在总结和评述半导体光催化效率研究进展的基础上,针对目前纳米TiO2催化剂制备中存在的易团聚、分散性差的问题,采用超声、微波辅助法成功地制备了一系列纳米TiO2光催化剂,探讨了晶型结构对光催化活性的影响;研究了不同的制备条件对纳米TiO2的光催化活性的影响。在催化剂制备的基础上,研究了超声纳米TiO2光催化降解氯苯与活性艳红X-3B模拟废水的效果和机理。本文的主要研究工作如下:
     (1)以Ti(OC4H9)4为原料,采用超声辅助法制备了纳米TiO2,通过正交试验对制备过程中的主要因素:钛酸丁酯用量、水用量、乙醇用量、乙酸用量、超声反应时间等进行了优化,并以活性艳红X-3B模拟废水为处理对象,研究了纳米TiO2催化剂的光催化活性。实验表明,工艺条件对TiO2催化活性影响大小的顺序为:钛酸丁酯用量、乙酸用量、超声反应时间、水用量、乙醇用量。对TiO2催化剂的XRD和TEM表征表明,超声辅助制备的催化剂为单分散性颗粒,粒径为24.0nm,是以锐钛矿晶型为主的混晶结构。
     (2)采用超声辅助法在玻璃表面制备了均匀透明的Fe3+掺杂TiO2薄膜,并以对硝基氯苯模拟废水为对象进行了该薄膜的光催化性能研究。借助于XRD和SEM对Fe3+/TiO2薄膜进行了表征。样品经500℃煅烧2h后,6.0%Fe3+掺杂TiO2纳米薄膜是以锐钛矿为主晶型的混晶结构,平均粒径约为13.0nm,膜表面TiO2颗粒分布均匀,无开裂现象。实验结果表明,Fe3+离子掺杂可以明显改善TiO2薄膜的光催化活性,Fe3+/TiO2纳米薄膜降解对硝基氯苯模拟废水的降解率是未掺杂Fe3+的TiO2薄膜的2.1倍。
     (3)以Ti(SO4)2为原料,采用微波辅助水解法制备了纳米TiO2,探讨了Ti(SO4)2浓度、反应液pH值、煅烧温度等条件对TiO2粒径、晶型和光催化性能的影响。研究表明,经700℃煅烧处理的纳米TiO2为锐钛矿晶型,具有最高的光催化活性,光催化降解对硝基氯苯模拟废水,90min降解率为89.3%,是未经微波辅助处理TiO2催化剂降解率的1.3倍。硫酸根离子(SO42-)的存在一定程度上抑制了锐钛矿晶型向金红石晶型的转变,增加了TiO2催化剂的抗烧结性,所制备TiO2催化剂经800℃处理仍能保持单一锐钛矿晶型。
     (4)以Ti(SO4)2水溶液为前驱物,氨水为沉淀剂,采用微波辅助沉淀法制备了纳米TiO2催化剂。其最佳制备条件如下:硫酸钛浓度为0.2mol/L,反应终点的pH值为9.0,煅烧温度600℃。通过TEM、XRD对所制备TiO2催化剂进行了表征,结果表明,纳米TiO2光催化剂颗粒具有粒径小、分散性好、纯度高等特点。制备的纳米TiO2处理对硝基氯苯模拟废水,90min的降解率可达87.1%。以尿素沉淀剂为例,研究了表面活性剂十二烷基苯磺酸钠(SDBS)对纳米TiO2粒径的影响,结果表明,当SDBS质量分数为1.0%时,所制备TiO2催化剂粒径在20.8nm左右。在煅烧过程中,由于SDBS的包覆作用可有效地抑制晶粒的长大。
     (5)以Ti(SO4)2为原料,采用微波辅助反向沉淀法制备了晶粒尺寸为10.4nm的高活性Fe3+/TiO2催化剂,并运用XRD及TEM对其进行了表征。结果发现,Fe3+的掺杂抑制了TiO2粒径的长大,细化了晶粒,Fe3+掺入到TiO2的晶格中,引起了晶格的畸变和膨胀。掺杂Fe3+可显著地提高TiO2光催化活性,Fe3+最佳掺杂量为0.5%(wt)。以对硝基氯苯为模拟废水,研究了所制备催化剂TiO2的光催化活性及重复使用对光催化活性的影响,结果表明,紫外光照射90min对硝基氯苯降解率可达95.1%,催化剂重复使用4次后对硝基氯苯降解率仍能达到75.2%。掺杂Fe3+的TiO2光催化剂,其光催化性能的提高可归因于载流子复合率的降低。
     (6)有机污染物的超声降解和光催化降解均属于自由基历程的高级氧化技术,超声空化效应可以极大地改善TiO2催化剂表面的传质效果,因此二者耦合可能产生协同效应。以活性艳红X-3B为模拟废水,研究了催化剂用量、pH值、H2O2用量、光照距离、活性艳红X-3B浓度等对超声光催化降解的影响。以均匀实验设计方法确定了超声光催化降解浓度为50mg/L的活性艳红X-3B模拟废水的最佳条件。结果表明,TiO2用量为0.73g/L,H2O2投加量为0.33g/L,初始pH值为3.5时,活性艳红X-3B降解速度最快。超声光催化降解低浓度活性艳红X-3B的反应为一级反应,反应动力学行为符合Langmuir-Himshelwood方程,通过实验,采用初始浓度法确定了动力学方程中的反应速度常数k和Langmuir吸附平衡常数K。应用UV-Vis图谱及GC-MS分析,探讨了活性艳红X-3B的降解机理,据此推测了活性艳红X-3B的超声光催化降解可能的反应历程。
     (7)超声光催化降解氯苯模拟废水具有良好的效果,光催化与超声波之间存在声光协同作用。本研究考察了TiO2用量、氯苯的初始浓度、模拟废水pH值、H2O2用量等对超声光催化降解氯苯的影响。结果表明,pH值对超声光催化降解氯苯影响较小;H2O2用量、模拟废水初始浓度对氯苯降解影响较大。在TiO2用量为300mg/L、氯苯质量浓度为110.6mg/L、反应时间为90min的条件下,氯苯的降解率可达91.2%,在实验的基础上,探讨了超声光催化降解氯苯模拟废水的机理。
     (8)由于六氯苯(HCB)的水溶性较小,本研究采用使六氯苯预先吸附到催化剂表面的做法,研究了它在TiO2催化作用下的光降解。研究表明,HCB/TiO2量、Fe3+浓度、H2O2用量对六氯苯的光催化影响较大;TiO2表面覆盖度、体系pH值对六氯苯的光催化影响相对较小。在UV/TiO2/H2O2条件下,二氧化钛可有效地催化降解HCB,当表面覆盖度为4×10-5mol/g,H2O2用量16mmol/L时,室温条件下90min六氯苯脱氯率可达94.8%。
Heterogeneous photocatalysis by semiconductor catalyst as one of the advanced oxidation processes (AOPs) is receiving increasing attention. Due to its high oxidation potential of the species, such as hydroxyl radials (·OH) generated in AOPs, refractory pollutants can be efficiently decomposed into H2O and CO2. Photocatalysis has been researched in the mineralization of organic pollutants in wastewater and air. Among various oxide semiconductor photocatalysts, titanium dioxide (TiO2), especially its anatase phase, is one of the most promising photocatalysts because of its high photocatalytic activity, high chemical stability, low cost and non-toxicity in the purification of air and wastewater. The broad band gap and low quantum efficiency limit its extensive use in environment purification, so the development of high efficiency TiO2 photocatalyst is still the hot-pot in this field.
     At present, modification of preparation methods is thought one of promising ways. However, less research had been reported in ultrasonic and microwave assisted synthesis of nano-TiO2 photocatalyst. So it will have far-reaching reality meaning to study above problems for application of nano-TiO2 photocatalyst.
     In this dissertation, the research progress about improving the quantum-efficiency of semiconductor photocatalyst has been summarized. Aiming at the problems in research and practical application of TiO2, such as easy agglomeration and bad dispersibility, a series of nanosized TiO2 photocatalysts was successfully prepared by ultrasonic and microwave assisted method. The effects of crystal phase and structure on activity were explored. On this basis, the sono-photocatalytic degradation efficiency and mechanism of chlorobenzene (CB) and reactive brilliant red X-3B simulated wastewater were studied. The detailed works are as follows:
     (1) The ultrasonic assisted preparation process of TiO2 photocatalyst was optimized using Ti(OC4H9)4 as precursor. Using the photodegradation rate of reactive brilliant red X-3B simulated wastewater as an indicator, the effects of the dosage of Ti(OC4H9)4, water, ethanol (C2H5OH), acetic acid (CH3COOH) and ultrasonic reaction time on the photocatalytic activity of TiO2 were investigated by using experimental methods of the L16(45) orthogonal design. The results of orthogonal design showed that the important sequence of the factor affecting TiO2 photocatalysis was dosage of Ti(OC4H9)4>dosage of acetic acid > ultrasonic reaction time >dosage of water>dosage of ethanol.
     The as-prepared TiO2 was characterized by XRD and TEM. The results showed that the TiO2 particles were of good single dispersion and had bi-phase contained anatase as the main phase and rutile phase, with about 24.0nm diameter.
     (2) The transparent Fe-doped nano-TiO2 films on the surface of glass were prepared by the ultrasonic assisted method. Photocatalytic activity of the films in p-nitrochlorobenzene (p-CNB) simulated wastewater was studied. The Fe-TiO2 films are characterized by XRD and SEM. The results indicated that the Fe3+ doped TiO2 film with an average diameter of 13.0nm contained anatase as the main phase and rutile phase after calcination at 500℃for 2h, and the films are uniform and have no cracking on the surface. The results showed that Fe-doping obviously influenced the photocatalytic activity, the mass fraction of 6.0% Fe2O3 for the Fe3+/doped films as catalyst can increase degradation rate of p-CNB by 2.1 times on comparison with that of undoped nano-TiO2.
     (3) TiO2 were prepared by microwave assisted hydrolysis of Ti (SO4)2. The effects of pH value of Ti(SO4)2 solution, calcination temperature and Ti(SO4)2 concentration on the photocatalyst particle size, chemical properties, crystal form and transition temperature from anatase to rutile were examined. The catalyst calcined at 700℃has optimal photocatalytic performance. The photocatalytic degradation percentages of p-CNB reached 89.3% at 90min. When the temperature increased to 800℃, only anatase phase presented. The presence of SO42- restrains the transformation of anatase to rutile, strengthens the ability against sintering.
     (4) Nano-TiO2 powders were prepared with titanium sulphate as initial materials by microwave assisted precipitation method. The optimum synthesis condition for nano-TiO2 were obtained by the experiment: the concentrations of Ti(SO4)2 was 0.2mol/L, the pH value of the reaction end point was 9.0, the calcination temperature was 600℃. The as- synthesized TiO2 was characterized by means of XRD and TEM. The results indicated that the TiO2 samples possessed small size, good dispersity, and had a high pure crystalline phase etc. Photocatalytic properties of nano-TiO2 were researched by degradating the p-CNB simulated wastewater. The results showed that degradation rate of p-CNB reached 87.1% in 90min. Takes urea as the instance, nano-TiO2 powders had been successfully prepared by microwave assisted hydrolyzation-deposition, in which titanium sulfate solution was used as the precursor, urea and sodium dodecylbenzene sulfonate (SDBS) were utilized as precipitator and surfactant respectively. The prepared TiO2 samples were mainly consisted of anatase TiO2 with a uniform size of 20.8nm through the analysis of XRD and SEM. When the content of surfactant is 1.0wt %, the size of nano-TiO2 can be controlled effectively because of the coated effect of SDBS.
     (5) Fe3+-doped TiO2 photocatalysts with good quality, which crystallite sizes were 10.4nm could be readily prepared by the method of microwave assisted converse precipitation and characterized by XRD and TEM. It is found that Fe3+ doping restrains crystal size increasing. Fe3+ ions enter into the crystal lattice of TiO2 to lead to matrix distortion and lattice expansion.
     TiO2 photocatalysts have been also evaluated by the photocatalytic degradation of p-CNB in simulated wastewater. The results showed that the photocatalytic activity of the Fe3+-doped TiO2 photocatalyst was much higher than that of undoped TiO2, and the optimum value of Fe3+ doped amount should be at 0.5wt %, the enhanced photocatalytic activity might be attributed to an increase in the charge separation efficiency. The experimental results of the photocatalytic degrading p-CNB indicated that the degradation rate of p-CNB was 95.1% by the UV rays irradiation in 90min, and the degradation rate of p-CNB was 75.2% on the photocatalyst used repeatedly 4 times.
     (6) Sonolysis and photocatalysis of organic pollutions are all of advanced oxidation technologies following the same free radical mechanism, on the other hand, ultrasonic cavitation can greatly improve the mass transfer between photocatalyst and liquid. Therefore, a synergetic effect may be expected by coupling these two technologies. The effects of dosage of catalyst, pH value, the distance from light resource to reactor, H2O2 dosage and initial reactive brilliant red X-3B concentration on sono-photocatalytic degradation were examined. The optimal conditions of the degradation of X-3B were determined by the uniform experiment design as follow: the mass concentration of TiO2 added is 0.73g/L, the initial pH value of the simulated wastewater is 3.5, and the dosage of H2O2 is 0.33g/L. Kinetic equation of sono-photocatalytic degradation of X-3B was established and verified. The results showed that the sono-photocatalytic degradation reactions of low-concentration X-3B was the first-order kinetics model, and the degradation reactions were in accordance with Langmuir-Hinshelwood equation well, and the reaction rate constant and adsorption equilibrium constant in the equation were determined by means of initial concentration method. In order to investigate the mineralization activity of X-3B under sono-photocatalytic system, UV-Vis and GC-MS analysis were used to investigate the degradation mechanism. It is proved by combining reference conclusions that and a possible sono-photocatalytic degradation mechanism was inferred.
     (7) The synergistic effects between ultrasound and photocatalytic degradation processes are significant. The sono-photocatalytic degradation of chlorobenzene (CB) simulated wastewater was investigated using the TiO2 prepared by microwave assisted method as photocatalyst. The effects of the dosage of TiO2, the initial concentration of CB, the dosage of H2O2 and the pH value of the simulated wastewater on the degradation of CB were tested. The results indicated that the CB underwent a fast degradation. In the process, the pH value of the simulated wastewater had little effect on the photodegradation rate of CB, while the dosage of H2O2 and the initial concentration of CB affected photodegradation rate greatly. The degradation rate of CB simulated wastewater is over 91.2% when the mass concentration of TiO2 is 300mg/L, CB concentration is 110.6 mg/L and the reaction time is 90min. Based on the results of the experiment. The mechanism of sono-photocatalytic degradation for chlorobenzene simulated wastewater was also discussed.
     (8) HCB has extremely low solubility in water. In this work, the photocatalytic degradation of HCB was examined with a preadsorption method for the first time. HCB was first preadsorbed on the TiO2 particles (HCB/TiO2) and then suspended in an aqueous solution. Almost all the HCB molecules were adsorbed on the surface of TiO2 during the whole reaction process due to its extremely low solubility in water and strong adsorption on TiO2. This is a good way to investigate the photodegradation of insoluble organic compounds. The influencing factors such as surface coverage of TiO2, dosage of HCB/TiO2, pH value, dosage of H2O2 and concentration of Fe3+ were studied. The pH value of the dispersion and the surface coverage had little effect on the photooxidation rate of HCB catalyzed by TiO2, while the dosage of HCB/TiO2, addition of Fe3+ and H2O2 affected the photocatalytic degradation rate significantly. The dechlorination rate of HCB surpassed 94.8% within 90min under the experimental conditions when surface coverage for TiO2 is 4×10-5 mol/g and the dosage of oxidant H2O2 is 16 mmol/L.
引文
[1]王辉,朱俊杰.液相微波介电加热法制备纳米粒子的研究进展.无机化学学报, 2002, 18(4): 329-333
    [2] Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature, 1972, 238(5358): 37-38
    [3] Fujishima A, Rao T N. Titanium dioxide photo catalysis. Photoch. Photobio C: Photochem. Revi., 2000, 1(1): 1271-1278
    [4] Frank S N, Bard A J. Semiconductor electrodes-photoassisted oxidations and photoelectron synthesis at polycrystalline TiO2 electrodes. J Am. Chem. Soc., 1977, 99(14): 4667-4671
    [5] Carey J H, Lawrence J. Photodechlorination of PCBs in the presence of titanium dioxide in aqueous suspension. Bulletin of Environmental Contamination & Toxicology, 1976, 16(6): 697-701
    [6] Hu Chun, Tang Yuchao. Characterization and photocatalytic activity of transition- metal-supported surface bond-conjugated TiO2/SiO2. Catalysis Today, 2004, 90(3-4): 325-330
    [7] Oillis D F, Al Ekabi H. Photocatalytic purification and treatment of water and air. Amsterdam: Elsevier Science Publishers B V, 1993: 121-130
    [8] Hermann J. H. Heterogeneous photocatalysis: fundamentals and applications to the removal of various types of aqueous pollutants. Catalysis Today, 1999, 53(1): 115-129
    [9] Dirk Hufschmidt, Detlef Bahnemann. Enhancement of the photocalalytic activity of various TiO2 materials by platinisation. Journal of Photochemistry and Photobiology A: Chemistry, 2002, 148(1-3): 223-231
    [10] Marye Anne Fox, Maria T Dulay. Heterogeneous photocatalysis. Chem. Rev., 1993, 93(1): 341-351
    [11] Colbeau C, Justin M, Kunst. Structural influence on charge-carrier lifetimes in TiO2 powders studied by microwave absorption. Journal of materials science,2003, 38(11): 2429-2437
    [12] Mills A. Water purification by semiconductor photocatalysis. Chem. Soc. Rev., 1993, 22(6): 417-425
    [13] Jae Hong Park, Euiso Chio. Removal of reactive dye using UV/TiO2 in circular type reactor. Journal of Environmental Science and Health, 2003, A38(7): 1389-1399
    [14]李旦振,郑宜.微波-光催化耦合效应及其机理研究.物理化学学报, 2002, 18(4): 332-335
    [15] Nedoloujko A, Kiwi J. TiO2 speciating precluding mineralization of 4-tert- burylpyridine accelerated mineralization via Fenton photo-assisted reaction. Wat. Res., 2000, 34(13): 3247-3284
    [16]陈梅兰,陈金媛. TiO2光催化降解低浓度溴氰菊酯.环境污染与防治, 2002, 22(1): 13-14
    [17] Wu Muying, Zhang Weifeng. Structural transformation in nanophase titanium dioxide. Modern physics Letters B, 1999, 13(5): 167-174
    [18] Ohno T, Tokieda K. Synergism between rutile and anatase TiO2 particles in photocatalytic oxidation of naphthalene. Applied Catalysis A: General, 2003, 244(2): 383-391
    [19] Bickley R I, Gonzallez-Carreno T. A structural investigation of titanium dioxide photocatalyst. J. Solid State Chem., 1991, 92(1): 178-190
    [20] Bo Sun, Panagiotis G. Smirniotis. Interaction of anatase and rutile TiO2 particles in aqueous photooxidation. Catalysis Today, 2003, 88(1-2): 49-59
    [21]靳立民,王凤英,王连寿等.光催化氧化处理难降解污水的应用前景.油气田环境保护, 2004, 14(2): 19-22
    [22] Gorischer H, Hellor A. The role of oxygen in photooxidation of organic molecules on semiconductor particles. J. Phys. Chem., 1991, 95(13): 5261-5267
    [23] Istvan Ilisz, Attila Bokros. TiO2-based heterogenous photocatalytic water treatment combined with ozonation. Ozone: Science and Engineering, 2004, 26: 585-594
    [24] Rahman M A, Muneer M, Bahnemann D. Photocatalytic degradation of dimethylterephthalate in aqueous suspensions of titanium dioxide. Res. Chem. Intermed., 2003, 29(1): 35-50
    [25] Scot T Matin. Chemical mechanism of inorganic oxidants in the TiO2/UV process: increased rates of degradation of chlorinated hydrocarbons. Environmental Science & Technology, 1995, 29(10): 2567-2573
    [26]魏宏斌,李田.水中有机污染物的光催化氧化.环境科学进展, 1994, 2(3): 50-52
    [27] Abdullah Mohammad, Low G K, Matlhews R W. Effects of common inorganic anions on rates of photocatalytic oxidation of organic carbon over illuminated titanium dioxide. Journal of Physical Chemistry, 1990, 94(17): 6820-6825
    [28]唐玉朝,胡春,王怡中.无机离子对TiO2光催化降解染料的影响.环境化学, 2003, 22(4): 364-367
    [29]夏星辉,许嘉琳.十二烷基苯磺酸钠的光催化降解研究.中国环境科学, 2002, 22(3): 263-267
    [30]赵杨,魏宏斌.光催化氧化法处理表面活性剂废水.中国给水排水, 2004, 20(10): 26-29
    [31] Masato Takeuchi, Kouichirou Tsujimaru. Effect of Pt loading on the photocatalytic reactivity on titanium oxide thin films prepared by ion engineering techniques. Res. Chem. Intermed., 2003, 29(6): 619-629
    [32] Mao Liqun, Li Qinglin. Study of the surface states and activity of a Pt/TiO2 photocatalyst. Surface Review and Letters, 2004, 11(1): 111-114
    [33] Linsebigler A L. Photocatalysis on TiO2 surfaces: principles, mechanisms and selected results. Chem. Rev., 1995, 95(3): 735-758
    [34] Agatino Di, Elisa Garca López. Surface characterization of metal ions loaded TiO2 photocatalysts: structure-activity relationship. Applied Catalysis B: Environmental, 2004, 48(3): 223-233
    [35] ?zkan A, ?zkan M. H. Photocatalytic degradation of a textile azo dye, Sirius Gelb GC on TiO2 or Ag-TiO2 particles in the absence and presence of UV irradiation: the effects of some inorganic anions on the photocatalysis. Journal of Photochemistry and Photobiology A: Chemistry, 2004, 163(1-2): 29-35
    [36] Gao Y M. Improvement of photocatalytic activity of titanium (Ⅳ) oxide by dispersion of Au on TiO2. Mat. Res. Bull., 1991, 26(12): 1247-1254
    [37] Debarata Chatterjee, Amima Mahata. Photodegradation of surfactants on the by modified TiO2 surface using visible light. Indian Journal of Chemistry, 2003, 42A: 1627-1631
    [38] Yoshinage K., Toyofuku I. Photoinduced electron transfer catalysis of titania particles modified with a Ru (2, 2-bipridyl)32+-grafted polymer by visible light. Colloid Polym. Sci., 2000, 278(5): 481-484
    [39] Rophael M W, Khalil L B, Moawad M M. The reduction of aqueous carbonate to methanol: photocatalysed by TiO2 phthalocyanin. Vacuum, 1990, 41(1-3): 143-146
    [40]王怡中.不同类型燃料化合物太阳光催化降解研究.太阳能学报, 1998, 19(2): 117-125
    [41]卢铁成,林理彬.无机敏化对金红石光吸收特性的影响.材料研究学报, 2001, 15(3): 291-294
    [42] Yan Xiaoli, He Jing, Evans David G., et al. Preparation, characterization and photocatalytic activity of Si-doped and rare earth-doped TiO2 from mesoporous precursors. Applied Catalysis B: Environmental, 2005, 55(4): 243-252
    [43] Li W., Wang Y. Band gap tailoring of Nd3+-doped TiO2 nanoparticles. Applied Physics Letters, 2003, 83(20): 4143-4145
    [44] Choi W, Termin A, Hoffmann M R. The role of metal ion dopants in quantum-sized TiO2: correlation between photoreactivity charge carrier recombination dynamics. J. Phys. Chem., 1994, 98 (51): 13669-13679
    [45] Yuan Z H, Jia J H, Zhang L D. Influence of co-doping of Zn(Ⅱ)+Fe(Ⅲ) on photocatalytic activity of TiO2 for phenol degradation. Mater. Chem. Phys., 2002, 73(2-3): 323-326
    [46] Paola A Di, Garcia Lopez E, Ikeda S, et al. Photocatalytic degradation of organic compounds in aqueous systems by transition metal doped polycrystalline TiO2. Catalysis Today, 2002, 75(1-4): 87-93
    [47]陈建华,王晓林,张培新等.纳米二氧化钛粉末离子掺杂研究.广西大学学报(自然科学版), 2005, 30(1): 44-50
    [48]高远,徐安武,祝静艳等. RE/TiO2用于NO2-光催化氧化的研究.催化学报, 2001, 22(1): 53-56
    [49] Machida, Norimoto M K. The effect of SiO2 addition on super-hydrophilic property of TiO2 photocatalyst. J. Mater. Sci., 1999, 34(11): 2569-2574
    [50] Juan Matos, Jorge Laine. Synergy effect in the photocatalytic degradation of phenol on suspended mixture of titania and activated carbon. Applied Catalysis B: Environmental, 1998, 18(3-4): 281-291
    [51]付贤智,李旦振.提高多相光催化氧化过程效率的新途径.福州大学学报, 2001, 29(6): 105-114
    [52] Su Wenyue, Fu Xianzhi. Effect sulfation on structure and photocatalytic performance of TiO2. Acta. Phys. Chim. Sin., 2001, 17(1): 28-31
    [53] Serrano B, De Lasa H. Photocatalytic degradation of water organic pollutants: pollutant reactivity and kinetic modeling. Chemical Engineering Science, 1999, 54 (3): 306-310
    [54] Zhang Yuhong, Xiong Guoxing. Preparation of titania-based catalysts for formaldehyde photocatatic oxidation from TiCl4 by the sol-gel method. Catalysis Today, 2001, 68(1-3): 89-95
    [55] Lassale G, Fernande Z A. Spectroscopic characterization of quantum-sized TiO2 supported on silica: influence of size and TiO2-SiO2 interface composition. J. Phys. Chem., 1995, 99(5): 1484-1490
    [56] Vogel R, Hoyper P. Quantumsized PbS, CdS, Ag2S, SbS3 and Bi2S3 particles as sensitizers for various nanoporous wide-band gap semiconductors. J. Phys. Chem., 1994, 98(12): 3183-3188
    [57] Karunakaran C, Dhanalakshmi R, Karuthapandian S. Inhibition of photooxidation of iron (II) by some semiconductors. Journal of Photochemistry and Photobiology A: Chemistry, 2005, 170(3): 233-238
    [58]施利毅,古宏晨,李春忠. TiO2-SnO2复合光催化剂制备和性能.催化学报, 1999, 20(3): 338-340
    [59] Vinodgopal K, Kamat P V. Enhanced rates of photocatalytic degradation of ananode using SnO2/TiO2 coupled semiconductor thin films. Chem. Mater., 1996, 8(8): 2180-2183
    [60] Dumitriu D. Photocatalytic degradation of phenol by TiO2 thin films prepared by sputtering. Applied Catalysis B: Environmental, 2000, 25(2-3): 83-92
    [61] Zeman P. Effect of total and oxygen partial pressures on structure of photocatalytic TiO2 films sputtered on unheated substrate. Surface and Coatings Technology, 2002, 153(1): 93-99
    [62] Duan Xiaodong, Sun Dezhi. Photocatalytic decomposition of toluene by TiO2 film as photocatalyst. J. Environ. Sci. Health, 2002, A37(4): 679-692
    [63] Takeshi Kudo, Yuko Nakamurl. Development of rectangular column structured titanium oxide photocatalysis anchored on silica sheets by a wet process. Res. Chem. Intermed., 2003, 29(6): 631-639
    [64] Yamashiya H, Honda M. Preparation of titanium oxide phoatcatalysis anchored porous silica glass by a metal ion-implantation method and their photocatalytic reactivities for the degradation of 2-propanol diluted in water. J. Phys. Chem. B, 1998, 102(52): 10707-10713
    [65] Hirmmi Yamashita, Kazuhiro Mae Kawa. Photocatalytic degradation of propanol diluted in water with TiO2 photocatalyst loaded on Si3N4. Chemistry Letters, 2003, 32(10): 930-931
    [66] Kumazawa H, Kawasaki H. Liquid-photocatalytic degradation over TiO2 particles suspending in gas-liquid dispersion. Chem. Eng. Comm., 2002, 189(3): 298-309
    [67] Xiong Ya, He Chun. Performance of COD removal from acid scarlet BS-containing solution in a novel packed-bed hollow-tube photocatalytic reactor. J. of Environmental Science & Health, 2003, A38(5): 935-947
    [68] Hoffmann M R, Mahnenann D A. Environmental application of semiconductor photocatalysis. Chem. Rec., 1995, 95(1): 69-73
    [69]王祖豌,张凤宝.负载型TiO2光催化剂的研究进展.化学工业与工程, 2004, 21(4): 248-253
    [70] Tanaka H. Heterogeneous photocatalytic decomposition of phenol over TiO2 powder. Bull. Chem. Soc. Japan., 1985, 58: 2015-2022
    [71] Uchihana T. Effect of ethylenediamine tetracetia acid on the photocatalytic activities and potentials of cadmium sulfide and cadmium selenide. Phy. Chem., 1990, 94(1): 415-418
    [72]张素香,屈撑囤,王新强.光催化剂改性及固定化技术的研究进展.工业水处理, 2002, 22(7): 12-14
    [73] Jimmy C Yu Lin J. Ti1-x ZrxO2 solid solutions for the photocatalytic degradation of acetone in air. J. Phys. Chem. B, 1998, 102(26): 5094-5098
    [74] Wang Jinshu, Yin Shu. Preparation and characterization of nitrogen doped SrTiO3 photocatalyst. Journal of Photochemistry and Photobiology A: Chemistry, 2004, 165(1-3): 149-156
    [75] Asahi R, Morikawa T, Ohwaki T, et al. Visible-light photocatalysis in nitrogen-doped titanium oxides. Science, 2001, 293(5528): 269-271
    [76] Tsutomu Umebayashi, Tetsuya Yamaki. Visible light-induced degradation of methylene blue on S-doped TiO2. Chemistry Letters, 2003, 32(4): 330-331
    [77] Liu Hongyan. Codoped rutile TiO2 as a new photocatalysis for visible light irradiation. Chemistry Letters, 2004, 33(6): 730-731
    [78] Hiroshi Irie, Yuka Watanabe. Carbon-doped anatase TiO2 powders as a visible-light sensitive photocatalyst. Chemistry Letters, 2003, 32(8): 772-773
    [79]李旦振,郑宜.微波场助光催化氧化及其应用.高等学校化学学报, 2002, 23(12): 2351-2356
    [80]郑宜,李旦振. C2H4的微波场助气相光催化氧化.高等学校化学学报, 2001, 22(2): 443-445
    [81]朱素芳.声光电磁废水处理技术.化工环保, 2004, 24(2): 111-114
    [82] Hua I, Hochemer R H, Hoffmann M R. Sonochemical degradation of p-nitrophenol in a parallel-plate near-field acoustical processor. Environ. Sci. Technol., 1995(11): 2790-2796
    [83] Irfan Z. Sonophotochemical destruction of aqueous solution of 2, 4, 6-trichlorphenol. Ultrason. Sonchem, 1998, 5(2): 53-61
    [84] Hoffmann M R, Hua I, Chemer R. Application of ultrasonic irradiation for the degradation of chemical contaminants in water. Ultrasonics Sonochemistry, 1996,3(3): S163-S172
    [85] Tuziuti T, Yasui K, Iida Y, et al. Effect of particle addition on sonochemical reaction. Ultrasonics, 2004, 42(1-9): 597-601
    [86] Gondrexon N, Renaudin V, Petrier C, et al. Degradation of pentachlorophenol aqueous solutions using a continuous flow ultrasonic reactor: experimental performance and modeling. Ultrasonics Sonochemistry, 1999, 5(4): 125-131
    [87] Elena Selli, Claudia Letizia. Degradation of methyl tert-butyl ether in water: effect of the combined use of sonolysis and photocatalysis. Ultrasonic Sonochemistry, 2005, 12(5): 395-400
    [88] Sulick K. S. Sonochemistry. Science, 1990, 247: 1439-1445
    [89] Mason T J. A technology for tomorrow. Chemistry Industry, 1993, 18(1): 47-50
    [90] Henglein A. Sonolysis of carbon dioxide, nitrous oxide and methane in aqueous solution. Z. Naturforsch., 1984, 40B: 100-107
    [91] Tanaka K, Hisanaga T. Efficient photocatalytic degradation of chloral hydrate in aqueous semiconductor suspension. Journal of Photochemistry and Photobiology A: Chemistry, 1989, 48(2): 155-159
    [92] Cratzel C. K, Jirousek M. Decomposition of organophotorous compounds on photoactivated TiO2 surfaces. Journal of Molecular Catalysis, 1990, 60(2): 375-387
    [93] Scnchez L, Poral J. Aniline degradation by combined photocatalysis and ozonation. App. Catal. B, 1998, 19(1): 59-65
    [94]张岩峰,魏雨,武瑞涛. TiO2粉体的制备及应用进展.功能材料, 2000, 31(4): 354-356
    [95]杨霞,王胜平,马新宾.微波技术在催化剂制备中的应用.化学通报, 2004, (9): 641-647
    [96]关英勋,房大维.微波法制备无机纳米材料的研究进展.化工时刊, 2004, 18(6): 8-11
    [97]杨伯伦,贺拥军.微波加热在化学反应中的应用进展.现代化工, 2001, 21(4): 8-12
    [98]杨升红,张小明,张廷杰等.微波法制备纳米TiO2粉末.稀有金属材料与工程,2000, 29(5): 354-356
    [99] Liu Zhaoyang, Quan Xie, Fu Hongbo. Effect of embedded-silica on microstructure and photocatalytic activity of titania prepared by ultrasound-assisted hydrolysis. Applied Catalysis B: Environmental, 2004, 52(1): 33-40
    [100]伍军,刘鹏.超声波场中硫酸氧钛的水解研究.四川有色金属, 2003, (3): 22-26
    [101]陈洪杰,李志伟,陶小军.超声波在纳米材料制备中的应用.化学研究, 2005, 16(1): 104-107
    [102] Parag R. Gogate, Sukti Mujumdar. A sonophotochemical reactor for the removal of formic acid from wastewater. Ind. Eng. Chem. Res., 2002, 41: 3370-3378
    [103] Sukti M, Kumar P S. Effect of liquid-phase on ultrasound intensity and cavitation activity. Ultrason. Sonochem, 1998, 5(1): 113-118
    [104]霍尼,杨倬,吴广礼译.制糖工艺学原理.北京:中国财政经济出版社, 115-221
    [105]陈文新,黄浪欢,刘应亮等.微波法制备纳米TiO2.化学研究与应用, 2004, 16(5): 661-663
    [106]刘忠士,昝菱.超细TiO2粉体制备之微波水解法.武汉大学学报(理学版), 2001, 47(2): 192-194
    [107]张敬畅,曹维良,于定新.超临界流体干燥法制备纳米级TiO2的研究.无机化学学报, 1999, 14(1): 29-35
    [108]王新,韩梅娟,魏雨等. TiOCl2溶液微波加热制备金红石型TiO2纳米粒子.人工晶体学报, 2004, 33(4): 634-637
    [109] Raner K D, Strauss C R, Trainor R W. A new microwave reactor for batchwise organic systhesis. J. Org. Chem., 1995, 60(8): 2456-2460
    [110]种法国,赵景联.微波水热晶化制备纳米二氧化钛光催化剂及其性能研究.高校化学工程学报, 2006, 20(1): 138-141
    [111] Murugan A V, Samuel V, Ravi V. Synthesis of nanocrystalline anatase TiO2 by microwave hydrothermal method. Materials Letter, 2006, 60(4): 479-480
    [112]白波,赵景联.纳米TiO2的微波水热法制备及其光催化性能研究.化学通报,2005(10): 776-780
    [113] Sridhar K, Rama K, Hiroaki K. Microwave-hydrothermal processing of titanium dioxide. Mater. Chem. Phy., 1999, 61(1): 50-54
    [114]周晓明,张培新. Fe3+、Co2+、Ni2+掺杂TiO2纳米粉体的微波水热合成研究.深圳大学学报(理工版), 2004, 21(3): 257-260
    [115]周晓明,张培新,刘剑洪.微波法合成纳米TiO2及Fe3+掺杂纳米TiO2粉体的研究.化工新型材料, 2004, 32(7): 16-19
    [116]孙康,刘辉,李伟.微波热液法制备光催化TiO2功能材料.有色金属, 2003, 55(3): 16-18
    [117]全学军,李大成.微波能在制备超细TiO2中的应用.电子元件与材料, 1998, 117(12): 38-39
    [118]张美红,丁士文,王振兴等.化学自组装合成Sn掺杂的纳米TiO2介孔材料及其光催化性能.中国科学(B辑化学), 2005, 35(3): 206-211
    [119]王振兴,丁士文,张美红.自组装合成纳米复合TiO2-ZnO介孔材料及其光催化性能.化学学报, 2005, 63(3): 243-248
    [120]丁士文,李梅,王利勇.微波反应制备纳米TiO2-Fe2O3复合材料及其光催化性能.河北大学学报(自然科学版), 2005, 25(1): 38-42
    [121]金振兴,曲蛟.用微波干燥法制备纳米级TiO2进行光催化降解甲基橙的研究.精细石油化工, 2004(6): 18-20
    [122]李旦振,郑宜,傅贤智.微波法制备SO42-/TiO2催化剂及其光催化氧化性能.物理化学学报, 2001, 17(3): 270-272
    [123]欧阳志强,刘桂华.利用微波介电加热和微波干燥水解法制备TiO2微粒.江西化工, 2003(4): 133-136
    [124]曹爱红,洪掌珠,蓝心仁.沉淀法制备TiO2纳米粉体和微波干燥的研究.河南化工, 2002(6): 9-11
    [125]夏启斌,李忠,奚红霞等. TiO2的微波辐射Sol-Gel法制备及其光催化性能.华南理工大学学报(自然科学版), 2003, 31(11): 92-96
    [126]郑国梁,程如烟.常压微波等离子体气相法制取纳米二氧化钛.钛工业进展,2001(5): 22-24
    [127] Sharma A K, Aravindhan S. Microwave glazing of alumina-titania cermic composite coatings. Mater. Lett, 2001, 50(5-6): 295-301
    [128] Bykov Y, Eremeev A, Egorov S, et al. Sintering of nanostructural titanium oxide using millimeter-wave radiation. Nanostructured Materials, 1999, 12(1-4): 115-118
    [129] Vigil E, Saadoun L. TiO2 thin films grown using microwave-activated solution. J. Mater. Sci. Lett., 1999, 18(13): 1067-1069
    [130]国伟林,杨中喜,王西奎.纳米二氧化钛的超声化学法合成.硅酸盐学报, 2004, 32(8): 1008-1011
    [131]国伟林,王西奎.超声化学法制备纳米二氧化钛.中国粉体技术, 2002, 8(4): 22-23
    [132]国伟林,杜红,王西奎.掺银二氧化钛的超声化学法制备与光催化性能研究.济南大学学报(自然科学版), 2004, 18(4): 301-303
    [133] Guo Weilin, Wang Xikui. Formation of the rutile TiO2 under ultrasonic irradiation. Journal of Materials Science, 2004, 39(9): 3265-3266
    [134]余新武,廖伦.纳米TiO2的制备及其对品红的超声降解研究.化工环保, 2004, 24(增刊): 24-29
    [135]张昭,吴潘,王乐飞等.超声波辐照对水合二氧化钛晶体结构和煅烧二氧化钛粒度的影响.中国有色金属学报, 2005, 15(2): 321-326
    [136]吴潘,张昭.超声波场中钛液水解和产物表征.电子元件与材料, 2004, 23(6): 28-31
    [137]叶钊,潘海洋.超声场中sol-gel法制备纳米TiO2光催化剂的研究.应用声学, 2003(4): 16-20
    [138] Horváth I, Hanic F. Thermal decomposition of CuCrO4. Therochimica. Acta. 1985, 92: 177-180
    [139]张守民,辛建华,齐广东.纳米TiO2复合氧化物的制备及其光催化降解对硝基苯胺的性能研究.南开大学学报(自然科学版), 2004, 37(4): 14-19
    [140]张良均,童身毅.超声乳化法制备TiO2/PMMA及其在乳胶漆中的影响.现代涂料与涂装, 2004(3): 3-5
    [141]李春喜,王子镐.超声技术在纳米材料制备中的应用.化学通报, 2002(5): 268-271
    [142] Carilien L Huisman, Albert Goossens. Preparation of a nanostructured composite of titanium dioxide and polythiophene: new routes towards 3D heterjunction solar cells. Synthetic Metals, 2003, 138(1-2): 237-241
    [143] Jong Ho Lee, Kyeong Youl Jung, Seung Bin Park. Modification of titania particles by ultrasonic spray pyrolysis of colloid. Journal of Materials Science, 1999, 34(16): 4089-4093
    [144]李玉华,陈敬超. NVD法制备TiO2薄膜及形貌研究.材料导报, 2004, 18(专辑Ⅲ): 74-76
    [145]周文敏,傅德黔,孙宗光.水中优先控制污染物黑名单.中国环境监测, 1990, 6(4): 1-3
    [146] Wojciech Jedral. Electrochemical oxidation of chlorinated benzenes. Electrochemistry Communications, 1999, 1(3-4): 108-110
    [147]周明华,吴祖成.难生化降解芳香化合物废水的电催化处理.环境科学, 2003, 24(2): 121-124
    [148] Shanableh A, Earnest F. Supercritical water oxidation-wasterwaters and sludges. Wat. Sci. Tech., 1991, 23: 389-398
    [149] Brubaker W W, Hites R A. OH reaction kinetics of gas-phaseα-andγ- hexachlorocyclohexane and hexachlorobenzene. Environ. Sci. Technol., 1998, 32(6): 766-769
    [150]王鹤峰,李兆龙.六氯苯与OH自由基的反应.高等学校化学学报, 2001, 22(1): 127-129
    [151]郭强,谢从武.有毒难降解工业废水处理技术研究进展.精细化工进展, 2005, 6(4): 11-14
    [152] Yassine Bessekhouad, Didier Robert, Jean Victor Weber. Synthesis of photocatalytic TiO2 nanoparticles: optimization of the preparation conditions. Journal of Photochemistry and Photobiology A: Chemistry, 2003, 157(1): 47-53
    [153]徐涛,肖贤名,刘红英. UV/H2O2光化降解水中邻二氯苯的反应机理.中国环境科学, 2004, 24(5): 547-551
    [154] Hong C S, Wang Y B, Bush B. Kinetics and products of the TiO2 photocatalytic degradation of 2-chlorobiphenyl in water. Chemosphere, 1998, 36(7): 1653-1667
    [155]吴西宁,庞菊玲.催化氧化法分解邻二氯苯.工业催化, 2003, 11(11): 45-48
    [156]杨平,牟志刚,徐娇珍.真空吸附水解制备活性炭负载TiO2及其光催化降解间二氯苯.感光科学与光化学, 2003, 22(2): 87-92
    [157]蒋晓凤,赵一先.掺银负载型TiO2光催化剂降解水中氯苯的动力学研究.华东理工大学学报(自然科学版), 2005, 31(1): 122-125
    [158]潘海洋.光催化降解饮用水中几种典型有机污染物-影响因素及降解机理的研究.中国科学院广州地球化学研究所: [博士学位论文],广州: 2000. 51-53
    [159] Yang Y, Guo Y H, Hu C W, et al. Preparation of surface modification of mesoporous titania with monosubstituted Keggin units and their catalytic performances for organochlorine pesticide and dye under UV irradiation. Applied Catalysis A: General, 2004, 273(1-2): 201-210
    [160]姜焕伟,王郁,林逢凯.磁场对TiO2光催化降解水中微量氯苯的影响.华东理工大学学报, 2003, 29(2): 166-169
    [161] Kruus P, Burk R C, Entezari M H, et al. Sonication of aqueous solutions of chlorobenzene. Ultrasonics Sonochemistry, 1997, 4(3): 229-233
    [162] Dewulf J, Langenhove H V, Visscher A D, et al. Ultrasonic degradation of trichloroethylene and chlorobenzene at micromolar concentrations: kinetics and modeling. Ultrasonics Sonochemistry, 2001, 8(2): 143-150
    [163] Petrier C., Micolle M., Merlin G., et al. Characteristics of pentachlorophenate degradation in aqueous solution by means of ultrasound. Environ. Sci. Technol. 1992, 26: 1639-1642
    [164] Petrier C., Jiang Y., Lamy M. F. Ultrasound and environment: sonochemical destruction of chloroaromatic derivatives. Environ. Sci. Technol, 1998, 32(9): 1316-1318
    [165] Jiang Y, Petrier C, Waite T D. Kinetics and mechanisms of ultrasonic degradationof volatile chlorinated aromatics in aqueous solution. Ultrasonics Sonochemistry, 2002, 9(6): 317-323
    [166]华彬,陆永生,唐春燕.含氯苯废水的超声降解研究.环境污染与防治, 2001, 23(3): 95-97
    [167]李永峰.超声波降解废水中氯苯的研究.郑州:郑州工业大学: [硕士学位论文], 2000. 12-14
    [168]任国宾,陈宜良,李永峰.超声波及其联用技术降解废水中的氯苯.环境污染与防治, 2003, 25(3): 167-169
    [169]胡文勇,郑正.超声波辐照下零价铁处理硝基氯苯废水的研究.工业用水与废水, 2005, 36(4): 20-23
    [170]李占双,闫冰,王军.超声/H2O2工艺降解水溶液中氯苯的实验研究.化学与黏合, 2005, 27(3): 157-159
    [171] Wang H Y, Niu J F, Long X X et al. Sonophotocatalytic degradation of methyl orange by nano-sized Ag/TiO2 particles in aqueous solutions. Ultrasonics Sonochemistry, 2008, 15(4): 386-392
    [172] Kalumuck K. M. The use of cavitating jets to oxidize organic compounds in water. Journal of Fluids Engineering, 2000, 122(9): 465-470
    [173] Aleksey B. On the ultraviolet photofragmentation of hydrogen iodide. Journal of Chemical Physics, 2000, 113(15): 6174-6185
    [174] Hiroyuki Ozaki. Growth of organic ultrathin films studied by penning ionization electron and ultraviolet photoelectron spectroscopies: pentacene. J. Chem. Phys., 2000, 113(15): 6361-6375
    [175] Naffrechoux E, Chanoux S, Petrier C, et al. Sonochemical and photochemical oxidation of organic matter. Ultrasonics Sonochemistry, 2000, 7(4): 255-259
    [176] Hajime S, Takahide K, Mitsue F. Simultaneous irradiation of ultrasound and UV light. Ultrasonic acceleration of the photochemical disappearance of 4, 4’-dihalogenated benzils in 1, 4-dioxane. Ultrasonics Sonochemistry, 2001, 8(1): 7-10
    [177]李春喜,李玉同,王子镐.超声波-光催化联合降解苯酚废水研究.环境污染治理技术与设备, 2002, 3(8): 48-51
    [178]顾浩飞,安太成,文晟等.超声光催化降解苯胺及其衍生物研究.环境科学学报, 2003, 23(3): 593-597
    [179]赵德明,史惠祥,雷乐成. US/UV协同催化氧化降解对氯苯酚的研究.环境科学学报, 2003, 23(3): 593-597
    [180]刘国光,张学治,丁雪军等.二氧化钛光催化剂的表征方法研究.环境污染治理技术与设备, 2003, 4(4): 55-60
    [181] Harada H. Sonophotocatalytic decomposition of water using TiO2 photocatalyst. Ultrasonics Sonochemistry, 2001, 8(1): 55-58
    [182] Harada H. Isolation of hydrogen from water and/or artificial seawater by sonophotocatalysis using alternating irradiation method. International Journal of Hydrogen Energy, 2001, 26(4): 303-307
    [183] Harada H, Hosoki C, Kudo A. Overall water splitting by sonophotocatalytic reaction: the role of powdered photocatalyst and an attempt to decompose water using a visible-light sensitive photocatalyst. Journal of Photochemistry and Photobiology A: Chemistry, 2001, 141(2-3): 219-224
    [184]郭照冰,郑正,胡文勇.二硝基酚的超声波及协同降解研究.环境科学学报, 2004, 24(2): 237-241
    [185] Yu J. C., Yu J. G., Ho W. K., et al. Preparation of highly photocatalytic active nano-sized TiO2 particles via ultrasonic irradiation. Chem. Commun., 2001(19): 1942-1951
    [186]夏晓红,罗永松,梁英等.超声法制备TiO2纳米棒及其光催化性质的研究.电子元件与材料, 2007, 26(1): 20-22
    [187] Yang Ke, Zhu Jianmin, Zhu Junjie, et al. Sonochemical synthesis and microstructure investigation of rod-like nanocrystalline rutile titania. Materials Letters, 2003, 57(30): 4639-4642
    [188] Jimmy C, Yu Jiaguo, Zhang Lizhi, et al. Enhancing effects of water content and ultrasonic irradiation on the photocatalytic activity of nano-sized TiO2 powders. Journal of Photochemistry and Photobiology A: Chemistry, 2002, 148(2): 263-271
    [189]钱东,闫早学,石毛等.溶胶-凝胶法制备TiO2纳米颗粒及其光催化性能.中国有色金属学报, 2005, 15(5): 817-822
    [190] Senthilkumaar S, Porkodi K, Vidyalakshmi R. Photodegradation of a textile dye catalyzed by sol-gel derived nanocrystalline TiO2 via ultrasonic irradiation. Journal of Photochemistry and Photobiology A: Chemistry, 2005, 170(3): 225-232
    [191]陈志军,方少明.近代测试技术在高分子研究中的应用.成都:成都科技大学出版社, 1998
    [192]郑遗凡,李国华,徐铸德.纳米二氧化钛粉体粒径表征研究.硅酸盐学报, 2004, 32(5): 642-648
    [193]岳林海.稀土掺杂二氧化钛的相变和光催化活性.浙江大学学报(理学版), 2000, 27(1): 69-74
    [194]王建信,李义平,曾新平等.水中有机污染物超声强化氧化技术研究进展.环境污染治理技术与设备, 2003, 4(4): 66-69
    [195]黄云龙,赵光明.溶剂、催化剂对TiO2溶胶-凝胶过程的影响.功能材料, 1997, 28(1): 37-4l
    [196]吴树新,尹燕华,马智等.超声水解法制备的纳米二氧化钛光催化性能的研究.分子催化, 2005, 19(3): 167-171
    [197]熊华山,陈宁,张清华等. Sol-gel制备SiO2增透膜的研究.功能材料, 2004, 35(4): 485-486
    [198]董国利,高荫本,陈诵英.纳米级TiO2粉体的制备研究Ⅲ成胶温度、钛盐溶液浓度、老化时间的影响.分子催化, 1998, 12(6): 471-474
    [199]陈娜,程永清,李丽玲.酸催化剂对溶胶-凝胶法制备TiO2粉末的影响.功能材料与器件学报, 2005(11): 163-167
    [200]董国利,高荫本,陈诵英.纳米级TiO2粉体的制备研究Ⅱ絮凝剂及其浓度的影响.无机化学学报, 1998, 14(3): 327-332
    [201]付川,陈书鸿,饶通德.溶胶-凝胶法制备纳米TiO2研究.西南民族学院学报, 2003, 29(1): 50-52
    [202]程小苏. TiO2光催化剂的制备过程与配方优化.华南理工大学学报, 2003,31(2): 14-l8
    [203] Su C, Houg B Y, Fseng C M. Sol-gel preparation and photocatalysis of titanium dioxide. Catalysis Today, 2004, 96(3): 119-126
    [204] Bessekhouad Y, Robert D, Weber J V. Synthesis of photocatalytic TiO2 nanoparticles: optimization of the preparation conditions. Journal of Photochemistry and Photobiology A: Chemistry, 2003, 157(1): 47-53
    [205]祖庸,李晓娥,卫志贤.超细TiO2的合成研究.西北大学学报(自然科学版), 1998, 28(1): 51-56
    [206]陈建军,陈晓春,李庆余等. Sol-Gel法制备纳米二氧化钛凝胶的工艺优化.中国有色属学报, 2000, 10(增刊1): 84-87
    [207]单风君,穆柏存.溶胶-凝胶法制备纳米TiO2粉体优化及性能测试.辽宁化工, 2004, 33(6): 328-330
    [208]廖东亮,肖新颜,张会平.溶胶-凝胶法制备纳米二氧化钛的工艺研究.化学工艺与工程, 2003, 20(5): 256-260
    [209]张惠芳,吕文英,刘国光等.超声在TiO2基光催化剂制备过程中的应用.应用化工, 2007, 36(1): 78-80
    [210] Dana Dvornová, Vlasta Brezová, Milan Mazúr, et al. Investigations of metal-doped titanium dioxide photocatalysts. Appl. Catal. A: Environ., 2002, 37(2): 91-105
    [211] Dong Hyun Kim, Hyun Seon Hong, Sun Jae Kim, et al. Photocatalytic behaviors and structural characterization of nanocrystalline Fe-doped TiO2 synthesized by mechanical alloying. Journal of Alloys and Compounds, 2004, 375(1-2): 259-264
    [212] Wang K H, Hsieh Y H, Chen L J. The heterogeneous photocatalytic degradation, intermediates and mineralization for the aqueous solution of cresols and nitrophenols. Journal of Hazardous Materials, 1998, 59(2-3): 251-260
    [213] Araia J, Gonzalez O, Doia J M, et al. Role of Fe3+, Fe2+ as TiO2 dopant ions in photocatalytic degradation of carboxylic acids. Journal of Molecular Catalysis A: Chemical, 2003, 197(1-2): 157-171
    [214]黄莉莉,郝清伟,苏会东.醋酸对玻璃负载TiO2膜光催化的影响.沈阳师范大学学报(自然科学版), 2005, 23(2): 186-189
    [215]宋海燕.新型光催化材料的制备与催化性能研究.中国科学技术大学: [博士学位论文], 2006: 67-73
    [216]于向阳,程继健.铁、铬离子掺杂对TiO2薄膜光催化活性的影响.无机材料学报, 2001, 16(4): 742-746
    [217] Matsumoto, Yasumichi. Energy positions of oxide semiconductors and photocatalysis with iron complex oxides. J. Solid State Chem., 1996, l26(2): 227-234
    [218]张彭义,余刚,蒋展鹏.半导体光催化剂及其改性技术进展.环境科学进展, 1997, 5(3): 1-10
    [219]白焱,李永红.纳米TiO2光催化剂的研究进展.材料开发与应用, 2005, 20(2): 37-40
    [220] Borkar S. A., Dharwadkar S. R. Temperatures and kinetics of anatase to rutile transformation in doped TiO2 heated in microwave field. Journal of Thermal Analysis and Calorimetry, 2004, 78(3): 761-767
    [221]白秀敏,邹丽霞,齐文刚等.微波法制备Ce2O3/WO3光催化剂及其催化氧化甲醛的研究.化学反应工程与工艺, 2006, 22(4): 361-366
    [222]张春勇,郑纯智,张国华.微波辐射法研制复合半导体光催化材料TiO2/ZnO.化学工程师, 2007, 137(2): 20-23
    [223]张先如,徐政.微波技术在材料化学中的原理及其应用进展.辐射研究与辐射工艺学报, 2005, 23(4): 196-200
    [224] Egon M. Monodispered inorganic colloids: achivements and problems. Pure & Appl. Chem., 1992, 64(11): 1703-1707
    [225]昝菱,刘忠士,钟家柽.均分散球形TiO2制备中的若干影响因素.武汉大学学报(理学版), 2001, 47(2): 186-188
    [226] Borkar S. A., Dharwadkar S. R. Effect of microwave processing on polymorphic transformation of TiO2. Ceramics International, 2004, 30(4): 509-514
    [227]金钦汉,戴树珊,黄卡玛.微波化学.北京:科学出版社, 2001: 94-114
    [228]张新玉,李静霞,曹锋雷等.微波辅助法制备纳米TiO2及其光催化性能.上海师范大学学报(自然科学版), 2006, 35(3): 47-51
    [229] Felgner K. H., Müller T., Langhammer H. T., et al. On the formation of BaTiO3 from BaCO3 and TiO2 by microwave and conventional heating. Materials Letters, 2004, 58(12-13): 1943-1947
    [230]李竟先,鄢程,庄志强.水解-水热法低温制备金红石型TiO2纳米颗粒研究.中国陶瓷, 2003, 39(4): 1-5
    [231]于网林,杨平,徐秋云.均分散氧化钛粒子的制备研究.高等学校化学学报, 1994, 15(11): 1686-1689
    [232]苏文悦,付贤智,魏可镁. SO42-/TiO2固体酸的红外和拉曼光谱研究.光谱学与光谱分析, 2000, 20(6): 840-841
    [233]陈绍源,杨骏,刘颖诗. Ti(SO4)2沸腾水解法制备纳米TiO2及光催化研究.化学研究与应用, 2006, 18(11): 1126-1129
    [234] Yang X, Jentoft F C, Jentofl R E, et al. Sulfated zirconia with ordered mesopores as an active catalyst for n-butaneisomefization. Catalysis Letters, 2001, 81(1-2): 25-31
    [235]高濂,郑珊,张青红.纳米氧化钛光催化材料及应用.北京:化学工业出版社, 2003
    [236] Carp O, Huisman C L, Reller A. Photoinduced reactivity of titanium dioxide. Progress in Solid State Chemistry, 2004, 32(1-2): 133-177
    [237] Li Y Z, Lee N H, Hwang D S, et a1. Synthesis and characterization of nanotitania powder with high photoactivity for gas-phase photo-oxidation of benzene from TiOC12 aqueous solution at low temperatures. Langmuir, 2004, 20(25): 10838- 10844
    [238] Yan M C, Chen F, Zhang J L, et al. Preparation of controllable crystalline titania and study on the photocatalytic properties. J. Phys. Chem. B, 2005, 109(18): 8673-8678
    [239]张青红,高流,郭景坤.四氯化钛水解法制备二氧化钛纳米晶的影响因素.无机材料学报, 2000, 15(6): 992-998
    [240]闵乃本.晶体生长的物理基础.上海:上海科技出版社, 1982: 349-351
    [241]雷闫盈,俞行.均匀沉淀法制备纳米二氧化钛工艺条件研究.无机盐工业, 2001, 33(2): 3-5
    [242] Whittaker A G, Mingos D M P. The application of microwave heating to chemical syntheses. Journal of Microwave Power and Electromagnetic Engergy, 1994, 29 (4): 195-219
    [243] Sarpone N, Lawless D, Khairutdinow R. Alkoxide hydrolysis under microwave radiation condition. J. Phys. Chem., 1995, 99: 16646-16653
    [244]孟庆华,陈虹锦,方能虎等.面向化学研究的微波反应器.实验室研究与探索, 2003, 22(3): 94-97
    [245] Masanobu N, Watanable K, Hiromasa I, et al. Chemical reaction mchanism under microwave radiation. Solid State Conics, 2003, 164: 35-43
    [246] Yang Huaming, Huang Chenghuan, Li Xianwei, et al. Luminescent and photocatalytic properties of cadmium sulfide nanoparticles synthesized via microwave irradiation. Materials Chemistry and Physics, 2005, 90(1): 155-158
    [247]刘乃青.微波、超声波在纳米材料中的应用.山东化工, 2005, 34(5): 17-20
    [248] Wu Xing, Jiang Qizhong, Ma Zifeng, et al. Synthesis of titania nanotubes by microwave irradiation. Solid State Communications, 2005, 136(9-10): 513-517
    [249]周武艺,唐绍裘,魏坤.影响钛盐水解制备二氧化钛纳米晶粒大小的因素.应用化工, 2002, 31(4): 1-4
    [250]曹爱红,蓝心仁,袁启明.沉淀法制备TiO2纳米粉体的研究.硅酸盐学报, 2002, 30(增刊): 83-86
    [251]张春光,邵磊,沈志刚等.中和水解法制备纳米TiO2的研究.化工进展, 2003, 22(1): 52-55
    [252]张庆今,胡晓洪,杨敏.液相沉淀法制备TiO2超微粉末的影响因素分析.华南理工大学学报(自然科学版), 1996, 24(7): 52-56
    [253]杨儒,李敏,李友芬等.锐钛矿型纳米TiO2介孔粉体表面织构的研究.高等学校化学学报, 2003, 24(1): 146-150
    [254]周幸福,褚道葆,韩爱杰等.电化学溶解钛金属直接水解法制备纳米TiO2.物理化学学报, 2001, 17(4): 367-371
    [255]唐芳琼,侯莉平,郭广生.单分散纳米二氧化钛的研制.无机材料学报, 2001, 16(4): 615-619
    [256]胡晓力,陈东丹,胡晓洪.表面活性剂对TiO2粉体粒度和形貌的影响.中国陶瓷工业, 2003, 10(4): 25-28
    [257]周武艺,唐绍裘,万隆. DBS包覆钛盐水解制备TiO2的研究.硅酸盐学报, 2003, 31(9): 859-861
    [258]赵旭,王子忱,赵敬哲等.球形二氧化钛的制备.功能材料, 2000, 31(3): 303-304
    [259]沈毅,张智丹,沈上越等.二氧化钛微米球形颗粒的制备与研究.硅酸盐通报, 2005(3): 95-98
    [260] Chia Swee H, Wang Y. Kinetics and products of the TiO2 photocatalytic degradation of 2-chlorobiphenyl in water. Chemosphere, 1998, 36(7): 1653-1667
    [261] Liu H, Cheng S, Zhang J, et al. Titanium dioxide as photocatalyst on porous nickel: adsorption and the photocatalytic degradation of sulfosalicylic acid. Chemosphere, 1999, 38(2): 283-292
    [262] Xavier D, JoséP. Kinetics of the photocatalytic oxidation of N (III) and S(IV) on different semiconductor oxides. Chemosphere, 1999, 38(6): 1265-1271
    [263] Leng W, Liu H, Cheng S. Kinetics of photocatalytic degradation of aniline in water over TiO2 supported on porous nickel. Journal of Photochemistry and Photobiology A: Chemistry, 2000, 131(1-3): 125-132
    [264] Turch C S. J, Ollis D F. Photocatalytic degradation of organic water contaminants: mechanisms involving hydroxyl radical attack. Journal of Catalysis, 1990, 122(1): 178-192
    [265]栾勇,傅平丰,戴学刚等.金属离子掺杂对TiO2光催化性能的影响.化学进展, 2004, 16(5): 738-746
    [266]徐悦华,古国榜,李新军.光催化剂改性及固定的研究进展.材料导报, 2001, 15(6): 33-35
    [267]李燕,黄显怀,唐玉朝等.共沉淀-共沸蒸馏法制备掺杂Fe3+的TiO2纳米粉体及其光催化性能.合肥工业大学学报(自然科学版), 2005, 28(12): 1511-1514
    [268]牛新书,李红花,蒋凯.金属离子掺杂纳米TiO2光催化研究进展.电子元件与材料, 2004, 23(8): 39-42
    [269]沈星灿,郭为民,郭艳芳等.掺铁纳米TiO2的制备及其光催化性能.应用化学, 2005, 22(10): 1070-1074
    [270]吴树新,马智,秦永宁.掺杂纳米TiO2光催化性能的研究.物理化学学报, 2004, 20(2): 138-144
    [271]余锡宾,王桂华,罗衍庆等. TiO2微粒的掺杂改性与催化活性.上海师范大学学报(自然科学版), 2000, 29(1): 75-81
    [272]李卫华,乔学斌,高恩勤等. 3d过渡金属掺杂TiO2纳米晶膜电极的光电化学研究.高等学校化学学报, 2002, 21(10): 1534-1538
    [273]阎建辉,朱政兵,唐课文等.纳米TiO2掺杂Fe3O4光催化剂活性的研究.湖南理工学院学报(自然科学版), 2004, 17(1): 37-39
    [274]王文保,丁亚军,李学德.碱性染料的半导体光催化降解研究.农业环境保护, 1997, 16(4): 162-164
    [275]王桂华,尹平河,赵玲等.超声波辅助TiO2光催化降解印染废水的研究.工业水处理, 2004, 24(4): 42-45
    [276]王淑敏,鲍明伟,赵艳茹.印染厂污水处理新工艺研究.许昌师专学报, 2000, 19(2): 96-99
    [277]李耀中,孔欣,周岳溪.流化床光催化反应器处理偶氮染料4BS废水中试研究.环境工程, 2003, 21(4): 7-9
    [278] Herrera F, Lopez A, Kiwi J. Photochemically activated degradation of reactive dyes statistical modeling of the reactor performance. Journal of Photochemistry and Photobiology A: Chemistry, 2000, 135(1): 45-51
    [279]胡春,王怡中,汤鸿霄.光催化氧化的理论与实践发展.环境科学进展, 1995, 3(1): 55-64
    [280]范山湖,孙振范,李玉光.偶氮染料吸附和光催化氧化动力学.物理化学学报, 2003, 19(1): 25-29
    [281] Yue L P, Allen D. Photocatalytic degradation of atrazine, photocatalytic purification and treatment of water and air. Ollis F D, Al-Ekabi H(Eds. ) Elsevier Science Pubishers, B. V., 1993: 607-611
    [282] Thurmauer M C, Rajh T, Tiede D M. Surface modification of TiM correlation between structure, charge separation and reduction properties. Acta Chemica Scandinavica, 1997, 51: 610-618
    [283] Legrini, Oliveros E, Braun A. Photochemical processes for water treatment. Rev., 1993, 93(2): 671-677
    [284]王怡中.二氧化钛悬浆体系中八种染料的太阳光催化氧化降解.催化学报, 2000, 12(4): 327-331
    [285]荆晶,王连军.二氧化钛光催化氧化研究进展.污染防治技术, 1999, 12(2): 114-117
    [286] Hisashi Harada. Sonophotocatalytic decomposition of water using TiO2 photocatalyst. Ultrasonics Sonochemistry, 2001, 8(1): 55-58
    [287] Adewuyi Y G. Sonochemistry in environmental remediation. 2. Heterogeneous sonophotocatalytic oxidation processes for the treatment of pollutants in water. Environ. Sci. Technol., 2005, 39(22): 8557-8570
    [288] Elena Selli, Claudia Letizia Bianchi, Carlo Pirola, et al. Degradation of methyl tert-butyl ether in water: effects of the combined use of sonolysis and photocatalysis. Ultrasonics Sonochemistry, 2005, 12(5): 395-400
    [289]全燮,杨风林,李和平.几种偶氮染料生物降解性研究.环境科学, 1991, 12(3): 27-32
    [290]袁易全,陈思忠,冯若.近代超声原理与应用.南京:南京大学出版社, 1996: 133-157
    [291] Shirgoankar I Z, Pandit A B. Sonophotochemical destruction of aqueous solution suspension of TiO2 power. Ultrason. Sonochem., 1998, 5(2): 53-61
    [292]李太友.有机污染物的半导体光催化氧化研究进展综述.武汉大学学报, 2001, 16(3): 12-16
    [293]汤心虎,谭淑英,李明玉.低强度紫外线催化降解活性艳红X-3B溶液研究.环境污染治理技术与设备, 2004, 5(8): 35-38
    [294]陈达美,钟建军,汪言满.悬浮体系光催化降解染料动力学研究.精细化工, 2002, 19(1): 55-58
    [295]李晓斌,呼世斌,陆晓华. TiO2/浮石的制备及其光催化性能的研究.水处理技术, 2006, 32(5): 23-25
    [296]王积涛,胡青眉,张宝申.有机化学.天津:南开大学出版社, 1998: 553-555
    [297] Zhang Xiwang, Wang Yizhong, Li Guoting. Effect of operating parameters on microwave assisted photocatalytic degradation of azo dye X-3B with grain TiO2 catalyst. Journal of Molecular Catalysis A: Chemical, 2005, 237(1-2): 199-205
    [298]漆新华,庄源益,王中华等.纳米TiO2催化染料活性艳红X-3B光降解.城市环境与城市生态, 2002, 15(6): 14-16
    [299] Yu J G, Zhou M H, Cheng B, et al. Ultrasonic preparation of mesoporous titanium dioxide nanocrystalline photocatalysts and evaluation of photocatalytic activity. J. Mol. Catal. A: Chemical, 2005, 227(1-2): 75-80
    [300] Jiaguo Yu, Jimmy C. Yu, Mitch K. P, et al. Effects of acidic and basic hydrolysis catalysts on the photocatalytic activity and microstructures of bimodal mesoporous titania. Journal of Catalysis, 2003, 217(1): 69-78
    [301] Weid G, Dave R, Pfeffer R. Mixing and characterization of nanosized powders: an assessment of different techniques. J. Nanopart. Res., 2005, 11(2): 163-167
    [302]孙鼎文.紫外辐射(一)——紫外辐射的主要效应及紫外辐射源.现代计量测试, 1999(3): 12-16
    [303]白波,陈庆云,赵景联等. TiO2超声光催化降解荧光增白剂-CBW.太阳能学报, 2003, 24(1): 68-73
    [304]芮延年,刘文杰,王明娣等.高浓度有机废水的纳米催化超声裂解处理.中国给水排水, 2003, 19(2): 64-66
    [305] Mu Yang, Yu Haoqing, Zheng Jiachuan, et al. TiO2 mediated photocatalytic degradation of orange II with the present of Mn2+ in solution. J. Photochem. Photobiolo. A: Chem., 2004, 163(3): 311-316
    [306] Kamat P V. Photochemistry on nonreactive and reactive (semiconductor) surfaces. Chem. Rev., 1993, 93: 267-300
    [307] Mrowetz M, Pirola C, Selli E. Degradation of organic water pollutants through sono-photocatalysis in the presence of TiO2. Ultrasonics Sonochemistry, 2003, 10(4-5): 247-254
    [308] Xie Yibing, Yuan Chunwei. Visible-light responsive cerium ion modified titania sol and nanocrystallites for X-3B dye photodegradation. Applied Catalysis B: Environmental, 2003, 46(2): 251-259
    [309]高振衡.有机光化学.北京:人民教育出版社, 1979: 286-290
    [310]黄量,于德泉.紫外光谱在有机化学中的应用(上册).北京:科学出版社, 2000: 120-123, 164-168
    [311]毛立群,杨建军,郭泉辉等.活性艳红X-3B水溶液的光化学与光催化协同脱色反应.催化学报, 2001, 22(2): 181-184
    [312] Kado Y, Atobe M, Nonaka T. Ultrasonic effect on electro organic processes-part 20. photocatalytic oxidation of aliphatic alcohols in aqueous suspension of TiO2 powder. Ultrasonics Sonochem, 2001, 8(2): 69-74
    [313]李蕊,赵景联,孙亚萍.超声协同TiO2光催化降解酸性大红染料的研究.应用化工, 2006, 35(6): 416-419
    [314] Spadaro J T, Isabelle L, Ranganathan V. Hydroxyl redicalmeduated degradation of azo dyes: evidence for benzene generation. Environ. Sci. Technol., 1994, 28(7): 1389-1393
    [315]王怡中,胡春,汤鸿霄等.在TiO2催化剂上苯酚光催化氧化反应研究.环境科学学报, 1995, 15(4): 472-478
    [316] Rao N N, Dubey A K, Mohanty S, et al. Photocatalytic degradation of 2-chlorophenol: a study of kinetics, intermediates and biodegradability. Journal of Hazardous Materials B, 2003, 101(3): 301-314
    [317]李昱吴,毛立群,张顺利等.活性艳红X-3B水溶液的光催化脱色及矿化过程研究.感光科学与光化学, 2004, 22(5): 383-390
    [318]顾浩飞,安太成,文晟等.超声光催化降解苯胺及其衍生物研究.环境科学学报, 2003, 23(3): 593-597
    [319] Wang Y Z. Photocatalytic decolorization characteristics of various dyes withdifferent structures. Toxical. Environ. Chem., 1999, 70: 67-70
    [320]丁忠浩.有机废水处理技术及应用.北京:化学工业出版社,环境科学与工程出版中心, 2002: 427-428
    [321]黄玉瑶.内陆水域污染生态学-原理与应用.北京:科学出版社, 2001: 38-40
    [322]魏复盛,徐晓白,阎吉昌.水和废水监测分析方法指南(下册).北京:中国环境科学出版社, 1997
    [323] Jardim W F, Moraes S G, Takiyama M M. Photocatalytic degradation of aromatic chlorinated compounds using TiO2: Toxicity of Intermediates. Water Research, 1997, 31(7): 1728-1732
    [324] Teruhisa Ohno, Koji Sarukawa, Kojiro Tokieda, et al. Morphology of a TiO2 photocatalyst (Degussa, P-25) consisting of anatase and rutile crystalline phases. Journal of Catalysis, 2001, 203(1): 82-86
    [325] Sumandeep Kaur, Vasundhara Singh. Visible light induced sonophotocatalytic degradation of Reactive Red dye 198 using dye sensitized TiO2. Ultrasonics Sonochemistry, 2007, 14(5): 531-537
    [326]靳强,何义亮,郑正等.超声波吹脱水中溶解性氯苯的研究.北京:第二届全国环境化学学术报告会论文集, 2004: 168-167
    [327]陈伟,范瑾初.超声-过氧化氢技术降解水中4-氯酚.中国给水排水, 2000, 16(2): 1-5
    [328] Lu M C, Roum G D, Chen J N, et al. Adsorption characteristics of dichlorvos onto hydrous titanium dioxide surface. Wat. Res., 1996, 30 (7): 1670-1676
    [329]陈继章,蒋晓凤,赵一先.氯苯溶液TiO2光催化降解的动力学研究.上海化工, 2005, 30(3): 14-16
    [330] Dhananjay S Bhatkhande, Sudhir B Sawant, Jaap C Schouten, et al. Photocatalytic degradation of chlorobenzene using solar and artificial UV radiation. Chem. Technol. Biotechnol., 2004, 79: 354-360
    [331]郑小明,周仁贤.环境保护中的催化治理技术.北京:化学工业出版社, 2003: 273-274
    [332] Sibel Irmak, Erdal Kusvuran, Oktay Erbatur. Degradation of 4-chloro-2-methylphenol in aqueous solution by UV irradiation in the presence of titanium dioxide. Applied Catalysis B: Environmental, 2004, 54(2): 85-91
    [333] Chu W, Choy W K, So T Y. The effect of solution pH and peroxide in the TiO2-induced photocatalysis of chlorinated aniline. Journal of Hazardous Materials, 2007, 141(1): 86-91
    [334]杜飞鹏,余颖,曾艳.纳米TiO2光催化氧化技术研究进展.环境科学与技术, 2004, 27(2): 94-96
    [335]曾旭,徐高田,王宇晖等.纳米TiO2光催化降解酸性红B的实验研究.环境科学与技术, 2006, 29(6): 16-17
    [336] Antoine Lair, Corinne Ferronato, Jean-Marc Chovelon, et al. Naphthalene degradation in water by heterogeneous photocatalysis: an investigation of the influence of inorganic anions. Journal of Photochemistry and Photobiology A: Chemistry, 2008, 193(2-3): 193-203
    [337] Lu M C, Chen J N, Chang C P. Effect of inorganic ions on the oxidation of dichlorvas insecticide with Fenton’s reagent. Chemosphere, 1997, 35(10): 2285-2293
    [338] Marutharnuthu P, Neta P. Phosphate radicals, spectra, acid-base equilibriums and reactions with inorganic compounds. Journal of Physical Chemistry, 1978, 82(6): 710-713
    [339] Kormann C, Bahnemann D W, Hoffmann M R. Photolysis of chloroform and other organic molecules in aqueous TiO2 suspensions. Envionmental Science and Technology, 1991, 25: 494-500
    [340] Haarstrick A, Kut O M, Heinzle E. TiO2-assisted degradation of environmentally relevant organic compounds in wastewater using a novel fluidized bed photoreactor. Environ. Sci. Technol., 1996, 30: 817-824
    [341] Arslan I, Baleicoglu I A, Bahnemann D W. Heterogeneous photocatalytic treatment of simulated dyehouse effluents using novel TiO2-photocatalysts. Appl. Catal. B: Environ, 2000, 26(3): 193-206
    [342] Carmen Stavarache, Yim B, Vinatoru M, et al. Sonolysis of chlorobenzene in Fenton-type aqueous systems. Ultrasonics Sonochemistry, 2002, 9(6): 291-296
    [343] Vittorio Ragaini, Elena Selli, Claudia Letizia Branchi, et al. Sono-photocatalytic degradation of 2-chlorophenol in water: kinetic and energetic comparision with other techniques. Ultrasonics Sonochemistry, 2001, 8(3): 251-258
    [344] Seong Nam Nam, Sang Kuk Han, Joon Wun Kang, et al. Kinetics and mechanisms of the sonolytic destruction of nonvolatileorganic compounds: investigation of the sonochemical reaction zone using several OH·monitoring techniques. Ultrasonics Sonochemistry, 2003, 10(3): 139-147
    [345]李书珍,王磊,李林.光催化-超声波联合降解炼油厂含油废水动力学的研究.安徽师范大学学报(自然科学版), 2007, 30(2): 142-145
    [346] Yusuf G, Adewuyi. Sonochemistry: environmental science and engineering applications. Ind. Eng. Chem. Res., 2001, 40(22): 4681-4715
    [347] Drijvers D., Langehove H. V., Vervaet K. Sonolysis of chlorobenzene in aqueous solution: organic intermediates. Ultrason. Sonochem., 1998, 5(1): 13-19
    [348] Drijvers D., Langenhove H. V, Kim L. N. T., et al. Sonolysis of an aqueous mixture of trichloroethylene and chlorobenzene. Ultrasonics Sonochemistry, 1999, 6(1-2): 115-121
    [349] Yue Bin, Jiang Lei, Hu Changwen. Heterogeneous photocatalytic mineralization of chlorobenzene by paratungstate-loaded titania catalysts in an aqueous medium. Chem. Res. Chinese U., 2005, 21(4): 386-390
    [350]吕锡武,孔青春.紫外-微臭氧处理饮用水中有机优先污染物.中国环境科学, 1997, 17(4): 377-380
    [351]吕锡武,严煦世.光化学氧化饮用水中有机优先污染物.中国环境科学, 1992, 12(1): 71-75
    [352]杨学芬.分光光度法测定工业亚磷酸中的氯离子.云南化工, 2000, 27(4): 15-16
    [353]王力,王琳玲,赵天珍.超声萃取沉积物中六氯苯的研究.分析科学学报, 2007, 22(6): 663-666
    [354] Teo K, Xu Y, Yang C. Sonochemical degradation for toxic haologenated organic compounds. Ultrasonics Sonochemistry, 2001, 8(3): 241-246
    [355] Okuno H. Sonolytic degradation of hazardous organic compounds in aqueoussolution. Ultrasonics Sonochemistry, 2000, 7(4): 261-264
    [356] Zhang Fenglei., Zhao Jicai., Shen Tao., et al. TiO2-assisted photodegradation of dye pollutants II: adsorption and degradation kinetics of eosin in TiO2 dispersions under visible light irradiation. Appl. Catal. B: Environ, 1998, 15(1-2): 147-156
    [357] Zhao J C, Wu T X, Wu K Q, et al. Photoassisted degradation of dye pollutants V: evidence for the need for substrate adsorption on TiO2 particles. Environ. Sci. Technol., 1998, 32(16): 2394-2396
    [358] Ai Z. H., Yang P., Lu X. H. Degradation of 4-chlorophenol by a microwave assisted photocatalysis method. Journal of Hazardous Materials, 2005, B124(1-3): 147-152
    [359] Mohamad Sleiman, Daniel Vildozo, Corinne Ferronato, et al. Photocatalytic degradation of azo dye Metanil Yellow: optimization and kinetic modeling using a chemometric approach. Applied Catalysis B: Environmental, 2007, 77(1–2): 1-11
    [360] Bekkouche S., Bouhelassa M., Salah N. H., et al. Study of adsorption of phenol on titanium oxide (TiO2). Desalination, 2004(1-3), 166: 355-362
    [361] Liao Chin Hsiang, Mirat D Gurol. Chemical oxidation by photolytic decomposition of hydrogen peroxide. Environmental Science Technology, 1995, 29: 3007-3014
    [362] Huang C P, Dong C, Tang Z. Advanced chemical oxidation: its present role and potential future in hazardous waste treatment. Waste Management, 1993, 13(5-7): 361-377
    [363] Thandar Aye, William A. Ander, Mehrab Mehrvar. Photocatalytic treatment of cibacron brilliant yellow 3G-P. Journal of Environmental Science and Health, Part A-Toxic/Hazardous Substantces and Environmental Engineering, 2003, A38 (9): 1903-1914
    [364] Wen S., Zhao J. C., Sheng G. Y., et al. Photocatalytic reactions of pyrene at TiO2/water interfaces. Chemosphere, 2003, 50(1): 111-119
    [365] Mills Andrew, Morris Sian. Photomineralization of 4-chlorophenol sensitized by titanium dioxide: a study of the intermediates. J Photochem Photobiol, A, 1993, 70(2): 183-191
    [366]李琳.多相光催化在水处理治理中的应用.环境科学进展, 1994, 2(6): 23-30
    [367] Cunningham J, Srijiaranai S. Isotope effect evidence for hydroxyl radical involvement in alcohol photo-oxidation sensitized by TiO2 in aqueous suspension. Journal of Photochemistry and Photobiology A: Chemistry, 1998, 43(3): 329-335
    [368]黄俊,杨曦,张祖麟等.有机气溶胶组分对六氯苯光解的影响.环境科学, 2006, 27(12): 2392-2395
    [369]李田.城市自来水光催化氧化深度净化效果.环境科学学报, 1998, 18(2): 167-171
    [370] Kumiko Miyoshi, Takehiko Nishio, Akio Yasuhara, et al. Detoxification of hexachlorobenzene by dechlorination with potassium-sodium alloy. Chemosphere, 2004, 55(11): 1439-1446
    [371]周萍,李莉,张文治.多金属氧酸盐杂化催化剂光催化降解有机杀虫剂六氯苯.催化学报, 2004, 25(9): 753-756
    [372] Chu W., Hunt J. R., Jafvert C. T. Modeling the sequential photodechlorination of hexachlorobenzene in surfactant micelles. Water Research, 2002, 36(4): 843-850
    [373]李田,严熙世.光催化氧化法去除水中有机氯化物的研究.上海环境科学, 1992, 11(12): 11-14

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700