新型水杨酰肼衍生物镍配合物的合成、表征及其模拟脲酶的催化活性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文合成了四种新型的水杨酰肼类化合物N‐氯乙酰基水杨酰肼(H_3cashz)、N‐氯乙酰基‐5‐氯水杨酰肼(H_3cacshz)、N‐氯乙酰基‐5‐溴水杨酰肼(H_3cabshz)、4‐水杨酰基氨基硫脲(H_3st),以及相应的金属镍配合物,并采用红外光谱、1H和~(13)C核磁共振谱以及元素分析等方法对化合物进行了表征。对其中培养得到的单晶进行了X‐射线单晶衍射结构分析。同时,还对金属镍配合物的模拟脲酶催化活性进行了研究。
     对四种配合物[Ni_3(C_9H_6N_2O_3Cl)_2(C_3H_7NO)_2(C_5H_5N)_2], [Ni_3(C_9H_5N_2O_3Cl_2)_2 (C_3H_7NO)_2(C_5H_5N)_2] 2(C_3H_7NO),[Ni_3(C_9H_6N_2O_3BrCl)_2(C_3H_7NO)_2(C_5H_5N)_2] 2(C_3H_7NO)和[Ni_3(C_8H_6N_3O_2S)_2 (C_5H_5N)_2]分别进行了单晶衍射测定,其结构参数如下:
     配合物[Ni_3(C_9H_6N_2O_3Cl)_2(C_3H_7NO)_2(C_5H_5N)_2]为三核配合物,属单斜晶系,空间群P2(1)/n,晶胞参数a = 11.688(2) , b = 9.5831(17) , c = 17.226(3) ,α= 90,β= 92.015(4),γ= 90, V = 1928.2(6) 3, Z = 2, R1 = 0.0544,wR2 = 0.0919。
     对配合物[Ni_3(C_9H_5N_2O_3Cl_2)_2(C_3H_7NO)_2(C_5H_5N)_2] 2(C_3H_7NO)为三核配合物,属三斜晶系,空间群P‐1,晶胞参数a = 9.2654(11) , b = 13.7345(16) , c = 20.413(2) ,α= 72.078(2),β= 87.002(2),γ= 84.917(2), V = 2461.1(5) 3, Z = 2, R1 = 0.0815, wR2 = 0.1804。
     配合物[Ni_3(C_9H_6N_2O_3BrCl)_2(C_3H_7NO)_2(C_5H_5N)_2] 2(C_3H_7NO)为三核配合物,有单斜晶系和三斜晶系两种晶型。其中,单斜晶系晶体空间群P2(1)/n,晶胞参数a = 20.88(2) , b = 9.327(9) , c = 26.95(3) ,α= 90,β= 109.83(2),γ= 90, V = 4938(9) 3, Z = 4, R1 = 0.0506, wR2 = 0.1246;三斜晶系晶体空间群P‐1,晶胞参数a = 9.275(9) , b = 13.777(11) , c = 20.466(19) ,α= 71.671(16),β= 86.819(15),γ= 84.710(19), V = 2471(4) 3 , Z = 2, R1 = 0.0566, wR2 = 0.1157。
     配合物[Ni_3(C_8H_6N_3O_2S)_2(C_5H_5N)_2]为三核配合物,晶体A属单斜晶系,空间群P2(1)/c,晶胞参数a = 15.040(2) , b = 14.3593(19) , c = 6.2476(8) ,α= 90,β= 98.063(2),γ= 90, V = 1335.9(3) 3 , Z = 2, R1 = 0.0484, wR_2 = 0.0958。
     对所合成的配合物进行了催化活性研究,结果发现这四种配合物对尿素分别具有一定的催化作用,其中的[Ni_3(C_9H_6N_2O_3Cl)_2(C_3H_7NO)_2(C_5H_5N)_2]催化作用相对最强,[Ni_3(C_9H_6N_2O_3BrCl)_2(C_3H_7NO)_2(C_5H_5N)_2] 2(C_3H_7NO)的催化作用相对最弱。
In this thesis, four complexes containing N‐chloroacetyl‐salicylhydrazide (H_3cashz), N‐chloroacetyl‐5‐chlorosalicylhydrazide (H_3cacshz), N‐chloroacetyl‐5‐bromosalicylhydrazide (H_3cabshz) and 4‐salicyloyl thiosemi carbazide (H_3st) have been synthesized. IR, 1H NMR、13C NMR and Elemental analysis were used to characterize the compounds. X‐Ray single crystal diffraction measurements were used to characterize the crystals. And the catalytic activities of all the compounds have been studied.
     X‐Ray single crystal diffraction measurements were used to characterize the crystals of [Ni_3 (C_9 H_6 N_2 O_3 Cl)_2(C_3 H_7 NO)_2(C5 H5 N)_2], [Ni_3 (C_9 H_5 N_2 O_3 Cl_2 )_2(C_3 H_7NO)_2(C5 H5 N)_2] 2(C_3 H_7 NO), [Ni_3 (C_9 H_6 N_2 O_3 BrCl)_2 (C_3 H_7 NO)_2(C5 H5 N)_2] 2(C_3 H_7NO) and [Ni_3(C_8 H_6 N_3 O_2 S)_2(C5 H5 N)_2]. The crystallographic data are as follows:
     The complex of [Ni_3(C_9H_6N_2O_3Cl)_2(C_3H_7NO)_2(C_5H_5N)_2] is a trinuclear cluster which has been determined in the crystal system monoclinic, space group P2(1)/n, with a = 11.688(2) , b = 9.5831(17) , c = 17.226(3) ,α= 90,β= 92.015(4),γ= 90, V= 1928.2(6) 3 , Z = 2, R1 = 0.0544, wR2 = 0.0919.
     The complex of [Ni_3(C_9H_5N_2O_3Cl_2)_2(C_3H_7NO)_2(C_5H_5N)_2] 2(C_3 H_7NO) is a trinuclear cluster which has been determined in the crystal system triclinic, space group P‐1, with a = 9.2654(11) , b = 13.7345(16) , c = 20.413(2) ,α= 72.078(2),β= 87.002(2),γ= 84.917(2), V = 2461.1(5) 3 , Z = 2, R1 = 0.0815,wR2 = 0.1804.
     The complex of [Ni_3(C_9H_6N_2O_3BrCl)_2(C_3H_7NO)_2(C_5H_5N)_2] 2(C_3H_7 NO) is trinuclear cluster which has been determined in the crystal system monoclinic and Triclinic. The crystal system monoclinic space group P2(1)/n, with a = 20.88(2) , b = 9.327(9) , c = 26.95(3) ,α= 90,β= 109.83(2),γ= 90, V = 4938(9) 3, Z = 4, R1 = 0.0506, wR2 = 0.1246;The crystal system triclinic space group P‐1, with a = 9.275(9) , b = 13.777(11) , c = 20.466(19) ,α= 71.671(16),β= 86.819(15),γ= 84.710(19), V = 2471(4) 3 , Z = 2, R1 = 0.0566, wR2 = 0.1157.
     The complex of [Ni_3(C_8H_6N_3O_2S)_2(C_5H_5N)_2] is a trinuclear cluster which has been determined in the crystal system monoclinic, space group P2(1)/c, with a = 15.040(2) , b = 14.3593(19) , c = 6.2476(8) ,α= 90,β= 98.063(2),γ= 90, V = 1335.9(3) 3 , Z = 2, R1 = 0.0484, wR2 = 0.0958.
     The catalytic activity for the hydrolysis of urea of all the complexes have been determined, the results show that all of four complexes have certain catalytic activity. Among the four complexes, [Ni_3(C_9H_6N_2O_3Cl)_2 (C_3H_7NO)_2(C_5H_5N)_2] has relatively strongest catalytic activity, [Ni_3(C9H6 N2O3BrCl)_2(C_3H_7NO)_2(C_5H_5 N)_2] 2(C_3H_7NO) has the weakest catalytic activity.
引文
[1] Ciurli S., Marzadori C., Benini S. et. al. Urease from the soil bacterium bacillus Pasteur II: immobilization on Ca-galacturonate. Biol. Biochem. 1996, 28, 811-818.
    [2] Jabri E., Carr M. B., Hausinger R. P. et. al. The crystal structure of urease from Klebsilla aerogenes. Science. 1995, 268, 998-1003.
    [3] Turbett G. R., Hoj P. B., Horne R. et. al. Puritication and characterization of the urease enzymes of Helicobacter species from humans and animals. Intection and Immunity. 1992, 60 (12): 5259-5266.
    [4] Barhoumi H., Maaref A., Rammah M. et. al. Urea biosensor based on Zn3 Al-Urease layered double hydroxides nanohybrid coated on insulated silicon structures. Materials Science and Engineering. 2006, 26, 328-333.
    [5] Hausinger R. P.. Nickel utilization by microorganisms. Microbiol. Rev. 1987, 51, 22-42.
    [6] Mobley H. L. T., Hausinger R. P.. Microbial ureases: significance, regulation, and molecular characterization. Microbiol. Rev. 1989, 53, 85-108.
    [7] Hausinger R. P.. Biochemistry of Nickel. Plenum, New York, 1993, 23-57.
    [8] Barhoumi H., Maaref A., Rammah M. et.al. Insulator semiconductor structures coated with biodegradable latexes as encapsulation matrix for urease. Biosensors and Bioelectronics. 2005, 20, 2318-2323.
    [9] Mobley H. L., Island T. M. D., Hausinger R. P. H.. Molecular biology of icrobial ureases. Microbiol. Rev. 1995, 59, 451-480.
    [10] Karplus P. A., Pearson M. A., Hausinger R. P.. 70 Years of crystalline urease: What have we learned? Acc. Chem. Res. 1997, 30, 330-337.
    [11] Benini S., Rypnewski W. R., Wilson K. S.. The complex of bacillus pasteurii urease with acetohydroxamate anion from X-ray data at 1.55 ? resolution. J Biol. Inorg. Chem. 2000, 5, 110-118.
    [12] Arvind M. A.. simple laboratory experiment for teaching enzyme immobilization with urease and its application in blood urea estimation. Biochemical Education. 1999, 27, 114-117.
    [13]罗侃,崔有宏,王绪民等.甘肃科学学报. 2000, 12 (3): 56-60.
    [14] Huang T.C., Chen D. H.. Kinetic studies on urea hydrolysis by immobilized urease in a bach squeezer and flow reactor. Biotechnol Bioeng. 1992, 40, 1203-1209.
    [15] Akgol S., Yalcinkaya Y., Bayramoglu G. et. al. Reversible immobilization of urease onto procion brown MX-5BR-Ni(II) attached polyamide hollow fibremembranes. Process Biochem. 2002, 38, 675-683.
    [16] Chen J.P., Chiu S. H.. A poly (N-isopropylacrylamide-co-N-acryloxyethyl Methacr -ylate). composite hydrogel membrane for urease immobilization to enhance urea hydrolysis rate by temperature swing. Enzyme Microb. Technol. 2000, 26, 359-367.
    [17] Huang S. H., Liao M. H., Chen D. H.. Direct binding and characterization of lipase onto magnetic nanoparticles. Biotechnol Prog. 2003, 19, 1095-1100.
    [18] Hearn E., Neufeld R.. Poly (methylene-co-guanidine) coated alginate as an encap sulation matrix for urease. J. Process Biochem. 2000, 35, 1253-1260.
    [19] Soldatkin A. P., Burbriak O. A., tarodub N. F. et. al. Immobilization of urease via adsorption onto L-histidine–Ni(II) complexed poly (HEMA-MAH) microspheres: Preparation and characterization. J. Electrochem. 1993, 29, 279-283.
    [20] Kharitonov A. B., Zayats M., Lichtenstien A. et. al. Preparation and character -ization of urease-encapsulated biosensors in poly(vinyl-alcohol)-modified silica sol-gel materials. Sens. Actuators. 2000, 70, 222-231.
    [21]张国莹,孙为民.上海大学学报(自然科学版). 2001, 7 (6): 543-546.
    [22]陶义川.中华医学检验杂志. 1980, 3, 207-210.
    [23] Chandler H. M., Hurrell J. G. R.. A new enzyme immunoassay system suitable for field use and its application in a snake venom detection kit. Clin. Chim. Acta. 1982, 121 (2): 225-230.
    [24]张云怀,黄宗卿,肖鹏.重庆大学学报(自然科学版). 1995, 18 (4): 67-71.
    [25]于九皋,张媛.天津药学. 2001, 13 (3): 4-7.
    [26] Shen G. Q., Lu Y. T., Hong J. B.. Combined effect of heavy metals and poly -cyclic aromatichydrocarbons on urease activity in soil. Ecotoxicology and Environmental Safety. 2006, 63, 474-480.
    [27] Volkmer D., Hommerich B. G.. Dinuclear nickel (II) complexes as models for the active site of urease. Inorg. Chem. 1996, 35, 3792-3803.
    [28]陈彦国,廖展如,李武客,等.化学学报. 2000, 58 (10): 1191-1195.
    [29] Elisabet C., Jonas A., Mar R. E. et. al. Chemical cross-linking of the urease complex from helicobacter pyloriand analysis by fourier transform ion cyclotron resonance mass spectrometry and molecular modeling. International Journal of Mass Spectrometry. 2004, 234, 137-144.
    [30] Burns R.G., Eisayed M. H., Mclaren A. D.. Extraction of a urease active organo -complex from soil. Soil Biol. Biochem. 1972, 4, 107-108.
    [31] Nannipieri P., Sequi P.. Humus and enzyme activity, in Humic Substances in Terrestrial Ecosystems, Piccolo, A. (Ed.) Elsevier Amsterdam. 1996, 293-234.
    [32] Pettit, N. M.; Smith, A. R. J.; R.B. Freedman. et. al. Soil urease activity, stabilityand kinetic properties. Soil Biol. Biochem. 1976, 8, 479-484.
    [33]胡晓捷,杨炜春,刘维屏,等.环境污染与防治. 2004 , 26 (2): 87-88.
    [34] He W. X., Zhu M. E., Zhang Y. P.. Study on soil urease thermo dynamic chara cteristics of major soil in Shanxi. Journal of Northwest Sci-tech University of agriculture and Forestry( Natural Science Edition). 2001, 2 (1): 51-74.
    [35] Wang Y. P., He T. B.. Study on urease activity of main cultivated soil in Gui zh -ou. Tropical and Subtropical Soil Science. 1994, 3 (4): 226-232.
    [36] He W. X., Zhu M. E.. Study on relation between urease and fertility of soils in Shanxi. Acta. Pedol. Sin. 1997, 34 (4): 392-398.
    [37] Bergstrom D. W., Monreal King C. M.. Sensitivity of soil enzyme activities to conservation practices. Soil Science Society of America Journal. 1998, 62 (5): 1286-1295.
    [38] Junior L. R., Oliveira Neto G., Lima J. L. F. C. et. al. Potentiometric FIA system with reactor based on natural urease source and tubular detector of ammonium Ions. Anal. Sci. 1997, 13, 589-595.
    [39] Walcerz I. R., Koncki E. Leszczynska B.. Double mode of inhibition-inducing interactions of 1,4-naphthoquinone with urease: Arylation versus oxidation of enzyme thiols. Anal. Lett. 1996, 29, 1939-1941.
    [40] Walcerz I., Glab S., Koncki R.. Potentiometric enzyme electrode in a flow injection system for the determination of urea in human serum samples. Anal. Chim. Acta. 1998, 369, 129-137.
    [41] Akgol S., Kacar Y., Enizli A.. Hydrolysis of sucrose by invertase immobilized onto novel magnetic polyvinylalcohol microspheres. Food Chem. 2001, 74, 281-288.
    [42] Kuralay F., Ozyoruk H., Yildiz A.. Potentiometric enzyme electrode for ureadetermination using immobilized urease in poly (vinylferrocenium) film. Sens Actuators Chem B: Chem. 2005, 109, 94-199.
    [43] Sungur S., Elcin M., Akbulut U.. Studies on immobilization of urease in gela -tin by cross-linking. Biomaterials. 1992, 13, 795-800.
    [44] Chaudhari P. S., Gokarna A., Kulkarni M. et. al. Porous silicon as an entrapp -ing matrix for the immobilization of urease. Sens Actuators Chem. 2005, 107, 258-263.
    [45]苏凌浩,张校刚.化学世界. 2006, 1, 5-8.
    [46] Taoukis P. S., Labuza T. P.. Applicability of time-temperature indicators as shelf life monitors of food products. Food Science. 1989, 54 (4): 783-788.
    [47] Taoukis P. S., Labuza T. P.. Reliability of time-temperature indicators as food quality monitors under non-isothermal conditions. Food Science. 1989, 54(4): 789-792.
    [48] Keri L. B., Amy E. W., John R.W.. Urease activity in icrobiologically-inducedcalcite precipitation. Journal of Biotechnology. 2002, 93, 171-181.
    [49] Moreno J. L., Garcia C., Landi L. et. al. The ecological dose value for assessing Cd toxicity on ATP content and dehydrogenase and urease activities of soil. Soil Biol Biochem. 2001, 33, 483-489.
    [50] Speir T. W., Kettles H. A., Parshotam A. et. al. Simple kinetics approach to determine the toxicity of Cr to soil biological properties. Soil Biol Biochem. 1999, 31, 705-713.
    [51]万惠萍,叶淑红,丁鸣,等.大连轻工业学院学报. 2007. 26 (2), 156-159.
    [52] Beata S. S., Krystyna C. S.. EDTA and urease effects on Hg accumulation by lepidium sativum. Chemosphere. 2007, 69, 1388-1395.
    [53]程发良,莫金垣,戴晓云.高分子学报. 1999, 4, 417-421.
    [54] Gill I.. Bio-doped nanocomposite polymers: sol-gel bioencapsulates. Chem. Mater. 2001, 13, 3404-3421.
    [55] Rodriguez B. B., Bolbot J. A., Tothill I. E.. Development of urease and glu ta -mic dehydrogenase amperometric assay for heavy metals screening in polluted samples. Biosens. Bioelectron. 2004, 19 (10): 1157-1167.
    [56] Tsai H. C., Doong R. A.. Simultaneous determination of pH, urea, acetylcho -line and heavy metals using array-based enzymatic optical biosensorBiosens. Bioelectron. 2005, 20 (9): 1796-1804.
    [57] Volkmer D., Hommerich B., Griesar K. et. al. Dinuclear nickel(II) complexes as models for the active site of urease. Inorg. Chem. 1996, 35 (13): 3792-3803.
    [58]陈彦国,王朝晖,李武客,等.华中师范大学学报. 2000, 34 (3), 291-294.
    [59]陈彦国.化学试剂. 2004, 26 (3), 161-162, 170.
    [60]陈彦国,程银芳,邹欣平.宝鸡文理学院学报. 2006, 26 (1): 36-37.
    [61]陈彦国,何治柯.青岛大学学报. 2003, 12 (6): 35-37.
    [62] Benini S., Rypniewski W. R., Wilson K. S. et. al. Molecular Details of Urease Inhibition by Boric Acid:Insights into the Catalytic Mechanism. J.Am.Chem.Soc., 2004, 126: 3714-3715.
    [63] Todd M. J., Hausinger R. P..Fluoride Inhibition of Klebsiella aerogenes Urease: Mechanistic Implications of a Pseudo-uncompetitive, Slow-Binding Inhibitor. Biochemistry, 2000, 39: 5389-5396.
    [64] Tanaka T., Kawase M., Tani S..α-Hydroxyketones as inhibitors of urease Bioorgan. Med.Chem., 2004, 12: 501-505.
    [65] (a)Park I. S., Hausinger R. P.. Metal Ion Interactions with Urease and UreD-UreaseApoproteins. Biochemistry, 1996, 35: 5345-5352; (b)Zaborska W.,Krajewska B., Leszko M. et al.Inhibition of urease by Ni2+ions Analysis of reaction progress curves.J.Mol.Catal.B-Enzym., 2001, 13: 103-108.
    [66](a)Benini S., Rypniewski W. R., Wilson S. K.. Structure-based rationalization of urease inhibition by phosphate:novel insights into the enzyme mechanism.J.Biol.Inorg. Chem., 2001, 6: 778-790; (b)Metelitsa D. I., Tarun E. I., Puchkaev A. V.et al.Urease Inhibition by Polymeric Substrate Analogues and Thiophosphamides.Appl. Biochem.Micro., 2001, 37 (2): 168-173.
    [67](a)Tarun E. I., Rubinov D. B., Metelitza D. I.. Inhibition of Soybean Urease by Triketone Oximes. Biochemistry(Moscow), 2004, 69 (12): 1344-1352; (b)Tarun E. I., Rubinov D. B., Metelitza D. I.. Inhibition of Soybean Urease by Polycarbonyl Compounds. Appl. Biochem.Micro., 2005, 41 (1): 12-17.
    [68]李玉广.过渡金属Cu(II)、Co(II)、Ni(II)、Mn(II)Schiff碱配合物的合成、表征及其抑制脲酶活性的研究: [华中科技大学硕士学位论文].武汉,华中科技大学, 2006, 7-8, 25-30.
    [69]程魁. Schiff碱及功能配合物的合成与生物活性研究: [武汉科技学院硕士学位论文] .武汉,武汉科技学院, 2007, 8-9, 34-38.
    [70] Hueso-Urena F., Penas-Chamorro A. L., Moreno-Carretem M. N.et al. Polyhedron, 1999, 18, 205.
    [71] Baker R. J., Nyburg S. C., Szymanski J. T.. Inorg. Chem., 1997, 10 (1): 138.
    [72]粱芳珍,徐克花,殷伦祥,李晓明.化学通报, 1999, 8, 37.
    [73] Chen X. Y., Zhan X. Z., Hu C. J. et al.J. Chem. Soc., Dalton Trans., 1997, 245.
    [74] Koziol A. E., Parenik R. C., Palenik G. J. J. Chem. Soc. Chem. Commun., 1989, 650.
    [75] Bonardi A., lanelll S., Pelizzi C. et. al. Inorg. Chem. Acta, 1991, 187,167.
    [76] Van Konigsbruggeo E. J., Muller E., Haasnoot J. G. et. al. Inorg. Chem. Acta., 1993, 208, 37.
    [77] Ainscough E. W., Brodie A. M., Ranford J. D. et. al. Inorg. Chem. Acta.,1995, 236, 83.
    [78] Gou S., You X., Xu Z. et al. Polyhedron, 1991, 10, 2659.
    [79] Chart S. C., Koh L. L., Leung P. H. et al. Inorg. Chem. Acta, 1995, 236, 101.
    [80] Ittel S. D., lbers J. A.. Inorg. Chem.1973, 12 (10): 2290.
    [81] Zhanlg W. X., Ma C. Q., Wang X. N., Chin J.. Struct. Chem., 1996, 15 (5): 404.
    [82] Sangeetha N. R., Pal C. K., Ghosh P. et. al. J. Chem. Soc., Dalton Trans., 1996, 3293.
    [83] Henderson W., Koh L. L., Ranford J. D. et. al. J. Chem. Soc., Dalton Trans., 1999, 3341.
    [84] Dinda R., Sengupta P., Ghosh S. et. al. Eur. J. Inorg. Chem., 2003, 363.
    [85] Rao S. N., Munshi K. N., Rangeswara Rao N. N. et. al. Polyhedron, 1999, 18, 2491.
    [86] Zambrano C. H., Sharp P. R., Brenes C. L.. Polyhedron, 1996, 15 (20): 3653.
    [87] Andelkovic K., Ivanovie I.. Polyhedron, 1996, 5 (24): 4361.
    [88] Doedens R. J.. Inorg. Chem. 1978, 17 (5): 1315.
    [89] YuanY. E., Zhang L. Y., Hu A. G. et al. Polyhedron, 1999, 18, 1247.
    [90] Yang Z. Y., Yang R. D., Polyhedron, 1996, 15 (21): 3771.
    [91] Yang Z. Y., Yang R. D., Yu K. B.. Polyhedron, 1996, 15, 3749.
    [92] Malhotra R., Kuamr S., Dhindsa K. S.. Indian J. Chem., 1997, A36, 321.
    [93]龚筱群,陈宏超.水杨酰肼的合成工艺研究.华西药学杂志, 1997, 12 (4): 240-242.
    [94]吕春绪.有机中间体制备[M].北京:化学工业出版社. 2009: 122.
    [95]吕春绪.有机中间体制备[M].北京:化学工业出版社. 2009: 140-140.
    [96] Sheldrick G. M.. SADABS. University of G?ttingen, Germany, 1996.
    [97] Bruker A.X.S.. Inc. SMART APEX (Version 5.628), SAINT+ (Version 6.45) and SHELXTL-NT (Version 6.12). Madison, Wisconsin, USA: Bruker AXS Inc., 2001.
    [98] Sheldrick G. M. SHELXS97 and SHELXL97. Germany: University of G?ttingen, 1997.
    [99] Yang M. Y., Lin S., Chen L. J. et. al. Synthesis and Crystal Structure of the Trinuclear Nickel(Ⅱ) Complex with Schiff Base Ligand N-butylsalicyl Hydr azide. Chinese. Inorg. Chem. 2003, 4, 433-436.
    [100] Bullen G. J., Mason R., Pauling P.. The Crystal and Molecular Structure of bis -(acetylacetonato) nickel (II). Inorg. Chem. 1965, 4 (4): 456-462.
    [101] Petra V., Marco Z., Nadia H. et. al. Human immune response towards recobinant Helicobacter pylori urease and cellular fractions. Vaccine. 2006, 24, 3832-3839.
    [102] Barrera H. J., Suades M. C., Pauling P. et. al. Metal complexes of mercap -toamines-I. Synthesis and crystal and molecular structure of tetrakis (3-amino-1-propanethiolato) trinickel(II) chloride. Polyhedron. 1984, 3 (7): 839-843.
    [103] Turner M. A., Driessen W. L., Reedijk D.. Synthesis, structure, and properties ofa trinuclear and a mononuclear nickel(II) complex of N, N'-dimethyl-N, N'-bis (beta.-mercaptoethyl) ethylenediamine. Inorg.Chem. 1990, 29, 3331-3335.
    [104]曾昭琼,曾和平.有机化学实验(第三版).北京:高等教育出版社, 2000: 123-124.
    [105] Nielsen I.. Electro Metric Determination of Urea in Blood and Urine Scand. J.Clin. Lab.Invest. 1962, 14, 513-516.
    [106] Malmstadt H. V., Piepmeier E. pH stat with digital readout for quantitative chemical determinations. Anal. Chem. 1965, 37 (1): 34-44.
    [107] Katz S. A.. Direct potentiometric determination of urease activity. Anal. Chem. 1964, 36 (13): 2500-2501.
    [108] Katz S. A. ,Rechnitz G. A.. Catalytic polarographic current of certain nickel(II) complexes. Application to the analysis of certain organic compounds containing casic nitrogen. Anal. Chem. 1963, 35 (2): 195-199.
    [109] Guilbault G. G., Montalvo J., Smith R.. Conformational studies of chelated ethylenediamines by nuclear magnetic resonance. Tris-(ethylenediamine) nickel (II) ion in aqueous solution. Anal. Chem. 1969, 42 (6): 600-605.
    [110] Guilbault G. G., Shu F.. Enzyme electrodes based on the use of a carbon dioxide sensor. Urea and L-tyrosine electrodes. Anal. Chem. 1972, 44(13): 2161-2166.
    [111] Naftalm L., Whitaker F., Stephens. A quick specific and sensitive method, based on the ultra-micro determination of ammonia-N, for estimating blood urea. Clin. Chim. Acta. 1966, 14 (6): 771-776.
    [112] Wilson R. W.. Automatic estimation of urea using urease and alkaline phenol. Clin. Chim. 1966, 12, 360-368.
    [113] Kaltwasser H., Schlegel H.. NADH-dependent coupled enzyme assay for urease and other ammonia-producing systems. Anal. Biochem. 1966, 16, 132-138. ????

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700