阴离子聚合制备高反式聚丁二烯及其共聚物的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高反式聚丁二烯(HTPB)及其共聚物具有低的压缩生热、优异的耐疲劳性、耐磨性、耐撕裂性以及低温性能,而且其粘着性和生胶强度也很突出,在轮胎工业中可用做配胶,用以提高轮胎的性能,是发展高性能子午线轮胎的理想胶料。合成高反式聚丁二烯及其共聚物的催化体系主要有Zigler-Natta体系和阴离子聚合体系,其中阴离子聚合因为具有活性可以对聚合物进行精细的分子结构设计,所以可以定制不同结构的聚合物,从而满足不同性能的需求。因此,本文综述了前人的研究成果并在其基础上进行了阴离子聚合制备高反式聚丁二烯及其共聚物的研究,通过分子设计合成了一系列含HTPB的结晶-非结晶嵌段聚合物。
     本文采用二乙二醇单乙醚基钡(BaDEGEE)、三异丁基铝(TIBA)和烷基锂(RLi)组成三元引发体系,合成了高反式聚丁二烯及其共聚物,重点考察了Al/Li对聚合物微观结构的影响。对丁二烯(Bd)、异戊二烯(Ip)和苯乙烯(St)进行了均聚合动力学的研究,并对Bd-Ip的共聚合动力学进行了研究。最后,采用上述引发体系合成了一系列含HTPB的结晶-非结晶嵌段聚合物,并对其结构和性能进行了研究。主要研究结果及结论如下:
     随着Al/Li的增加,聚丁二烯(PB)的反式结构含量从50%增加到89%;聚异戊二烯(PI)的反式-1,4-结构含量从24%增加到46%,并且其3,4结构含量也有所增加;聚苯乙烯(PS)的微观结构基本没有变化,为无规聚苯乙烯。聚合温度的降低有利于提高PB的反式结构,我们通过降低聚合温度得到了反式-1,4-结构含量为92.1%的高反式聚丁二烯。随着反式-1,4-结构含量的增加,聚丁二烯由无定形态经过中间过渡态(半结晶态)逐渐转变为结晶态。Al/Li对丁二烯、异戊二烯和苯乙烯的聚合动力学影响较为显著,尤其是对苯乙烯,当Al/Li大于1.0时阻滞作用尤其明显;而对于丁二烯和异戊二烯,当采用不同的烷基锂时影响规律又不尽相同。对于丁二烯-异戊二烯共聚合,竞聚率r_(Bd)>r_(Ip),随着温度的升高或者Al/Li的增加,r_(Bd)下降,r_(Ip)升高,它们的乘积r_(Bd)r_(Ip)逐渐增大并趋于恒定,说明共聚物的无规性变好;另外,通过降低聚合温度或者提高Al/Li,可以使共聚趋近恒比共聚。
     研究了二乙二醇单乙醚基钡/三异丁基铝/正丁基锂体系下苯乙烯的阴离子聚合,发现,当采用二乙二醇单乙醚基钡/聚苯乙烯基锂体系时,所得聚苯乙烯的分子量分布为双峰分布,据此提出了“同时促进-阻滞聚合”的假设:当0<Ba/PSLi<0.17时,聚合体系表现出“促进聚合”特性;当0.17≤Ba/PSLi<0.33时,聚合体系表现出“同时促进-阻滞聚合”特性;当Ba/PSLi≥0.33时,聚合体系表现出“阻滞聚合”特性。
     通过分子设计,采用二乙二醇单乙醚基钡/三异丁基铝/烷基锂体系合成了非结晶-结晶立构两嵌段聚丁二烯(LCPB-b-HTPB)、结晶-非结晶-结晶对称立构三嵌段聚丁二烯(HTPB-b-LCPB-b-HTPB)和结晶-非结晶星型立构嵌段聚丁二烯(C-(LCBR-b-HTPB)n),研究发现,三种类型的立构嵌段聚丁二烯均存在冷结晶现象,这是因为低顺聚丁二烯的柔顺性导致发生“润滑效应”,诱使结晶性的高反式聚丁二烯发生冷结晶。
     通过与异戊二烯或者苯乙烯共聚,合成了含高反式聚丁二烯的丁二烯-异戊二烯嵌段共聚物(包括HTPB-b-PI,C-(PI-b-HTPB)n,C-(HTPB-b-PI)n和PI-b-HTPB-b-PI)和丁二烯-苯乙烯嵌段共聚物(包括HTPB-b-PS,C-(PS-b-HTPB)n,C-(HTPB-b-PS)n和PS-b-HTPB-b-PS),对嵌段共聚物的结构和性能进行了系统的研究。研究发现:对于丁二烯-异戊二烯嵌段共聚物,当聚异戊二烯嵌段达到一定链长时,高反式聚丁二烯嵌段出现冷结晶;对于丁二烯-苯乙烯嵌段共聚物,无冷结晶现象,当聚苯乙烯嵌段达到一定链长时,发生微观相分离,聚合物出现两个玻璃化转变温度,一个属于聚丁二烯相,一个属于聚苯乙烯相。
     综上所述,提出了含高反式聚丁二烯的结晶-非结晶嵌段聚合物产生冷结晶的条件:其一为嵌段具有一定的柔顺性;其二为嵌段达到一定的长度。由于聚苯乙烯嵌段为硬段,所以即使达到一定的长度也不会产生“润滑效应”而冷结晶;虽然聚异戊二烯嵌段具有一定的柔顺性,但是当其长度不够时,依然没有冷结晶产生,仅当聚异戊二烯嵌段达到一定长度时,才产生冷结晶。
High trans-1,4-polybutadiene(HTPB) and its copolymers exhibit desirable dynamic properties,such as excellent antifatigue,low rolling resistance,low heat buildup,good green strength and low abrasion loss.These properties make HTPB and its copolymers the idea materials for the production of high performance tires.HTPB can be prepared with Ziegler-Natta catalysts of Ti,Ni,Co,V,or anionic polymerization initiators.Due to the living nature,anionic polymerization is able to well design the macromolecules to meet different requirements.Fully recognizing the significant advantages of anionic polymerization,the syntheses of HTPB and its copolymers by anionic polymerization are surveyed.The preparation of HTPB and its copolymers were investigated,a series of block copolymers containing HTPB were also designed and synthesized.
     The initiation system was composed of di(ethylene glycol) ethyl ether(BaDEGEE), triisobutylaluminium(TIBA),and alkyllithium(RLi).The homopolymerization of Butadiene (Bd),Isoprene(Ip),or Styrene(St) and the copolymerization of Bd and Ip were studied.The effect of Al/Li ratio on the microstructure of the polymer and the kinetic behavior were both carefully investigated.Last,but not least,a series of block copolymers containing HTPB were synthesized and characterized.The main results and conclusions are as follows:
     The trans-1,4 content of polybutadiene(PB) increased from 50%to 89%along with the increasing of Al/Li ratio;the trans-1,4 content of polyisoprene(PI) increased from 24%to 46%as well as 3,4 content along with the increasing of Al/Li ratio;the microstructure of polystyrene(PS) was invariable and atactic.In addition,the trans-1,4 content of PB was promoted to 92.1%by lowering the polymerization temperature.The morphology of PB transformed from amorphous phase to crystalline phase through the intermediate state of semicrystalline phase with the increasing trans-1,4 content of PB.The kinetic behavior of Bd, Ip,or St was significantly influenced by Al/Li ratio,especially for St,the retarding effect was obvious when Al/Li ratio was bigger than 1.0;when using different RLi,the effect of Al/Li ratio on the kinetic behavior of Bd and Ip was different.For Bd-Ip copolymerization,the value of r_(Bd) was bigger than that of r_(Ip) and decreased with the increasing of polymerization temperature or Al/Li ratio,however,the value of r_(Ip) increased.The value of r_(Bd)r_(Ip) increased and approaching to constant,which indicated the random nature of the copolymer. Furthermore,the copolymerization of Bd and Ip tended to be constant copolymerization by lowering the polymerization temperature or raising Al/Li ratio.
     The anionic polymerization of St using BaDEGEE/TIBA/n-BuLi as initiation system was investigated.The molecular weight distribution of PS obtained by BaDEGEE/PSLi was bimodal distribution.Simultaneous promoted-retarded polymerization was supposed and proved to be responsible for the bimodal distribution:the polymerization was promoted when 0<Ba/PSLi<0.17,the polymerization was simultaneous promoted and retarded when 0.17≤Ba/PSLi<0.33,and the polymerization was retarded when Ba/PSLi≥0.33.
     Noncrystalline-crystalline stereo diblock PB(LCPB-b-HTPB),crystalline-noncrystalline -crystalline stereo triblock PB(HTPB-b-LCPB-b-HTPB),and crystalline-noncrystalline star-shaped stereoblock PB were well designed.Attributed to the lubricant-effect of flexible LCPB,cold crystallization was observed in stereoblock PB.
     Bd-Ip block copolymers(HTPB-b-PI,C-(PI-b-HTPB)n,C-(HTPB-b-PI)n,and PI-b-HTPB -b-PI) and Bd-St block copolymers(HTPB-b-PS,C-(PS-b-HTPB)n,C-(HTPB-b-PS)n, and PS-b-HTPB-b-PS ) containing crystallizable HTPB were well synthesized,the microstructures and properties of the copolymers were investigated in detail.When the chain length of PI segments was long enough,cold crystallization was observed in Bd-Ip block copolymers,however it was not observed in Bd-St block copolymers.When the chain length of PS segments in Bd-St block copolymers was long enough,micro phase separation took place and two glass transition temperatures were observed and belonged to amorphous PB phase and PS phase,respectively.
     As a consequence of the above,the requirements of cold crystallization were list as follows:the segments were soft and long enough.Because the PS segments were hard,which resulted in no lubricant effect,cold crystallization was not observed although the chain length of PS segments was long enough.In the same way,the soft PI segments with insufficient chain length could not induce cold crystallization;however,the cold crystallization took place when the length of soft PI segments was long enough.
引文
[1]陈士朝.轮胎性能和要求[J].橡胶工业,1997,44(1):45-49.
    [2]李玉芳,李斌.国内外聚丁二烯橡胶生产消费及市场分析[J].石油化工技术经济,2004,19(1):36-42.
    [3]崔小明.聚丁二烯橡胶的国内外市场分析[J].橡胶科技市场,2005,9:25-29.
    [4]聂颖,燕丰.聚丁二烯橡胶生产技术进展及国内市场分析[J].橡胶科技市场,2009(5):6-10.
    [5]王庆富,刘冬,宗成中.聚丁二烯橡胶的性能研究[J].橡胶工业,2009,56(3):145-148.
    [6]HARGIS IG,LIVIGNIRA,AGGARWAL AL.Alkaline Barium Alcoholates:USA,US 4,020,175[P]1977.
    [7]GEORGE J,FARHANHA.Trans-Microstructure Directing Initiator System:PCT Int Appl,WO 9,723,521[P]1997.
    [8]BASKARAN D,M(U|¨)LLERAHE.Anionic Vinyl Polymerization-50 Years after Michael Szwarc[J].Progress in Polymer Science,2007,32:173-219.
    [9]SMID J,VAN BEYLEN M,HOGEN-ESCH TE.Perspectives on the Contributions of Michael Szwarc to Living Polymerization[J].Prog.Polym.Sci.,2006,31:1041-1067.
    [10]BERTINI F,CANETTI M,RICCI G.Crystallization and Melting Behavior of 1,2-Syndiotactic Polybutadiene[J].Journal of Applied Polymer Science,2004,92:1680-1687.
    [11]SU T-K,MARK JE.Effect of Strain-Induced Crystallization on the Elastomeric Properties of Cis-1,4-Polybutadiene Networks[J].Macromolecules,1977,10(1):120-125.
    [12]YANGX,CAI J,KONGX,et al.CrystaJ-to-Crystal Transition of Trans-1,4-Polybutadiene (TPBD)[J].Macromol.Chem.Phys.,2001,202:1166-1172.
    [13]陈晔,杨德才,胡雁呜,等.结晶性间同立构1,2-聚丁二烯的单晶结构[J].高等学校化学学报,2003,24(12):2321-2323.
    [14]黄葆同.络合催化聚合合成橡胶[M].北京:科学出版社,1981.
    [15]傅政.橡胶材料性能与设计应用[M].北京:化学工业出版社,2003.
    [16]王曙光,宗成中,王春英.顺式-1,4-聚异戊二烯橡胶研究进展[J].中国橡胶,2007,23(5):37-40.
    [17]杨性坤,程珏,严自力.异戊二烯在二氧六环中的负离子聚合动力学[J].合成橡胶工业,2000,23(5):291-293.
    [18]田福学,张春庆,曹民.TMEDA存在下的异戊二烯负离子均聚合动力学研究[J].高分子材料科学与工程,2002,18(5):80-83.
    [19]孙菁,王佛松.结晶3,4-聚异戊二烯的合成[J].高分子学报,1988(2):145-147.
    [20]程珏,何辰凤,金关泰.异戊二烯/THF负离子聚合产物的微观结构[J].合成橡胶工业,1998,21(2):88-91.
    [21]WOLPERS J.3,4-Polyisoprene-Containing Rubber Blend Mixtures for Tire Treads:USA,US 5,104,941[P]1992.
    [22]HALASA AF.Tire Tread Containing 3,4-Polyisoprene:USA,US 5,627,237[P]1997.
    [23]葛建宁,李柏林,董为民.铁系3,4-聚异戊二烯橡胶的性能[J].弹性体,2007,17(1):45-47.
    [24]KENT EG,SWINNEY FB.Properties and Applications of Trans-1,4-Polyisoprene.[J].Industrial & Engineering Chemistry Product Research and Development,1966,5(2):134-138.
    [25]严瑞芳.杜仲胶研究新进展[J].化学通报,1991(1):1-5.
    [26]COOPER W,EAVES DE,OWEN GDT,et al.Determination of Active Centers in Stereospecific Diene Polymerization[J].Journal of Polymer Science,Part C:Polymer Symposia,1964,4:211-232.
    [27]贺继东,宋景社,黄宝琛.反式1,4聚异戊二烯的合成、结构与性能[J].青岛化工学院学报,1995,17(3):288-295.
    [28]黄宝琛,贺继东,徐玲,等.高反式1,4-聚异戊二烯合成的新方法[J].高分子学报,1992,2(1):116-119.
    [29]冯莺,赵季若,黄宝琛,等.用载体型钛催化剂合成高反式-1,4聚异戊二烯[J].弹性体,1995,5(1):6-11.
    [30]BYWATER S,WORSFOL DJ,HOLLINGSWORTH G.Structure of Oligomeric Polybutadienyl lithium and Polybutadiene[J].Macromolecules,1972,5:389.
    [31]MORTON M,SANDERSON RD,SAKATA R,et al.Nuclear Magnetic Resonance Studies of the Propagating Chain End in the Organolithium Polymerization of Dienes.Ⅱ.Isoprene and 2,3-Dimethylbutadiene in Hydrocarbon Solvents[J].Macromolecules,1973,6(2):186-189.
    [32]MORTON M,FETTERS LJ.Anionic Polymerization of Vinyl Monomers[J].Rubber Chemistry and Technology,1975,48(3):359-409.
    [33]金关泰,李天虎.四氢呋喃添加剂对丁二烯阴离子聚合的影响[J].化工学报,1985,2:215.
    [34]金关泰.丁二烯阴离子聚合的理论研究(上)[J].合成橡胶工业,1988,11(3):253-262.
    [35]程珏,何辰凤,金关泰.异戊二烯阴离子聚合机理的研究[J].弹性体,1998,8(2):12-16.
    [36]HSU WL,HALASA AF.Process for Synthesizing High Trans-Polymers:USA,US 5,100,965[P]1992.
    [37]HARGIS IG,FABRIS HF,LIVINGNI RA.Block Polymers or Blends of High Trans and High Vinyl Butadiene Polymers:USA,US 4,616,065[P]1986.
    [38]HATTORI Y,IKEMATU T,IBARAGI T.Isoprene-Butadienecopolymer Rubber with Improved Workability:Get,DE 2,932,871[P]1980.
    [39]SANDSTRON PH,HSU WL.Trans-1,4-Butadiene/Isoprene Copolymer and Tire Tread:USA,US 5,844,044[P]1998.
    [40]贺爱华,王日国,黄宝琛,等.高反式-1,4-丁二烯-异戊二烯共聚物[J].合成橡胶工业,2002,25(5):321-326.
    [41]HE A,HUANG B,JIAO S.Synthesis of a High-Trans 1,4-Butadiene/Isoprene Copolymers with Supported Titanium Catalysts[J].Journal of Applied Polymer Science,2003,89:1800-1807.
    [42]NEWBERG RG,GREENBERG H,SATO T.New Alfin Rubber[J].Rubb.Chem.Tech.,1970,43(2):333-355.
    [43]SOBOLEVA TV,YAKOVLEV VA,TINYAKOVA FI.Relative Reactivity of Monomers and Chain Microstructure During the Copolymerization of Butadiene with Other Diene in the Presence of Bis(∏-Allylnickelnikle)[J].Dokl Akad Nauk SSSR,1976,228(3):419-422.
    [44]SHMONIA VL,STEFANOVSKAYA NN,TINYAKOVA EI.Basic Principle of Butadiene-Isoprene Copnlymerization in the Presence of Tri(∏-Allyll) Chronium Applied on Aluminosillicate[J].Dokl Nauk SSSR,1973,209(2):369-371.
    [45]KUDASHEV RK,VLASOVA NM,MONAKOV YB.Copolymerization of Butadiene with Isoprene in the Presence of Vanadium Catalytic Systems[J].Prom Sint Kauoh,1982,8:4-8.
    [46]HE A,YAO W,HUANG B.Properties of a New Synthetic Rubber:High-Trans 1,4-Poly (Butadiene-Co-Isoprene) Rubber[J].Journal of Applied Polymer Science,2004,92:2941-2948.
    [47]SALTMAN WM,KUZMA LJ.Preparation and Properties of Polydienes[J].Rubber Chemistry and Technology,1973,46(4):1055-1067.
    [48]CLARK JK,CHEN HY.Proposed Method for Determining the Sequence Distributions of the Configurations in High 1,4-Polybutadienes by Infrared Spectroscopy[J].Journal of Polymer Science,Polymer Chemistry Edition,1974,12(4):925-928.
    [49]PATTERSON DB,HALASA AF.Novel Potassium-Based Catalyst Generated from Alkylmagnesium Compounds for the Preparation of Highly Crystalline Trans-1,4-Polybutadiene[J].Macromolecules,1991,24(7):1583-1589.
    [50]PATTERSON DB,HALASA AF.Anionic Polymerization of 1,3-Butadiene to Highly Crystalline High Trans-1,4-Poly(Butadiene) with Potassium Catalysts Generated from an Alkyllithium and Potassium Tert-kmyloxide[J].Macromolecules,1991,24(16):4489-4494.
    [51]HALASA AF,HSU W-L,JASIUNAS CA,et al.Catalyst System for Synthesizing Amine-Functionalized Rubbery Polymers Having a High-Trans Microstructure:USA,EP 1,939,225[P]2008.
    [52]HALASA AF,HSU W-L.Catalyst System for Synthesizing Amine Functionalized Rubbery Polymers with Good Balance of Rolling and Skid Performance:USA,EP 1,939,224[P]2008.
    [53] HALASA AF, HSU W-L, JASIUNAS CA, et al. Amine Containing Catalyst System and Use for Synthesizing Rubbery Polymers:USA,US 7,321,017[P]2008.
    [54] HALASA AF, AUSTIN LE, HSU W-L. Catalysts System for Synthesizing Rubbery Polymers Having a High Trans Microstructure Content:USA,US 7, 291, 687[P]2007.
    [55] HALASA AF, HSU W-L, JASIUNAS CA, et al. Catalysts for Production of High Trans Diene Rubber by Anionic Polymerization:USA, EP 1,676,634[P]2006.
    [56] BATES KA, VERTHE JJA. Pneumatic Tire Having a Component Containing High Trans-Isoprene-Butadiene Rubber:USA, EP 1,512,553[P]2005.
    [57] HERBERGER JR, BATES KA, VERTHE JJA. Pneumatic Tire Having a Component Containing High Trans Styrene-Butadiene Rubber:USA, US2004210005[P]2004.
    [58] STEINER PP, LINSTER TD, WEYDERT M. Pneumatic Tire Having a Component Containing High Trans Styrene-Butadiene Rubber:Luxembourg, US2004177907[P]2004.
    [59] WEYDERT M, THIELEN GMV, HALASA AF. Pneumatic Tire Having a Component Containing High Trans Styrene-Butadiene Rubber:USA,EP 1,426,408 [P]2004.
    [60] BATES KA, HOLDEN BD, VERTHE JJA. Pneumatic Tire Component Containing High Trans Styrene-Butadiene Rubber:USA, EP 1,391,326 [P]2004.
    [61] ZANZIG DJ, HALASA AF. Pneumatic Tire Having a Component Containing High Trans Styrene-Isoprene-Butadiene Rubber:USA, US 6,686, 420[P]2004.
    [62] HATTORI Y, IKEMATU T, IBARAGI T. Isoprene-Butadiene Copolymer:UK,GB 2,029,426[P]1980.
    [63] HARGIS IG, LIVIGNI RA, AGGARWAL AL. Preparation of Solution Polymers:USA,US 3,992, 561[P]1976.
    [64] JALICS G, HALASA AF. Trans Microstructure Directing Initiator System:USA, WO 9, 723, 521[P]1997.
    [65] JALICS G, HALASA AF. Trans Microstructure Directing Initiator System:USA, US 5,753,579[P]1998.
    
    [66] HARGIS IG, FABRIS HJ, LIVIGNI RA, et al. Tire Tread Having High Trans Butadiene Based Elastomeric Block Copolymers and Blends USA,US 4,669,518[P]1987.
    
    [67] HALASA AF, HSU WL, AUSTIN LE, et al. Process for Synthesizing Trans Polydiene Rubber:USA, US 6,508,154[P]2003.
    
    [68] STEINER PP, LINSTER TD, WEYDERT M. Pneumatic Tire Having a Component Containing High Trans Styrene-Butadiene Rubber USA,US 6,872,772[P]2005.
    
    [69] HSU WL, HALASA AF. Process for Synthesing Trans-1, 4-Polybutadiene:USA, US 6, 670,435[P]2003.
    
    [70] HALASA AF, HSU WL, JASIUNAS CA. Group HA Metal Containing Catalyst System:USA,US 6,627, 715[P]2003.
    [71] RODGERS MB, HALASA AF, HSU WL, et al. Styrene-Butadiene Rubber for Truck Tires:USA, US 5,262,213[P]1993.
    [72] ROGGEMAN DM, KANG JW, HASHIMOTO T. Continuous Manufacture of Conjugated Diene-Aromatic Vinyl Compound Copolymers:Eur,EP 491,199[P]1992.
    [73] KANG JW, SEAVER GB, HASHIMOTO T. Ultra-High-Molecular Weight Copolymers of Conjugated Dienes and Aromatic Vinyl Compounds:Eur,EP 476, 662[P]1992.
    [74] KANG JW, HASHIMOTO T. Ultrahigh-Molecular-Weight Sbr for Abrasion-Resistant Compositions:Eur, EP 476, 641[P]1992.
    [75] KANG JW, SEAVER GB, HASHIMOTO T. Manufacture of Oil-Extended Ultra High-Molecular-Weight Elastomers in Presence of Trimetalated 1-Alkyne Catalysts:Eur,EP 476, 665[P]1992.
    [76] JOYNER DA, KANG JW, HASHIMOTO T, et al. High Performance Tire Treads and Tires:Eur, EP 476, 640[P]1992.
    [77] ZILLIOX JG, REMPP P, PARROD J. Preparation of Star-Shaped Macromolecules by Anionic Copolymerization[J]. Journal of Polymer Science, Polymer Symposia, 1968, 22(1):145-156.
    [78] HERZ J, DECKER-FREYSS D, REMPP P. Distribution of Compositions in Copolymers Prepared by Radical Polymerization[J].Journal of Polymer Science, Polymer Symposia, 1968,16(7):4035-4047.
    [79] REMPP P, DECKER-FREYSS D. Polystyrene with Controlled Branching[J]. Journal of Polymer Science, Polymer Symposia, 1968,16(7):4027-4034.
    [80] ESCHWEY H, HALLENSLEBEN ML, BURCHARD W. Synthesis and Some Properties of Star Polymers with More Than 100 Branches[J]. Angewandte Chemie, International Edition in English, 1974, 13(6):412-413.
    [81] ESCHWEY H, BURCHARD W. Star Polymers from Styrene and Divinylbenzene[J]. Polymer, 1975,16(3):180-184.
    [82] MORTON M, FETTERS LJ. Homogeneous Anionic Polymerization. V. Association Phenomena in Organolithium Polymerization[J].J. Polym. Sci., Part A, 1964, 2(7):3311-3326.
    [83] MANCINELLI PA.Multilithium Polymerization Initiators:USA,US 4,678, 837[P]1987.
    [84] SMITH RL, FARRAR RC, WILLIS DH. Suppressing Gel in the Continuous Solution Polymerization of a Conjugated Diene with a Monovinyl Aromatic Compound:USA,US 4,091,198[P]1978.
    [85] FONTANILLE M, GUYOT P, SIGWALT P. Bi- and Trifunctional Organolithium Initiators and Their Use:Ger, DE 2,726, 980[P]1977.
    [86] TUNG LH, LO GYS. Polyfunctional Lithium Containing Initiator:USA,US 4, 182,818[P]1980.
    [87]HALASA AF,JALICS G.Process for Preparing a Multilithio Initiator for Improved Tire Rubbers:USA,US 5,595,951[P]1997.
    [88]王玉荣,李光辉,顾明初.立构三嵌段聚工二烯的研制[J].合成橡胶工业,1995,18(5):290-293.
    [89]YU JM,DUBOIS P,TEYSSIE P,et al.Syndiotactic Poly(Methyl Methacrylate)(SPMMA)-Polybutadiene (PBd)-SPMMA Triblock Copolymers:Synthesis,Morphology,and Mechanical Properties[J].Macromolecules,1996,29(19):6090-6099.
    [90]YU YS,DUBOIS P,JEROME R,et al.Difunctional Initiators Based on 1,3-Diisopropenylbenzene.3.Synthesis of a Pure Dilithium Adduct and Its Use as Difunctional Anionic Polymerization Initiator[J].Macromolecules 1996,29(8):2738-2745.
    [91]QUIRK RP,MA JJ.Dilithium Initiators Based on 1,3-Bis(1-Phenylethenyl)Benzene.Tetrahydrofuran and Lithium Sec-Butoxide Effects[J].Polym.Int.,1991,24(4):197-206.
    [92]LO GY-S,OTTERBACHER EW,PEWS RG,et al.Studies on Dilithium Initiators.4.Effect of Structure Variations[J].Macromolecules,1994,27(8):2241-2248.
    [93]TUNG LH,LO GY-S.Studies on Dilithium Initiators.1.Hydrocarbon-Soluble Initiators 1,3-Phenylenebis(3-Methyl-1-Phenylpentylidene)Dilithium and 1,3-Phenylenebis[3-Methyl-1-(Methylphenyl)Pentylidene]Dilithium[J].Macromoleculs 1994,27(8):2219-2224.
    [94]BREDEWEG CJ,GATZKE AL,LO GY-S,et al.Studies on Dilithium Initiators.2.The Bimodal Molecular Weight Distribution in Polyisoprene[J].Macromolecules,1994,27(8):2225-2232.
    [95]LO GY-S,OTTERBACHER EW,GATZKE AL,et al.Studies on Dilithium Initiators.3.Effect of Additives and Seeding[J].Macromolecules,1994,27(8):2233-2240.
    [96]袁履冰,何仁.有机铝化合物[M].北京:北京人民出版社,1979.
    [97]GILMAN H,HAUBEIN An.The Quantitative Analysis of Alkyllithium Compounds[J].J.Am.Chem.Soc.,1944,66(9):1515-1516.
    [98]GILMAN H,CARTLEDGE FK.The Analysis of Organotithium Compounds[J].Journal of Organometallic Chemistry,1964,2:447-454.
    [99]VAN DER VELDEN G,DIDDEN C,VEERMANS T,et al.New Method for the Microstructure Determination of Polybutadiene with Cis-1,4,Trans-1,4,and Vinyl-1,2 Units by ~(13)C NMR[J].Macromolecules,1987,20(6):1252-1256.
    [100]VAN DER VELDEN G,FETTERS LJ.Microstructure Determination of Nondeuterated,Partially Deuterated,and Perdeuterated Polybutadienes with Cis-1,4,Trans-1,4,and Vinyl-1,2 Units by Carbon-13 NMR[J].Macromolecules,1990,23(9):2470-2473.
    [101]SATO H,TAKEBAYASHI K,Y T.Analysis of Carbon-13 Nmr of Polybutadiene by Means of Low Molecular Weight Model Compounds[J].Macromolecules,1987,20(10):2418-2423.
    [102]WANG HT,BETHEA TW,HARWOOD HJ.Carbon-13 NMR Spectra of Isomerized Polybutadienes[J].Macromolecules,1993,26(4):715-720.
    [103]CLAGUE ADH,VAN BROEKHOVEN JAM,BLAAUW LP.C Nuclear Magnetic Reasonance Spectroscopy of Polydienes,Microstructure of Polybutadiene[J].Macromolecules,1974,7(3):348-354.
    [104]SANTEE ERJ,CHANG R,MORTON M.300 MHz Proton NMR of Polybutadiene.Measurement of Cis-Trans Isomeric Content[J].Journal of Polymer Science,Polymer Letters Edition 1973,11(7):449-452.
    [105]SANTEE ERJ,MOCHEL VD,MORTON M.Proton NMR of Polybutadiene at 300 MHz.Cis-1,4-Trans-1,4 Linkages[J].Journal of Polymer Science,Polymer Letters Edition,1973,11(7):453-455.
    [106]GRECHISHKINA TV,SLUKIN AD.IR Spectroscopic Identification of the Structure of Polybutadienes[J].Khimiyai Khimicheskaya Tekhnologiya 1984,19:58-61.
    [107]曾焕庭.核磁共振对合成橡胶结构的测定[J].合成橡胶工业,1981,4(4):304-313.
    [108]UTKO J,SZAFERT S,JERZYKIEWICZ LB.Synthesis of Homoleptic Barium Alkoxides and Aryloxides and Their Reactions with Al(CH_3)_3:A Convenient Route to Heterometallic Species[J].Inorg.Chem.,2005,44(15):5194-5196.
    [109]STE'PHANE C,STE'PHANE M,ANNA B.Effect of Aluminum Derivatives in the Retarded Styrene Anionic Polymerization[J].Polymer,2005,46(18):6836-6843.
    [110]PHILIPPE D,MICHEL F,ALAIN D.Towards the Control of the Reactivity in High Temperature Anionic Polymerization of Styrene:Retarded Anionic Polymerization.3-Influence of Triisobutylaluminum on the Reactivity of Polystyryllithium Species[J].Macromol.Symp.,2000,157(1):151-160.
    [111]URANECK CA.Influence of Remperature on Microstructure of Anionic-Initiated Polybutadiene[J].Journal of Polymer Science Part A,1971,9(8):2273-2281.
    [112]CAI J,BO S,LI G,et al.Isothermal and Nonisothermal Transition Kinetics of Trans-1,4-Polybutadiene[J].Journal of Applied Polymer Science,2003,89(3):612-619.
    [113]WANG PG,WOODWARD AE.Quantitative Investigation of the Amorphous and Crystalline Components in an 89%Trans-Polybutadiene Copolymer from Solution[J].Macromolecules,1987,20(11):2718-2723.
    [114]WANG PG,WOODWARD AE.Quantitative Investigation of the Amorphous and Crystalline Components in Trans-1,4-Polybutadiene from Solution:Effects of Crystallization Temperature and Concentration[J].Macromolecules,1987,20(8):1818-1822.
    [115]WANG PG,WOODWARD AE.Quantitative Investigation of the Amorphous and Crystalline Components in Trans-1,4-Polybutadiene from Solution.2.Statistical Treatment[J].Macromolecules,1987,20(8):1823-1826.
    [116]BENVENUTA-TAPIA JJ,TENORIO-LOPEZ JA,HERRERA-NAJERA R,et al.Microstructure-Thermal Property Relationship of High Trans-1,4-Poly(Butadiene)Produced by Anionic Polymerization of 1,3-Butadiene Using an Initiator Composed of Alkyl Aluminum,N-Butyl Lithium,and Barium Alkoxide[J].Polymer Engineering &Science,2009,49(1):1-10.
    [117]张春庆.不对称醚及TMEDA存在下的丁二烯、异戊二烯、苯乙烯阴离子聚合研究[D].大连:大连理工大学,2005.
    [118]冯小玲.阴离子聚合制备高顺式聚异戊二烯的研究[D].大连:大连理工大学,2009.
    [119]曾焕庭.合成橡胶的红外光谱分析(下)[J].合成橡胶工业,1978(3):59-85.
    [120]曾焕庭.合成橡胶的红外光谱分析(上)[J].合成橡胶工业,1978(2):56-72.
    [121]于涛,黄宝琛,姚薇.3,4-聚异戊二烯橡胶的研究进展[J].合成橡胶工业,2004,27(2):122-126.
    [122]LATROU H,MAYS JW,HADJICHRISTIDIS N.Regular Comb Polystyrenes and Graft Polyisoprene/Polystyrene Copolymers with Double Branches("Centipedes").Quality of (1,3-Phenylene)Bis(3-Methyl-1-Phenylpentylidene Dilithium Initiator in the Presence of Polar Additives[J].Macromolecules,1998,31(19):6697-6701.
    [123]贺爱华,姚薇,贾志峰.负载钛系催化剂催化合成高反式丁二烯-异戊二烯共聚物[J].高分子学报,2002,2(1):19-24.
    [124]SHEN Z,SONG X,XIAO S,et al.Coodination Copolymerization of Butadiene and Isoprene with Rare Earth Chloride-Alcohol-Aluminum Trialkyl Catalytic Systems[J].Journal of Applied Polymer Science,1983,28:1585-1597.
    [125]HSIEH HL.Kinetics of Polymerization of Butadiene,Isoprene,and Styrene with Alkyllithiums.Part Ⅰ.Rate of Polymerization[J].Journal of Polymer Science Part A,1965,3(1):153-161.
    [126]傅玉普,郝策,蒋山.多媒体(CAI)物理化学(第三版)[M].大连:大连理工大学出版社,2001.
    [127]潘祖仁.高分子化学(第二版)[M].北京:化学工业出版社,1996.
    [128]FINEMAN M,ROSS SD.Linear Method for Determining Monomer Reactivity Ratios in Copolymerization[J].Journal of Polymer Science Part A,1950,5(2):259-262.
    [129]TIDWELL PW,MORTIMER GA.An Improved Method of Calculating Copolymerization Reactivity Ratios[J].Journal of Polymer Science Part A,1965,3(1):369-387.
    [130]YEZRIELEV AJ,BROKHINA EL,ROSKIN YS.A New Linear Method for Determining Copolymerization Reactivity Ratios[J].Vysokomol soedin A,1969,11:1670-1678.
    [131]MAYO FR,LEWIS FM.Copolymerization.I.A Basis for Comparing the Behavior of Monomers in Copolymerization;the Copolymerization of Styrene and Methyl Methacrylate[J].Journal of American Chemical Society,1944,66:1594-1601.
    [132]T(U|¨)D(O|¨)S F,KELEN T,FOLDES-BEREZSNICH T,et al.Analysis of Linear Methods for Determining Copolymerization Reactivity Ratios.Ⅲ.[J].Journal of Macromolecules Science.Chemistry.,1976,A10(8):1513-1540.
    [133]SIMHA R,BRANSON H.Theory of Chain Copolymerization Reactions[J].Journal Chemical Physics,1944,12:253-267.
    [134]ALFREY T,GOLDFINGER G.The Mechanism of Copolymerization[J].Journal of Chemical physics,1944,12:205-209.
    [135]HSIEH HL,QUIRK RP.Anionic Polymerization:Principles and Practical Applications[M].New York:Marcel Dekker,Inc.,1996.
    [136]BATES FS,FREDRICKSON GH.Block Copolymer Thermodynamics:Theory and Experiment[J].Annual Review of Physical Chemistry,1990,41:525-557.
    [137]LOVELL PA,EL-AASSER MS.Emulsion Polymerization and Emulsion Polymers[M].New York:Wiely,1997.
    [138]SZWARC M.Living Polymers.Their Discovery,Characterization,and Properties[J].Journal of Polymer Science Part A:Polymer Chemistry,1998,36(1):Ⅸ-ⅩⅤ.
    [139]WANG Y,LI G,LENG Y,et al.Synthesis and Kinetic Behavior of Stereotriblock Polybutadiene Using Dilithium as Initiator[J].Journal of Applied Polymer Science,2003,88:1049-1054.
    [140]BADISCHE A,SODA-FABRIK AG.Elastomeric Stereopecific Polybutadiene Block Polymers:Netherlands,NL 6605985[P]1966.
    [141]URAYAMAK,LUO Z-H,KAWAMURAT,et al.Phase Behavior of a Nematic Liquid Crystal in Polybutadiene Networks[J].Chemical Physics Letters,1998,287(3,4):342-346.
    [142]GUPPER A,KAZARIAN SG.Study of Solvent Diffusion and Solvent-Induced Crystallization in Syndiotactic Polystyrene Using FT-IR Spectroscopy and Imaging[J].Macromolecules,2005,38(6):2327-2332.
    [143]POCHAN JM,BEATTY CL,POCHAN DF.Different Approach for the Correlation of the Tg of Mixed Amorphous Systems[J].Polymer,1979,20(7):879-886.
    [144]FURUKAWA J,KOBAYASHI E,KATSUKI N,et al.Carbon-13 NMR Spectrum of Equibinary (Cis-1,4-1,2) Polybutadiene[J].Makromolekulare Chemie,1974,175(1):237-245.
    [145]DEFFIEUX A,CARLOTTI SP,DESBOIS P.New Perspectives in Living/Controlled Anionic Polymerization[J].Macromol.Symp.,2005,229:24-31.
    [146]史丰田.阴离子聚合控制聚合物立构规整性及其嵌段共聚物的合成研究[D].北京:北京化工大学,2007.
    [147] KOBAYASHI E,HAYASHI N,AOSHIMA S, et al. Homo- and Copolymerization of Butadiene and Styrene with Neodymium Tricarboxylate Catalysts [J]. Journal of Polymer Science Part A: Polymer Chemistry,1998, 36(2):241-247.
    [148] ENDO K, MATSUDA Y. Copolymerization of Styrene and Butadiene with Ni (Acac)_2-Methylaluminoxane Catalyst[J]. Journal of Polymer Science Part A: Polymer Chemistry, 1999, 37(20):3838-3844.
    [149] NAKAMURA N, YAMAGUCHI Y, ENDO K. Synthesis of High Molecular Weight Copolymer of Styrene and Butadiene Bearing High 1, 4-Cis Butadiene Unit from Copolymerization with CpTiCl_3/Methylaluminoxane Catalyst. [J].Journal of Applied Polymer Sc i ence, 2003,88 (13):2942-2946.
    [150] KAITA S, HOU Z, WAKATSUKI Y. Random- and Block-Copolymerization of 1, 3-Butadiene with Styrene Based on the Stereospecific Living System[J].Macromolecules, 2001,34(6):1539-1541.
    [151] NAGA N, IMANISHI Y. Copolymerization of Styrene and Conjugated Dienes with Half-Sandwich Titanium(IV) Catalysts: The Effect of the Ligand Structure on the Monomer Reactivity, Monomer Sequence Distribution, and Insertion Mode of Dienes[J]. Journal of Polymer Science, Part A: Polymer Chemistry, 2003, 41 (7) :939-946.
    [152] BAN HT, TSUNOGAE Y, SHIONO T. Stereospecific Sequential Block Copolymerizations of Styrene and 1, 3-Butadiene with a C_5Me_5TiMe_3/B(C_6F_5)_3/Al(Oct)_3 Catalyst[J]. Journal of Polymer Science: Part A: Polymer Chemistry, 2005,43:1188-1195.
    [153] MILIONE S, CUOMO C, CAPACCHIONE C, et al. Stereoselective Polymerization of Conjugated Dienes and Styrene-Butadiene Copolymerization Promoted by Octahedral Titanium Catalyst[J]. Macromolecules, 2007,40:5638-5643.
    [154] KAWAMURA T, TOSH1MA N, MATSUZAKI K.Comparison of 13C NMR Spectra of Polystyrenes Having Various Tacticities and Assignment of the Spectra[J]. Macromolecular Rapid Communications, 1994,15(6):479-486.
    [155] GROOF BD, VAN BEYLEN M, SZWARC M. Anionic Polymerization of the Barium Salt of One-Ended Living Polystyrene. I. Conductance and Kinetic Studies[J].Macromolecules, 1975,8(4):396-400.
    [156] GROOF BD, MORTIER W, VAN BEYLEN M, et al. Anionic Polymerization of the Barium Salt of One-Ended Living Polystyrene. 2. The Effect of Added Barium Tetraphenylboride[J]. Macromolecules,1977,10(3):598-602.
    [157] WEEBER A, HARDER S, BRINTZINGER HH, et al. Homoleptic and Heteroleptic Barium Benzyl Complexes:Synthesis and Reactivity as Initiators for Anionic Styrene Polymerizations[J].Organometallics,2000,19(7):1325-1332.
    [158]NARITA T,KUNITAKE Y,TSURUTA T.Dibenzylmagnesium/Tetrahydrofurfuryl Alcohol System as an Initiator of Polymerizations of Styrene and Butadiene[J].Makromolekulare Chemie,1975,176(11):3371-3375.
    [159]AREST-YAKUBOVICH AA.Role of Bimetallic Active Centers in Anionic Polymerization of Hydrocarbon Monomers[J].Macromol.Symp.,1994,85:279-294.
    [160]NAKHMANOVICH BI,ZOLOTAREVA IV,AREST-YAKUBOVlCH AA.Study on the Mechanism of Anionic Polymerization with Mixed RLi-R'OK Initiators.Part 1.Polymerization of Butadiene[J].Macromolecular Chemistry and Physics,1999,200(9):2015-2021.
    [161]EKIZOGLOU N,HADJICHRISTIDIS N.Benzyl Potassium:An Efficient One-Pot Initiator for the Synthesis of Block Co- and Terpolymers of Ethylenoxide[J].Journal of Polymer Science,Part A:Polymer Chemistry,2001,39(8):1198-1202.
    [162]SZWARC M.Carbanions,Living Polymers and Electron Transfer Processes[M].New York:Interscience,1968.
    [163]杨大川,金关泰,金日光,等.紫外光谱研究正丁基锂和聚丁二烯基锂的缔合度[J].北京化工学院学报,1989,16(4):30-34.
    [164]杨晓勤,金关泰.丁二烯阴离子聚合活性种紫外光谱的研究[J].北京化工学院学报(自然科学版),1990,17(2):23-28.
    [165]QOINEBE CHE SB,NAVARRO C,GNANOU Y,et al.In Situ Mid-IR and UV- Visible Spectroscopies Applied to the Determination of Kinetic Parameters in the Anionic Copolymerization of Styrene and Isoprene[J].Polymer,2009,50:1351-1357.
    [166]王玉荣,张春庆,廖明义.高分子化学与物理实验[M].大连:大连理工大学化工学院,1998.
    [167]严自力,金关太,王新.线型无规共聚物SIBR的合成与表征[J].弹性体,2001,11(3):12-14.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700