~(60)Co-γ射线辐射孤挺花诱变效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
孤挺花为石蒜科孤挺花属球根花卉,为多年生草本,鳞茎卵状球形,直径7~8cm。原产南美秘鲁、巴西,现在世界各国广泛种植。孤挺花花朵花大色艳,叶片鲜绿洁净,宜于切花和盆栽观赏,还可配置于庭院、花坛、花径和林下自然布置。
     本研究用不同剂量(5 Gy、10 Gy、15 Gy、20 Gy) ~(60)Coγ射线辐射处理三年生孤挺花鳞茎,并设置对照组。对成活率、叶长、叶宽、主根数量和次根数量等农艺性状进行田间观测;对辐射后植株根尖进行染色体压片,观察不同剂量~(60)Coγ射线辐射引起的染色体变化;并利用聚丙烯酰胺凝胶电泳(PAGE)对辐射后植株叶片进行同工酶分析;获得的主要结果如下:
     1、M_1代的成活率、叶长、叶宽、主根数量、次根数量等指标损伤度随着剂量的增大而加大,主要表现在以下几个方面:①随辐射剂量增加成活率显著降低,20 Gy剂量辐射组全部死亡;②叶长显著变短,15 Gy剂量辐射组叶长平均值仅为对照组叶长平均值的40%左右;③随辐射剂量增加,叶宽没有明显变化,方差分析表明结果不显著;④随辐射剂量增加,主根、次根数量均显著减少;⑤随辐射剂量增加,主根、次根长度也显著变短;通过方差分析和利用SPSS软件对所得数据进行处理后,分别得出如下方程:叶长和剂量的相关方程为:y=-0.405x+9.04 R~2=0.93 F=54.291>F_(0.01)=34.12叶宽和剂量的相关方程为:y=-0.129x+3.306 R~2=0.68 F=9.484<F_(0.05)=10.13主根数量和剂量的相关方程为:y=-0.362x+6.876 R~2=0.924 F=49.551>F_(0.01)=34.12主根长度和剂量的相关方程为:y=-0.37x+7.502 R~2=0.995 F=758.981>F_(0.01)=34.12次根数量和剂量的相关方程为:y=-3.518x+61.728 R~2=0.868 F=27.378>F_(0.05)=10.13次根长度和剂量的相关方程为:y=-0.126x+2.624 R~2=0.989 F=365.095>F_(0.01)=34.12以上方程中x均为自变量(剂量),y均为相应的各个农艺性状指标值。
     2、对辐射组根尖细胞进行染色体压片,观察发现5 Gy辐射组染色体畸变以桥为主,染色体桥出现的频率为36%,但当剂量加大时,则断片率则显著上升,10 Gy处理组染色体断片出现的频率为33%。
     3、对M_1代成活植株叶片进行同工酶分析表明,过氧化物酶同工酶谱带比对照组数目均有增加,5Gy处理组增加两条带,10Gy处理组增加一条带;酯酶同工酶谱带相对对照组数目没有增加,但是谱带宽度发生变化,5Gy处理组酯酶谱带明显变宽,而10Gy处理组酯酶谱带则变弱。
     综上所述,辐射造成植株成活率、叶长、主根数量和次根数量等农艺性状的损伤,并且上述农艺性状的损伤度随辐照剂量的增加呈增加趋势;辐射引发染色体数量畸变,低剂量下以染色体桥为主,随着剂量加大进一步引发染色体结构变异和行为变异;同工酶对辐射反应比较敏感性,过氧化物酶和酯酶谱带均有变化,因此,利用同工酶的变化可以对突变体进行早期鉴定。
Hippeastrum vittatum(Amaryllis vittata )is one of the tuber flowers,which belongs to Hippeastrum Amaryllidaceae.It is a perennial herb.Tts bulb's shape is like an egg,and its diameter is about 7-8cm。Hippeastrum vittatum(Amaryllis vittata ) is produceed in the South America,Peru,Brazil originally,which is planted widely in various countries now.Tts flower is big and colorful,and its leaves are deep green which seem to be always flesh.Hippeastrum vittatum(Amaryllis vittata) is suitable for outing flower and bonsai watching.It may also can be disposed in the garden,the flower-bed,the flower-strewn path and the forest with nature arrangemento
     In this experiment,three-year-old bulbs of Hippeastrum vittatum(Amaryllis vittata) were radiated by ~(60)Coγ-ray with different dosages(5 Gy、10Gy、15 Gy、20 Gy).And established the control group.at the same time,Carry on the field observation to its survival rate and the seedling character.The results indicated that: along with the Increasing exposure dosages,the Survival rate,lengths of the leaves,the widths of the leaves and so on were decreasing progressively.Analysis the leaves,which were radiated by ~(60)Coγ-ray with different dosages,by the PAGE.The results indicated that:Under the 5Gy exposure dosage,the activenesses of the peroxide enzyme and esterase were the strongest。The above results are provided the basis for the further study on Hippeastrum vittatum(Amaryllis vittata)。
     The research indicated that:~(60)Coγ-ray caused the multi-position mutagenic effect.on the bulbs of Hippeastrum vittatum(Amaryllis vittata).the first step of this experiment was to transplant them in the simple protected fields after radiated in January.the second was to survey different agronomic characters of the targets when they were pulling out the leaves and blossoming..The results showed that:along with the Increasing exposure dosages,the Targets of the injury tolerance were increased in the M1 generation,such as the survival rate,lengths of the leaves,the leaves the widths,the leaves,the main root quantity,the Inferior root quantity and so on..they could mainly be displayed in the following several aspects:Along with the Increasing exposure dosages,the survival rate reduced obviously.The group radiated by 20 Gy diesd completely.②lengths of the leaves were shorten remarkably.the mean value of the leaves lengths in the 15 Gy dosage radiation group was about 40% of the control group.③along with the Increasing radiation dose,The widths of the leaves did not change obviously.The variance analysis indicated that the results were not remarkable;④along with the Increasing radiation dose,The quantities of the main root,and the inferior root reduced obviously;⑤along with the Increasing radiation dose,The lengths of the main root,and the inferior root shorten obviously. This was also the two the primary causes of the t adult plants which the growing trend weakened unceasingly.By processing the the obtained data through the variance analysis and the SPSS software,the following equations could be Obtainsed separately::
     The relationship between different dosages and the lengths of the leaves was fitted in the dependent equation: y=-0.405x+9.04 R~2=0.93 F=54.291>F_(0.01)=34.12
     The relationship between different dosages and the widths of the leaves was fitted in the dependent equation:: y=-0.129x+3.306 R~2=0.68 F=9.484<F_(0.05)=10.13
     The relationship between different dosages and the quantityies of the main roots was fitted in the dependent equation:: y=-0.362x+6.876 R~2=0.924 F=49.551>F_(0.01)=34.12
     The relationship between different dosages and the lengths of the main roots was fitted in the dependent equation:: y=-0.37x+7.502 R~2=0.995 F=758.981>F_(0.01)=34.12
     The relationship between different dosages and the quantityies of the inferior root roots was fitted in the dependent equation: y=-3.518x+61.728 R~2=0.868 F=27.378>F_(0.05)=10.13
     The relationship between different dosages and the lengths of the inferior root roots was fitted in the dependent equation: y=-0.126x+2.624 R~2=0.989 F=365.095>F_(0.01)=34.12 X was Independent variable(dosage)in the above dependent equations. Y was the target value.with the corresponding agronomic characters.
     Radiation Unit of the root tip cells chromosome compression,observed that,5 Gy treated the frequency of chromosome bridge for 36 percent,10 Gy team chromosome fragments in the frequency of 33 percent,to verify the radiation caused by chromosome mutation major structural variation the main conclusions.
     Guaiacol with the M_1 and the survival of plant leaves for peroxidase analysis, using naphthalene acetic acid ester of the M_1-generation plant leaves for survival EST analysis,the results are as follows:the control group treated relatively peroxidase Has increased the number of bands,with the control group A,5 Gy-treated group increased to A band,B band,C band,10 Gy-treated group increased to A band,B band.Once again proved peroxidase sensitivity to outside stimuli,the group handling the increase in the number of different bands,may mean different kinds of plants outside stimulate different responses,5 Gy treated the largest number of bands,this means that the plants on the dose response Strong in dealing with this dose,to effect greater than lethal effects.5 Gy team EST significantly wider bands,10 Gy team EST bands were significantly weaker,but no new bands increased,once again proved the stability EST.Isozyme bands and the availability of power to reflect changes in ~(60)Coγ-ray radiation dose effect,and characters with a certain degree of injury related. Therefore,the isozyme can be used as ~(60)Coγ-ray aider the biological effects of radiation detection of a chemical or biological indicators.
引文
[1]王桂荣.辐照大麦M_1花粉母细胞染色体畸变及其与M_2性状变异的关系[J].遗传,1996,18(5):19-22
    [2]Stettler R.Mutations and inactivation of mammalian cells by various ionizing radiation[J].Nature,1968,219:745-747
    [3]Winton L L,et al.Flower differentiation and pollination[J].Forest Science,1968,55:9-16
    [4]牛传堂.辐射诱变梅花突变体的研究[J].核农学报,1995,9(3):144-148
    [5]郭安熙.金光四射等六个菊花新品种的辐射选育[J].核农学通报,1991,12(2):73-75
    [6]程备久.棉花离子辐射损伤及其与遗传变异关系的研究[D].合肥:中科院等离子所,1996
    [7]胡蕙露,彭镇华,周蜀生.离子注入引起银杏种子M_1代染色体畸变研究[J].安徽农业大学学报,1994,21(3):286-289
    [8]Lea,D.E.,1946,1955,Action of Radiation on living cells,cambridge.
    [9]Darlington C.D.,Chromosome chemistry and gene action[J].Landon,Nature,1942,66-149
    [10]Tanaka K,et al.Current topics in radiation research[J].Journal Radiation Research,1983,24:291-304
    [11]Revell,S.H.,Mutation Research,1966,18:45-53
    [12]Leenhouts,Chadwick,Animal models in radiation carcinogenesis - biophysical considerations[J].Vol.30,No.3(sep.,1991),pp.169-171
    [13]Ahmed El-Metainy,Shigemitsu Tano,Keiji Yano and Hikoyuki Yamaguchi Chemical Nature of Radiation-Induced Single-Strand Breaks in the DNA of Dormant Barley Seeds in Vivo Radiation Research[J].Vol.55,No.2(Aug.,1973),pp.324-333
    [14]Howland,G.P.,etal.,Mutation Research[J].1975,27:81-87
    [15]Tano SAnd Yamaguchi H.,Repair of radiation-induced single-strand breaks in DNA of barley embroys,Mutant Res.[J].1977,42:71-78
    [16]Sarasin,A.et al.,International Journal of Radiation Biology[J].1985,47:479-486
    [17]山口彦之.育种学最近四进步.1977,18:17-36
    [18]Jackson J F.et al.Radiation induced charomosome aberrations,Mutation Research[J].1987,181:17-29
    [19]Inoue M.et al.Temperature effect on the repair of Gamma induced lessons in barley seeds[J].Environment and Experiamntal Botany,1982,22(4):415-426
    [20]项有斌等,分子遗传标记及其在作物诱变遗传育种中的应用[J].核农学通报,1997,18(1):45-49
    [21]Detlef Welgel & Ore Nilsson.Adevelopmental switch sufficient for flower initiation in diverse plants[J].Nature,1995,377(12):495-500
    [22]Vizir I Y,et al.Molecular biology ofthe gene[J].Genetics.1994,137:1111-1119
    [23]王文恩,张俊卫,包满珠.~(60)Coγ射线辐射对野牛草干种子的刺激生长效应[J].核农学报,2005,19(3):191-194
    [24]敖妍,张国盛,鲁韧强等.扶芳藤种子与枝条的~(60)Coγ射线辐射效应[J].核农学报,2006,20(3):202-204
    [25]王志芬,闫树林,苏学合.~(60)Coγ射线辐照菘蓝种子的生物学效应[J].核农学报,2006,20(1):47-48
    [26]秦华.γ射线辐射水仙花鳞茎对植株生长与开花的影响[J].核农学报,2005,19(5):360-362
    [27]余泽高,顾正清,蔡金洋.~(60)Coγ射线辐射小麦种子贮藏效应的研究[J].核农学报,2005,19(2):92-94
    [28]张克中,赵祥云,黄善武等[J].~(60)Coγ射线辐射百合鳞片扦插诱生的不定芽植株变异研究[J].核农学报,2003,17(3):215-220
    [29]张根发,石小明,聂艳丽,李珂,周宏余,陆挺,低能N~+注入与γ辐射拟南芥对可溶性蛋白和淀粉酶(AMY)、酯酶(EST)酶活和同工酶影响的比较分析[J].高技术通讯,2005,15(2):84-90
    [30]覃新程,王飞.~(60)Coγ射线与EMS复合处理对山黎豆抗氧化酶活力及ODAP含量的影响[J].应用生态学报,2000,11(6):957-958,
    [31]宋道军,李红.N~+离子注入对不同辐射敏感性微生物超氧化物歧化酶和过氧化物酶的影响[J].生物物理学报,1998,14(2):325-330
    [32]邹江石,汤陵华.论亚洲栽培粳稻的起源[J].中国农业科学,1998,31(5):75-82
    [33]张维强,唐秀芝,植物内源物质DF3对小麦种子发芽生长的辐射保护作用[J].核农学通报,1996,17(5):239-240,
    [34]王熊,罗士伟.烟草组织培养过程中过氧化物酶同工酶的变化[J].植物生理学报,1981,7(1):77-82
    [35]黄训端,何家庆,周立人等.~(60)Coγ射线辐照对花魔芋同工酶与品质的影响[J].激光生物学报,2005,14(3):213-217
    [36]王泽港,冯敏.γ射线辐照对四种蔬菜叶片SOD活性和MDA含量影响的回归分析[J].核农学报,2005,19(2):134-137
    [37]T.Kaneko,W.S.Zhang,M.Ishii,K.Itoand,K.Takeda,Differentiation and geographical distributionof b-amylase isozyme in barley[J]Genetic Resources and Crop Evolution,2002,49:599-605
    [38]R.Vilas E.Paniagua M.L.SanmartnDiffculties in the genetic interpretation of isozyme patterns of Lecithochirium spp.(Trematoda:Digenea)[J].Original Paper 2002,88:311-314
    [39]胡志昂,王洪新.蛋白质多样性和品种鉴定[J].植物学报,1991,33(7):556-564
    [40]Muller H.J.X-ray induced mutation of Drosophila virils[J].Science,1927,66:84-87
    [41]FAO / IAEA.Induced Mutation in Plant[M].IAEA.1969
    [42]义鸣放.世界花卉产业现状及发展趋势[J].世界林业研究.1997,10(5):41-47
    [43]World Floriculture by the Numbers.Flora Culture International[M].1997,30-33
    [44]金清波.作物育种知识讲座[J].生物学通报,1996,31(1):28-31
    [45]赵孔南.植物辐射遗传育种进展[M].北京:原子能出版社,1990,3-4
    [46]Micke A.et al.Variation in the karyotype of three cuhivars of Narcissus tazetta L.[J].Trop Agriculture.1987,64:259-278
    [47]高健,彭镇华.~(60)Coγ射线辐射中国水仙的细胞学效应研究[J].激光生物学报,2006,15(2):179-183
    [48]Caetano-Anolles G,et al.Enhanced detection of polymorphic DNA by multiple arbitrary amplicon profiling of endonuclease digested DNA[J].Molecular Genetics,1993,241:57-64
    [49]Broertjes C.Mutation breeding in floricultura crop[J].Acta Horticulture,1976
    [50]李雅志.花卉辐射育种的成就与前景[J].原子能农业应用,1986,(3):57-60
    [51]郭安熙.菊花花色辐射诱变研究[J].核农学报,1997,11(2):65-71
    [52]赵月芬.菊花辐射效应及利用组织培养加速突变体稳定的研究[J].核农学通报,1990,(5):207-209
    [53]扬保安.辐射与组培复合育成“霞光”等14个菊花新品种[J].河南科学,1996,(1):57-60
    [54]胡能书,万贤国.同工酶技术及应用[M].长沙:湖南科学技术出版社,1985
    [55]徐冠仁.植物诱变育种学[M].北京:中国农业出版社,1996
    [56]沈光平,王钦南,周祉.微核与染色体畸变的相关性[J].遗传,1985,7(1):15-17
    [57]杜晓明,刘新田,杜晓光等.不同产地红皮云杉酯酶同工酶分析[J].林业科技,1995,20(1):6-9
    [58]Chevreau E,Leuliette S,Gallet M.Inheritance and linkageof isozyme loci in pear(PyruscommunisL.)[J].Theor.Appl.Genet.1997,94:498-506
    [59]Paulo JE,Justo JM.Identification of mandarin hybrids by isozyme and RAPD analysis[J].Sc.Hort.1999,81:287-299
    [60]Strefeler Ms,Darmo E,Becker RL,et al.Isozyme variation in cultivars of purple loosestrife(Lythrum sp.)[J].Hort.Sci.1996,31:279-282
    [61]Chaparro JX,Werner DJ,O'Malley D,et al.Targeted mapping and linkage analysis of morphological,isozyme,andRAPD markers in peach[J].Theor.Appl.Genet,1994,87:805-815
    [62]徐忠东,肖家军.同工酶研究及其应用进展[J].安徽教育学院学报,2000,18(3):43-45
    [63]雷泞菲,苏智先,陈劲松.同工酶技术在植物研究中的应用[J].四川师范学院学报(自然科学版),2000,21(4):321-325
    [64]Abha Jain,A.K.Roy,P.Kaushal,D.R.Malaviya and S.N.Zadoo.Isozyme banding pattern and estimation of genetic diversity among Guinea grass germplasm Genetic Resources and Crop Evolution[J].2006,53:339-347
    [65]徐家萍,刘明辉,程备久,范久戈.安徽省地方桑树种质资源过氧化物同工酶差异性研究[J].安徽农业科学,2001,29(5):657-662
    [66]Toshinori Ochiai,Viet Xuan Nguyen,Makoto Tahara & Hiromichi Yoshino.Geographical differentiation of Asian taro,Colacasia esculenta(L.)Schott,detected by RAPD and isozyme analyses Euphytica[J].Kluwer Academic Publishers.Printed in the Netherlands.Euphytica 2001,122:219-234
    [67]Wendel JF,Weeden NF.Visualization and interpretation of plant isozymes.In:Soltis D E.Soltis,PS(Eds.):Isozymes in Plant Biology[J].London,UK:Dioscorides Press,PP.1989,5-45
    [68]郭水良,毛郁薷,强胜.温度对六种外来杂草过氧化物酶同工酶谱的影响[J].广西植物,2002,22(6):557-562
    [69]孙静,王宪泽.盐胁迫对小麦过氧化物酶同工酶基因表达的影响[J].麦类作物学报,2006,26(1):42-44
    [70]夏丽华,郭继勋.磁场对羊草过氧化物酶的激活效应及同工酶分析[J].应用生态学报,2000,11(5):699-702
    [71]尹淑霞,王月华,周荣荣.~(60)Coγ线辐射对黑麦草种子发芽及POD同工酶的影响[J].中国草地,2005,27(1):75-77
    [72]项艳,刘正祥,胡蕙露等.N~+离子注入板栗生物学效应研究[J].激光生物学报,2004,13(1):47-51
    [73]林宝刚,张明龙,王桂荣.辐照诱导的新雄性不育系过氧化物酶和酯酶同工酶分析[J].核农学报,2005,19(4):304-306

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700