假黑盘菌素和T4溶菌酶微生物高效表达系统的建立
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究首次尝试在毕赤酵母细胞中高效表达和生产小分子抗菌肽~假黑盘菌素。首先按照毕赤酵母所偏爱的密码子,人工拼接出一个完整的、编码假黑盘菌素成熟短肽的基因;通过在基因两端添加合适的限制性酶切位点,将该人工序列定向插入到毕赤酵母诱导型分泌表达载体pPIC9K中的多克隆位点内。为了实现该小片段外源基因在毕赤酵母细胞中的高效表达,又将3个串联后的芜菁花叶病毒-人巨细胞病毒复合增强子序列插入到假黑盘菌素成熟短肽基因终止密码子的下游,由此得到了一个全新的酵母诱导型分泌表达载体3ENple-9K。利用线性化处理后的3ENple-9K质粒DNA对毕赤酵母GS115菌株进行遗传转化,并随后使用选择性培养基、G418抗性及摇瓶发酵,对获得的大量重组毕赤酵母进行筛选,得到了一个能够高效和稳定表达假黑盘菌素抗菌肽的工程菌株PleI。在中试规模(50L发酵罐)基础上,对该工程菌的发酵和外源蛋白高效表达条件进行了优化,包括营养成分、发酵温度、菌体密度、pH值、溶氧量、接种量、甲醇浓度和蛋白诱导表达时间等参数,由此使假黑盘菌素抗菌肽重组蛋白的表达量达到0.14g/L。此外,还对重组假黑盘菌素抗菌肽的提取、纯化等工艺也进行了初步的研究,摸索出一套简便、快捷和比较经济的方案,即将目标蛋白的提取、纯化工艺分成了以下四个阶段,分别是:1)发酵液的初处理;2)发酵上清液的再处理;3)发酵上清液的高度浓缩;4)重组蛋白的高度纯化。对各阶段所需的实验材料和工艺等影响重组蛋白回收率的条件也都进行了探索。在对纯化出的重组假黑盘菌素抗菌肽进行体外抑菌活性试验时发现,它不仅对一些常见的革兰氏阳性病原细菌具有较强的杀灭作用,而对某些革兰氏阴性细菌也具有一定的杀灭和抑制作用。活体动物试验表明,重组假黑盘菌素抗菌肽对感染马链球菌兽疫亚种的小鼠具有一定的疗效。
     本研究首次尝试在汉逊酵母细胞中高效表达和生产T4溶菌酶重组蛋白。通过在基因两端添加的合适的限制性酶切位点,将一个改构的T4溶菌酶基因定向插入到毕赤酵母诱导型分泌表达载体pPIC9K中多克隆位点内,并在该表达载体中添加了来源于汉逊酵母的rDNA序列作为同源整合序列,由此得到了一个全新的酵母诱导型分泌表达载体T4-rD-9K。利用线性化处理后的T4-rD-9K质粒DNA对汉逊酵母A16菌株进行遗传转化,并随后使用选择性培养基(G418抗性)及摇瓶发酵,对获得的大量重组汉逊酵母进行筛选,得到了一个能够高效和稳定表达改构T4溶菌酶重组蛋白的工程菌株H5。
     在上述研究基础上,本研究构建了一个含假黑盘菌素抗菌肽和改构T4溶菌酶基因的双元表达体系,实现了两种外源蛋白在毕赤酵母细胞中的同步和高效表达,并且这两种重组蛋白在发酵液中能协同发挥杀菌或抑菌活性,由此更进一步扩大了它们医药、食品和饲料等工业等领域的应用潜力。
     为了进一步提高外源蛋白基因在宿主细胞中表达效率,本研究还尝试构建一个高效的瑞氏木霉表达体系。首先通过PCR的方法,以瑞氏木霉基因组DNA为模板,从中克隆出其纤维二糖水解酶基因启动子-纤维二糖水解酶分泌信号肽编码序列以及纤维二糖水解酶基因终止子序列。然后利用上述序列,分别与改构的T4溶菌酶和假黑盘菌素抗菌肽编码序列进行拼接,形成了两个新的外源基因表达框。以毕赤酵母诱导型表达载体pPIC9K为出发载体,通过添加合适的限制性酶切位点,将改构的T4溶菌酶基因或假黑盘菌素抗菌肽基因表达框分别定向插入到pPIC9K载体的多克隆位点内,又获得了T4-hT-9K和ple-hT-9K两种瑞氏木霉诱导型分泌表达载体。此外,在构建上述载体的过程中,还插入了潮霉素抗性基因作为将来木霉重组子的筛选标记。
This paper attempted to express the low molecular weight antimicrobial peptide~plectasin in Pichia pastoris. Firstly, the gene encoding mature plectasin was synthesized according to yeast codon usage bias, and then directionally inserted into the MCS of the expression vector pPIC9K with restriction endonuclease and T4 ligase, which is inducible expression with methanol as the inducer in P. Pastoris. In order to express efficiently the gene encoding heterologuos low molecular weight of protein in P. Pastoris, an artificial enhancer with 3 times tandem repeating sequence, derived from TYMV3'UTR and CMVp enhancers was inserted into the downstream of terminator codons of the plectasin gene, forming a new inductive and secretary expression vector of P. Pastoris designated 3ENple-9k. The 3ENple-9K plasmid DNA linearized with Sal I was transformed into the GS115 strain of P.pastoris. By using selective medium, G418 resistance and shaking-flask culture, one transformant designated PleI was selected from hundreds of transformants, which can express effectively and stably the recombinant plectasin peptides. Based on the pilot test (50L fermenter), a lot of parameter relating to the conditions of fermentation and protein expression were optimized, including nutrient component, temperature, cell density, pH, dissolved oxygen, inoculum size, methanol concentration and inductive time. The expression level up to 0.14g/L of the recombinant plectasin was realized by using the strategy motioned above. In addition, an extracting and purifying process of the recombinant plectasin was investigated and a simple, convenient and economic method was established, which involved in four stages: 1) pretreatment of the fermentation broth; 2) retreatment of the supernatant of fermentation; 3) high enrichment of the supernatant of fermentation by nano-filtration; 4) high purification of the recombinant protein by molecular-sieve chromatography. Meanwhile, conditions of experimental material and methods affecting recovery of the recombinant plectasin were studied. Antibacterial activity analysis of the recombinant plectasin in vitro shows that not only can it inhibit strongly growth of some common gram-positive pathogenic bacteria, but also inhibit some gram-negtive bacteria. In vivo inhibiting experiment indicated that the recombinant plectasin are able to partly cure the infection of mice caused by Streptococcus Equi Subsp. Zooepidemicus.
     A modified recombinant T4 lysozyme was firstly attempted to express and produce in Hansenula polymorpha. The gene encoding the modified T4 lysozyme according to yeast codon usage bias was inserted directionally into the MCS of a modified expression vector pPIC9K containing the rDNA sequence from H.polymorpha as a homologous recombination sequence, which is inducible expression with methanol as the inducer in H. polymorpha. The expression vector designated T4-rD-9K was linearized and transformed into the A16 strain of H.polymorpha. By using selective medium G418 resistance and shaking-flask culture, one transformant designated H5 was selected from hundreds of transformants, which can express effectively and stably the recombinant T4 lysozyme.
     Based on the results mentioned above, a dual-gene expression system designated pleT4-9K was constructed and transformed into the GS115 strain of P.pastoris. One transformant named PTI was obtained by screening, which can simultaneously express both the plectasin and T4 lysozyme genes in P.pastoris. Antibacterial activity analysis in vitro of the fermentation broth shows that both the recombinant proteins can play a role simultaneously, which predicts a broad application of the recombinant proteins at medicine, food, forage industry field in the near future.
     For further increase expression efficiency of the heterologous genes in host strain,a high expression system was also constructed, which will be used in Trichoderma reesie. The Pcbh1-sig and Tcbh1 DNA sequences were prepared by PCR approach, using genomic DNA of T. ressei as the template. The Pcbh1-sig and Tcbh1 sequences were added to 5’end and 3’end of the gene encoding plectasin or T4 lysozyme respectively, which formed two new expression cassettes. The plectasin or T4 lysozyme expression cassette was into the MCS of a modified expression vector pPIC9K containing a hygromycin resistance gene as the screening marker, forming two expression vectors designated T4-hT-9K and ple-hT-9K, which are inductive and secretary with cellulose as the inducer in T. reesie.
引文
1.蔡传奇,方荣祥.(2001).毕赤酵母基因操作技术的改进及其在水蛭素表达中的应用.生物工程学报,2,155-160.
    2.陈秀珠,张玉华,还连栋.(2000).2种乳链菌肽天然变异体抑菌活性的研究.食品与发酵工业,27,1-3.
    3.成勇,黄玉政,袁玉国,张信军,张玉峰,耿士忠等.(2009).酪蛋白和巨细胞病毒复合启动子激活人乳铁蛋白cDNA基因在转基因小鼠乳腺中的表达.南京农业大学学报,32,78-84.
    4.邓超,王联结.(2008).阳离子抗菌肽的研究进展.中国生物工程杂志,28,100-107.
    5.冯劼,朱娟莉,董兆麟,陈超.( 2009). HIV21外膜蛋白gp120在酵母Pichia pastoris中的表达.西北大学学报(自然科学版), 39,801-813.
    6.符莉芳,宋志芳.(2008).溶菌酶的研究进展.浙江预防医学, 20,56-59.
    7.高红伟,贾延军,鲍国强,季守平,檀英霞,李素波,等(2009).表达重组咖啡豆α2半乳糖苷酶的酵母工程菌的高密度发酵.生物技术通报, 11,163-167.
    8.谷新晰,许文涛,黄昆仑,罗云波,林希谨,陈卓君,等(2009).弹性蛋白酶基因(PAE)的克隆及在毕赤酵母中的表达.农业生物技术学报, 17,1114-1118.
    9.何建新,廖小慧,秘晓林,韩峰,王艳和吴淑华(2001).原核增强子样序列3A的克隆及其结构与功能的研究.中国生物化学与分子生物学报,17,189-193.
    10.何金花,刘誉,刘冠杰,李琳娜,李海成,王丽娟,(2008).溶菌酶在医药中的应用及其研究进展.今日药学,18,16-19.
    11.黄现青,高晓平,赵改名,李苗云,柳艳霞,杨淑晶.(2007).抗菌肽抗菌机理研究方法概述.安徽农业科学,35,3463-3474.
    12.孔凡红,仲维霞,崔勇,王洪法.(2009).生物抗菌肽毕赤酵母表达系统研究进展.中国病原生物学杂志,4,700-702.
    13.李栋,俞慧清,火蓉芬,陈建泉,成国祥.(2009).重组人白细胞介素21在毕赤酵母中的分泌表达及活性分析.生物工程学报,25,1711-1717.
    14.李鹤,马力,王维香.(2008).溶菌酶的研究现状.食品研究与开发, 29,182-185.
    15.李华,刘维全,王萍,王吉贵,董婉维,王禄增等.(2003).启动子CMV和EF1α对人胰岛素基因在BHK细胞中表达的影响.中国实验动物学报,11,18-22.
    16.李强,朱砺,李学伟,赵华.(2009).猪髓样分化因子88在毕赤酵母中的表达和纯化.四川畜牧兽医,12,29-31.
    17.李兴暖,韩雅莉.(2009).地鳖虫纤溶活性蛋白cDNA序列克隆与毕赤酵母表达.生物技术通报, 11,140-144.
    18.李志龙,张富春.(2006).巴斯德毕赤酵母表达系统研究进展.生物技术通报,6,9-13.
    19.卢亚萍,潘宏涛.(2008).溶菌酶的研究现状及应用进展.新饲料,2, 26-27.
    20.陆建荣,王惠民,吴萍,黄松平,常秋月,凌勇武,等(2007). 5'-非转录区序列改建提高毕赤酵母表达抗菌肽.第二军医大学学报,12,1329-1334.
    21.马正智,胡国华,方国生.(2007).我国溶菌酶的研究与应用进展.中国食品添加剂,2,177-182.
    22.孟庆玲,乔军,陈创夫,才学鹏,骆学农.(2008).兔IL215蛋白在毕赤酵母中的表达及其免疫学活性.石河子大学学报(自然科学版), 26,700-703.
    23.牛畅,田晓琴,袁静.(2006).乳链菌肽作用机制及其应用.生物技术通讯,17, 810-813.
    24.欧艳秋.(2008)抗菌肤的研究现状.中山大学研究生学刊(自然科学\医学版),29,23-28.
    25.秦小萍,林壁润,王振中.(2008).灰色变异链霉菌抗菌肽的分离及鉴定.农药,47,805-809.
    26.权志中,张丞斌,余荣,刘长江.(2007).鸡蛋清溶菌酶基因的克隆及其在毕赤酵母中的表达研究.饲料工业, 28,18-22.
    27.徐军和龚蓁蓁.(2003).一个抗真菌蛋白在绿色木霉中的分泌表达.生物化学与生物物理学报,35,454-458.
    28.王长远,张丽萍,刘松财,汤丹.(2009).甜味蛋白Brazzein在毕赤氏酵母中表达的初步研究.中国食品学报,9,43-48.
    29.王怀蓬,乌日娜,孙镇平,张瑞姿,杨波.(2008).溶菌酶在饲料领域的研究进展.饲料研究,8,13-15.
    30.王秀青,朱明星,张爱君,丁淑琴,风琴.(2009).天蚕素类杂合肽cecropinA-magainin突变体的合成以及在毕赤酵母中的分泌表达.东北农业大学学报, 40,95-98.
    31.武力,闻玉梅.(1998).病毒编码的启动子和增强子研究进展.国外医学(微生物分册),2,10-14.
    32.闫达中,许芳,杨艳燕.(2009).毕赤酵母基因工程菌高密度发酵产纳豆激酶条件研究.中国酿造,9,59-61.
    33.杨蕾蕾,袁其朋,李文进.(2009).玫瑰微球菌中treZ基因在毕赤酵母中的表达研究.生物技术通报,10,173-177.
    34.尹娜,李鸿钧,彭梅,谢天宏,张光明,施锐,等(2008).抗菌肽Cecropin D在毕赤酵母中的表达、纯化及活性鉴定.中国生物制品学杂志,21,185-189.
    35.赵婷婷,曹承华.(2008).人防御素HNP4在毕赤酵母中的表达.上海大学学报(自然科学版),14,656-660.
    36.赵月兰,左玉柱,范京惠,王安忠,杨汉春,秦建华.(2009).牛病毒性腹泻病毒E2基因在毕赤酵母GS115中的表达与鉴定.中国兽医学报,29,1255-1259.
    37.周洁,陈鑫,郑祥梓,林成增,王宗华,鲁国东.(2009).稻瘟病菌一假定几丁质酶在毕赤酵母中的表达.福建农林大学学报(自然科学版) ,38,603-607.
    38. Agerberth,B.&Gudmundsson, G.H.(2006). Host antimicrobial defence peptides in human disease. Curr Top Microbiol Immunol,306,67-90.
    39. Aloulou, A., Grandvala, P., Caroa, J.D., Caroa, A. D., Carrière, F. (2006). Constitutive expressionof human pancreatic lipase-related protein 1 in Pichia pastoris. Pro. Exp. Pur., 47,415–421.
    40. Andrèsa E.,& Dimarcqb J.L. (2007). Peptides antimicrobiens cationiques : de l’étude de l’immunitéinnéeàla production de médicaments. Miseàjour Cationic antimicrobial peptides: from innate immunit study to drug development. Up date. Médecine et maladies infectieuses, 37 ,194–199.
    41. Anthony, R.P., Larry, W.H., (1994). Genetic analysis of bacteriophage T4 lysozyme structure and function. J. Bacteriol., 176, 6783–6788.
    42. Anthony,N. P.,&Prabhat, K. G.(1998). Selective Neuronal Expression of Green Fluorescent Protein with Cytomegalovirus Promoter Reveals Entire Neuronal Arbor in Transgenic Mice. The Journal of Neuroscience, 18,10640–10651.
    43. Bhanot,V., Balamurugan, V., Bhanuprakash, V., Venkatesan, G., Sen, A., Yadav, V.,et al. (2009). Expression of P32 protein of goatpox virus in Pichia pastoris and its potential use as a diagnostic antigen in ELISA. Journal of Virological Methods, 162 , 251–257.
    44. Boshart, M., Weber, F., Jahn, G., Dorsch,H.K., Fleckenstein, B., Schaffner, W.(1985). A very strong enhancer is located upstream of an immediate early gene of human cytomegalovirus. Cell, 41,521-30.
    45. Brogden,K.A.(2005). ANTIMICROBIAL PEPTIDES: PORE FORMERS OR METABOLIc inhibitors in bacteria? Nature Reviews,3,238-250.
    46. Castanon, M.J., Spevak, W., Adolf, G.R., Chlebowicz, S.E.& Sledziewski, A., (1988). Cloning of human lysozyme gene and expression in the yeast Saccharomyces cerevisiae, Gene, 66,223–234.
    47. Celine L.,Herve Me.,Nathalie B.,Philippe B.,&Francoise V. (2005). Solution structures of stomoxyn and spinigerin, two insect antimicrobial peptides with an a-helical conformation. Biopolymers, 81, 92–103.
    48. Chen H. M., King W.L., Thakur N.N., Anmin T., & Jack R.W. (2003). Distinguishing between different pathways of bilayer disruption by the related antimicrobial peptides cecropin B, B1 and B3. Eur. J. Biochem. 270, 911–920.
    49. Chen, G.H., Yin, L.J., Chiang, I.H., Jiang, S.T. (2007). Expression and purification of goat lactoferrin from Pichia pastoris expression system.J. Food Sci.,72,67-71.
    50. Chim, N., Riley, R., The, J., Im, S., Segelke, B., Lekin, T., et al. (2010). An extracellular disulfide bond forming protein (DsbF) from Mycobacterium tuberculosis: structural,biochemical, and gene expression analysis. J. Mol. Biol.,396,1211-26.
    51. Christoph, W.B.P., Ulrich,K., Renate, P. G., Karl, E.S.,& Albrecht, The human lysozyme gene, Eur. J. Biochem.,182,507–516.
    52. Christopher, P.W., Arthur, K.W., Raymond, C.L., Leona, C.F., Mirkov, T.E., Harold, E.S.(1997). Production and purification of an active bovine lysozyme in tobacco (Nicotiana tabacum): utilization of value-added crop plants tranditionally grown under intensive agriculture.J. Agric.Food Chem., 45,2793–2797.
    53. Daiki, M., Lisa, B., Kathryn, T., &Theo, W. D.(2004). Expression of the Two Nested Overlapping Reading Frames of Turnip Yellow Mosaic Virus RNA Is Enhanced by a 5'Cap and by 5' and 3'Viral Sequences. Journal of virology, 78,9325–9335.
    54. Daiki, M.,&Theo, W.D.(2004). The tRNA-like structure of Turnip yellow mosaic virus RNA is a 3V-translational enhancer. Virology, 321, 36–46.
    55. Egli , Th., van Dijken , J. P., Veenhuis , M. , Harder , W., & Fiechter, A. (1980). Methanol Metabolism in Yeasts:Regulation of the Synthesis of Catabolic Enzymes. Arch. Microbiol, 124, 115– 121.
    56. Faber, K.N., Haima, P., Harder, W., Veenhuis, M., Ab, G., (1994). Highly-efficient electrotransformation of the yeast Hansenula polymorpha, Curr. Genet., 25,305–310.
    57. Fjell1,C., Hancock R. E.W. ,&Artem C.(2007). AMPer: a database and an automated discovery tool for antimicrobial peptides.Bioinformatics , 23 ,1148-1155.
    58. Franky, F., Vranken W.F.,& Borremans F.A.M. (1999). The Three-Dimensional Solution Structure of Aesculus hippocastanum Antimicrobial Protein 1 Determined by 1H Nuclear Magnetic Resonance. PROTEINS: Structure, Function, and Genetics 37,388–403.
    59. Gellissen, G., Melber, K. (1996). Methylotrophic yeast Hansenula polymorpha as production organism for recombinant pharmaceuticals. Drug Res., 46,943–948.
    60. Hakan,S.(1982). Secondary structure of the cecropins:antibacterial peptides from the moth hyalophora cecropia. FEBS LETTERS, 137,283-287.
    61. Hao G., Shi Y.H., Han J.H., Li Q. H. , Tang Y. L.& Wei L. ( 2008). Design and analysis of structure-activity relationship of novel antimicrobial peptides derived from the conserved sequence of cecropin. Journal of peptide science , 14 ,290-298.
    62. Havard, J., Pamela, H.& Robert E.W.H.(2006). Peptide Antimicrobial Agents.Clinical Microbiology Reviews,19, 491–511.
    63. Helen,C.,et al.(2000). Constitutive expression of recombinant proteins in the methylotrophic yeast Hansenula polymorpha using the PMA1 promoter.Yeast,16,1191-1203.
    64. Henrik S., Margitta R., Friedrich P., Jürgen H.,Ulrike Z., &J?rn K. (2008). Antimicrobial peptides of the Cecropin-family show potent antitumor activity against bladder cancer cells. BMC Urology, 8,1-7.
    65. Heo, J.H., Won, H.S., Kang, H.A., Rhee, S.K., Chung,B.H.,(2002). Purification of recombinant human epidermal growth factor secreted from the methylotrophic yeast Hansenula polymorpha.Pro. Exp. Pur.,27,117–122.
    66. Hong,S.M.,Takahiro, K., Lee, J.M ., Tsuneyuki, T., Yutaka,Ka., Kang,M.W., et al.(2008). Structure and Expression Analysis of the Cecropin-E Gene from the Silkworm, Bombyx mori.Biosci.Biotechnol.Biochem,72,1992-1998.
    67. Hu, D. &Lu, H., (2004).Placing single-molecule T4 lysozyme enzymes on a bacterial cell surface: toward probing single-molecule enzymatic reaction in living cells, Biophys. J., 87,656–661.
    68. Huamei F., Ase B., Claes D.,& Johan B.( 2004). A bactericidal cecropin-a peptide with a stabilizedα-helical structure possess an increased killing capacity but no proinflammatory activity. Inflammation, 28,337-343.
    69. Humberto Q., Ramo.S.E.& Montserrat A. (2005) .Birth-and-death evolution of the cecropin multigene family in drosophila. J Mol Evol 60,1–11.
    70. Hung S. C., Wang W., Chan S. I., & Chen H.M..(1999). Membrane lysis by the antibacterial peptides cecropins b1 and b3: a spin-label electron spin resonance study on phospholipid bilayers. Biophysical Journal ,77,3120–3133.
    71. Ishchuk1,O.P.,Voronovsky1,A.,Y.,Stasyk1,O.V.,Gayda1,G.Z.,Gonchar, Mykhailo V.,Charles A., et al.(2008). Overexpression of pyruvate decarboxylase in theyeastHansenula polymorpha results in increased ethanol yield in high-temperature fermentation of xylose. FEMS Yeast Res, 8 ,1164–1174.
    72. James, M. S.,Connie, S. B.,&Theo, W. D.(1996). The Turnip Yellow Mosaic Virus tRNA-Like Structure Cannot Be Replaced by Generic tRNA-Like Elements or by Heterologous 39 Untranslated Regions KnownTo Enhance mRNA Expression and Stability. Journal of virology, 70,2107–2115.
    73. Jan,A.K.W.Kiel,&Marleen, O.(2007). The 4thHansenula polymorpha Worldwide , Haren (TheNetherlands), 2006. FEMS Yeast Research.,167-171.
    74. Jana,L., et al.(1999).Influnence of transgenic T4-lysozyme-producing potato plants on potentially beneficial plant-associated bacteria.FEMS Microbiology Ecology,29,365-377.
    75. Jeanne, L.P., Herbert, L.H., Ronald, W. (1985). Non-toxic expression in Escherichia coli of a plasmid-encoded gene for phage T4 lysozyme.Gene,38,259–264.
    76. Jeffery, L. M.,&Jonathan, A. P.(2000). The Human Cytomegalovirus Major Immediate-Early Distal Enhancer Region Is Required for Efficient Viral Replicationand Immediate-Early Gene Expression. Journal of virology,74, 1602–1613.
    77. Jin, F., Xu, X., Wang, L., Zhang, W& Gu ,D.(2006). Expression of recombinant hybrid peptide cecropinA(1–8)–magainin2(1–12) in Pichia pastoris: PuriWcation and characterization. Protein Expression and PuriWcation ,50 ,147–156.
    78. Kerstin, J., Shirley, O., Wayne, L., Hubbell,Y., &Thomas, R.(2005). Determination of the Orientation of T4 Lysozyme Vectorially Boundto a Planar-Supported Lipid Bilayer Using Site-Directed Spin Labeling. Biophysical Journal,88 ,4351–4365.
    79. Klabunde, J., Diesel, A., Aschk, Gellissen, D.W, G., Hollenberg, C.P., Suckow, M. (2002). Single-step co-integration of multiple expressible heterologous genes into the ribosomal DNA of the methylotrophic yeast Hansenula polymorpha. Appl. Microbiol. Biotechnol.,58,797–805.
    80. Klaus, D. (1993). A tightly regulated system for overproduction of bacteriophage T4 lysozyme in Escherichia coli, Pro. Exp. Pur., 4, 412–416.
    81. Klaus, D., Petra, P., Andreas, M., Olaf, B., Werner G. (1999). The non-enzymatic microbicidal activity of lysozymes.FEBS Lett., 449, 93–100.
    82. Klaus, D., Petra, P., Matthias, F., Horst, L.(1993). Transgenic potato plants resistant to the phytopathogenic bacterium Erwinia carotovora, The Plant J., 3,587–598.
    83. Konkanen, H.,Reinikainen,T.,Saloheimo,M. (2006).Cloning and expression of a Melanocarpus albomyces stery1 esterase gene in Pichia pastoris and Trichoderma reesei.Biotechnology and Bioengineering,94,407-415.
    84. Kwang,K.,Joo, H.K., Chung, J.K., Lee, Y.J., Jeong, J.M., Lee, D.S.,et al.(2007). Doxorubicin Enhances the Expression of Transgene Under Control of the CMV Promoter in Anaplastic Thyroid Carcinoma Cells The journal of nuclear medicin, 48,1553-1561.
    85. Latha T.& Crawford D.L. (1998). Cloning of clustered Streptomyces viridosporusT7A lignocellulose catabolism genes encoding peroxidase and endoglucanase and their extracellular expression in Pichia pastoris. Can. J. Microbiol. 44,364-372.
    86. Leao, A.N., & Kiel, J.A.K.W. (2003). Peroxisome homeostasis in Hansenula polymorpha. FEMS Yeast Research ,4 , 131-139.
    87. Ledeboer, A.M., Edens, L., Maat, J., Visser, C., W.Bos, J.Verrips, C.T.,et al.(1985). Molecular cloning and characterization of a gene coding for methanol oxidase in Hansenula potymorpha . Nucleic Acids Research,13,3063-3082.
    88. Li, T.,Dong, H.J.,Xi, C.,&Chen, S.F. (2008). Expression of ethylene-forming enzyme (EFE) of Pseudomonas syringae pv. glycinea in Trichoderma viride. Appl.Microbiol. Biotechnol.,80,573-578.
    89. Liu, Y., Li, Y., Liu, L., Hu, X., Qiu,B. (2005). Design of vectors for efficient integration and transformation in Hansenula polymorpha. Biotechnol. Lett., 27,1529–1534.
    90. Liu,S.T., Saito, A., Azakami, H., Kato, A. (2003). Expression, purification, and characterization of an unstable lysozyme mutant in Pichia pastoris. Pro. Exp. Pur., 27, 304–312.
    91. Mary, K.F., Hans,H.(1986). Powerful and versatile enhancer-promoter unit for mammalian expression vectors. Gene,45,101-105.
    92. Masaru, O., Masahito, I., Katsuya, K., Tomoko, N.,Yoshitake, N.(1997).`Green mice' as a source of ubiquitous green cells. FEBS Letters, 407,313-319.
    93. Masuda, T., Ueno, Y., Kitabatake, N. (2005). High yield secretion of the sweet-tasting protein lysozyme from the yeast Pichia pastoris, Pro. Exp. Pur., 39,35–42.
    94. Matthews, B.W., (1995). Studies on protein stability with T4 lysozyme, Adv. Protein Chem.,46, 249–78.
    95. Matthews, B.W., (1996). Structural and genetic analysis of the folding and function of T4lysozyme.FASEB J., 36, 35–41.
    96. Matthews, B.W., Remington, S.J., (1974). The three dimensional structure of the lysozyme from bacteriophage T4. Proc. Nat. Acad. Sci., 71,4187–4182.
    97. Michael Z.(2002).Antimicrobial peptides of multicellular Organisms.Nature,415,389-395.
    98. Mygind,P.H.,et al.(2005). Plectasin is a peptide antibiotic with trerapeutic potential from a saprophytic fungus. Nature, 437,975-980.
    99. Oliver, B.,Petra, R., Matthias, M., Sven, P., Christoph, G., Sascha, J., et al. (2007). A novel horseα-defensin: gene transcription, recombinant expression and characterization of the structure and function. Biochem. J. ,407, 267–276.
    100. Ouellette A.J.( 2006 ).Paneth cell alpha-defensin synthesis and function. Curr Top Microbiol Imm- unol. 306,1-25.
    101. Pang ,S.Z., Oberhaus, S.M., Rasmussen, J.L., Knipple, D.C., Bloomquist, J.R., Dean ,D.H ., et al. (1992 ). Expression of a gene encoding a scorpion insectotoxin peptide in yeast, bacteria and plants. Gene,116,165-72.
    102. Philippe, B. ,Reto, S.,& Laure, M.(2004). Anti-microbial peptides: from invertebrates to vertebrates. Immunological Reviews, 198, 169-184.
    103. Powers, J.P.S.,& Hancock, R.E.W. (2003). The relationship between peptide structure and antibacterial activity. Peptides 24 ,1681–1691.
    104. Priscilla, A.F., Lothar, H.,Carl, B., Barbara, B.,&Rick, W.(1991). The variability in activity of the universally expressed human cytomegalovirus immediate early gene 1enhancer/promoter in transgenic mice. Nucleic Acids Research, 19,6205-6208.
    105. Promokine.(2009). pPK-CMV Expression Vectors.
    106. Qian, W., Liu, Y., Zhang, C., Niu, Z., Song, H., Qiu. B. (2009). Expression of bovine follicle-stimulating hormone subunits in a Hansenula polymorpha expression system increases the secretion and bioactivity in vivo.Pro. Exp. Pur., 68,183–189.
    107. Qiao, J., Rao, Z., Dong, B., Cao, Y. (2010). Expression of Bacillus subtilis MA139β-mannanase in Pichia pastoris and the enzyme characterization, Appl. Biochem Biotechnol. ,160,1362–1370.
    108. Raschke, W.C., Neiditch, B.R., Hendricks, M.,& Cregg, J.M.( 1996). Inducible expression of a heterologous protein in Hansenula polymorpha using the alcohol oxidase 1 promoter of Pichia pastoris. Gene,177,163-167.
    109. Rodriguez, L., Narciandi, R.E., Roca, H., Cremata, J., Montesinos, R., Rodriguez, E., et al.(1996). Invertase secretion in Hansenula polymorpha under the AOX1 promoter from Pichia pastoris. Yeast, 12,815-822.
    110. Saarelainen,R.,et al.(1997). Expression of Barley endopeptidase B in Trichoderma reesei.Applied and environmental microbiology,63,4938-4940.
    111. Satoshi U., Kohtaro K., Yasushi T., Masaomi M., Zhang H., Wang P.C., et al.(2008). AnionicC-Terminal Proregion of Nematode Antimicrobial Peptide CecropinP4 Precursor Inhibits Antimicrobial Activity of the Mature Peptide. biosci.biotechnol. biochem,72,3281-3284.
    112. Sava, G., Benetti, A., Ceschia, V., Pacor, S.(1989). Lysozyme and cancer: role of exogenous lysozyme as anticancer agent.Anticancer Res., 9,583–591.
    113. Scorer, C.A., Clare, J.J., McCombie, W.R., Romanos, M.A.,& Sreekrishna, K.(1994). Rapid selection using G418 of high copy number transformants of Pichia pastoris for high-level foreign gene expression. Biotechnology (N Y), 12,181-184.
    114. Sloane, R.P., Ward, J.M., Obrien, S.M., Thomas, O.R.T., Dunnill, P. (1996). Expression and purification of a recombinant metal-binding T4 lysozyme fusion protein,.J.Biotechnol., 49,231–238.
    115. Sohn, J.H., Choi, E.S., Kang ,H.A., Rhee ,J.S., Agaphonov, M.O., Ter-Avanesyan, M.D., et al. (1999). A dominant selection system designed for copy-number-controlled gene integration in Hansenula polymorpha DL-1. Appl Microbiol Biotechnol. 51,800-807.
    116. Sohn, J.H., Choi, E.S., Kang, H.A., Rhee ,J.S., Agaphonov, M.O., Ter-Avanesyan, M.D., et al. (1999). A dominant selection system designed for copy-number-controlled gene integration in Hansenula polymorpha DL-1. Appl Microbiol Biotechnol,51,800-807.
    117. Spencer, R., Elizabeth, J.R., Robert, A.W., (1969). Effect of lytic enzymes of Acanthamoeba castellanii on bacterial cell walls.J. Bacteriol.,98,182–189.
    118. Steiner H., Hultmark D., Engstr?m A., Bennich H.,& Boman H.G.(1981). The relationship between peptide structure and antibacterial activity. Peptides 24 ,1681–1691.
    119. Stephan, G., Vale, J., Rolf, M.(2003). Chimeric transcriptional control units for improved liver-specific transgene expression. Gene, 322,137–145.
    120. Su Manman , Xu Tianmin , Wang Doudou, Zhou Yulai , Niu Chao ,& Yan Weiqun. (2009). High yield and purification of recombinant human apolipoprotein E3in Pichia pastoris. Protein Expression and Purification, 68 , 7–11.
    121. Tomas, G.(2003).Defensins: antimicrobial peptides of innate immunity. Nature Reviews Immuology, 3, 710-720.
    122. Tschopp,Juerg F., Brust,Paul F., Cregg ,James M., Stillman ,Cathy A.,& Gingeras ,Thomas R.(1987). Expression of the lacZ gene from two methanol-regulated promoters in Pichia pastons. Nucleic Acids Research, 15,3859-3876.
    123. Tsugita, A., Inouye, M., (1968). Purification of bacteriophage T4 lysozyme, J. Biol. Chem., 243, 391–397.
    124. Van de, G.M., Van der, W.F.J., Kok, J. G., (1992). Lysozyme expression in Lactococcus lactis. Appl. Microbiol. Biotechnol., 37,216–224.
    125. van der Klei, Ida J. , Hiroya Yurimoto , Yasuyoshi Sakai ,& Marten Veenhuis. (2006). The significance of peroxisomes in methanol metabolism in methylotrophic yeast. Biochimica etBiophysica Acta, 1763, 1453–1462.
    126. Voss, J.G. (1964). Lysozyme lysis of gram-negative bacteria without production of spheroolasts. J. gen. Microbiol.,35,313–317.
    127. Wang, S., Chen, B.T.T., Lin, D., Wu, J., Rao, P.&Ye,X. (2005). First report of a novel plant lysozyme with both antifungal and antibacterial activities. Biochem. Biophys. Res.,327,820–827.
    128. Wang,J.X.,Zhao X.F. Liang,Y. L. Li, L. Zhang,W.,Ren, Q., et al. (2006). Molecular characterization and expression of the antimicrobial peptide defensin from the housefly (Musca domestica). Cellular and Molecular Life Sciences, 63 , 3072–3082.
    129. Weidner,M.,Taupp,M.,&Hallam,S.J.(2010). Expression of recombinant proteins in the methylotrophic yeast Pichia pastoris. J Vis Exp., 25,1862-1870.
    130. Willian,C.R., et al.(1996). Inducible expression of a heterologous protein in Hansenula polymorpha using the alclhol oxidase 1 promoter of Pichia pastoris.Gene,177,163-167.
    131. Wu, J., Fu, W., Luo, J, Zhang, T., (2005). Expression and purification of human endostatin from Hansenula polymorpha A16, Pro. Exp. Pur.,42,12–19.
    132. Xiong Y. Q., Kasturi M., Yeaman M.R.,Jill A.M.,&Arnold S. B. (2005). Functional interrelationships between cell membrane and cell wall in antimicrobial peptide-mediated killing of staphylococcus aureus. Antimicrobial agents and chemotherapy,49, 3114–3121.
    133. Yoshifumi, A.,Mizuho, I.,Satoshi, B., Hideya, K., Isao K., Li, R.Y.,et al.(2003). Neuron-Specific Activation of Murine Cytomegalovirus Early Gene e1 Promoter in Transgenic Mice.American Journal of Pathology, 163, 643-652.
    134. You, L.M., Luo, J., Wang, A.,Zhang, G.P., 86 Weng H.B., et al.(2009). A hybrid promoter-containing vector for direct cloning and enhanced expression of PCR-amplified ORFs in mammalian cells. Molecular Biology Reports.
    135. Zhan, Y., Brady, J.L., Johnston, A.M., & Lew,A.M.(2000). Predominant Transgene Expression in Exocrine Pancreas Directed by the CMV Promoter. DNA and cell biology, 19,639–645.
    136. Zhang J. ,Wu X. ,&Zhang S.Q. (2008). Antifungal mechanism of antibacterial peptide, ABP-CM4, from Bombyx mori against Aspergillus niger. Biotechnol Lett 30,2157–2163.
    137. Zhu S., & Tytgat J. (2004). The scorpine family of defensins: gene structure, alternative polyadenylation and fold recognition. CMLS, Cell. Mol. Life Sci, 61 ,1751–1763.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700