基于计算机视觉图像精密测量的关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于计算机视觉图像的精密测量在国外已经得到了深入研究和广泛的应用,在国内也受到了越来越多的重视。随着计算机硬件性价比的不断提高,相关技术的不断发展,计算机视觉图像精密测量以其柔性、快速、非接触、精确、自动化程度高等特点将很快得到全球化应用。
    本文以图像为基础,深入研究基于计算机视觉图像实现精密测量的系统方案、软硬件设计、特别是以软件为主要手段解决视觉测量中精度、速度和稳定性三大问题的关键技术。
    文章分析了计算机视觉图像精密测量的基本原理、硬件选择原则、软件功能模块和检测流程,推导了相对标定法的测量精度,从而证明计算机视觉图像测量实现高精度测量的可能性。
    针对视觉测量的特点,研究彩色图像灰度化方法,提出了彩色图像灰度化效果好坏的评判标准,给出了阶跃边缘、屋顶边缘保持边缘结构特征的评价函数。根据视觉测量图像质量较好及以高斯噪声为主的特点,提出采用简单的高斯滤波或者SUSAN 去噪算法对图像在卡尺范围内进行滤波处理的方法。
    提出了基于知识的边缘检测方法,利用卡尺技术,在知识库的引导下,利用SUSAN 算子中USAN 的取值规律和边缘判别准则提取像素级边缘,提高边缘检测中像素级边缘的定位精度、抗噪声能力和运算速度。结合SUSAN 和Canny 算子各自的优点,提出了基于Canny 和SUSAN 算子的边缘检测方法,具有较好的边缘检测效果。
    以理想一维阶跃边缘模型为基础,对基于矩的亚像素定位算法的定位精度进行了深入的研究。指出空间矩的边缘定位精度敏感于采样间隔、计算点数、边缘对称性。首次提出在使用灰度矩计算亚像素边缘位置的时候,正确区分边缘类型,在两种极限状态下(两个像素之间和1 个像素中间),选取对称点进行灰度矩亚像素定位计算,理论上可以实现无偏的定位估计。提出了基于前后向差分和曲线拟合的亚像素定位算法,理论上该算法与灰度矩算法一样,在两种极限状态下可以实现无偏的边缘定位估计,其它情况下的定位精度要好于灰度矩。
    研制了一种用于镜头畸变校正的平面圆形网格模板,推导了利用该模板计算镜头畸变系数的公式,提出了计算机视觉图像精密测量标定的两步法:实验室计算镜头畸变系数,现场进行像素值和测试数据计算。由于只进行几何畸变校正,每一步均为线性矩阵运算,解决了通用计算机视觉摄像机标定中速度、精度之间的矛盾。
    分析和对比了各种自动聚焦判决函数的特点,在均方差自动聚焦函数的基础
Computer vision image precision measurement has been researched further and applied widely abroad as well as popular at home. With the ratio of computer hardware and performance increasing, the relative technology developing, the character of flexibility, fast speed, non-contact, high precision and automatization, the computer vision image precision measurement application will become global.
    Based on image, the system scheme of the computer vision image precision measurement, the design of software and hardware, especially the key technologies of solving precision, speed, stability using software have been researched further.
    This paper analyzed the basic theory of computer vision image precision measurement, hardware selecting, software function module and inspection flow, deduced the measurement precision of relatively calibration. The possibility of realizing the high precision measurement has been proved.
    According the characteristic of computer vision measurement, the author researched the methods of color image converting to gray and presented judging rules of gray transform arithmetic. The judging functions of keeping the edge structure characteristic have been presented aiming to step edge and roof edge. The simple GAUSS filter or SUSAN filter will be used to removal the noise in the calipers scope according the characteristic of image quality and GAUSS noise.
    This paper presented the edge detection method based on knowledge,utilized the calipers technology and USAN rule of SUSAN arithmetic to locate edge to pixel precision with the knowledge. It will improve the edge locating precision, resist noise and improve the calculating speed. Combining the merits of SUSAN and Canny, this paper presented the method of edge detection based on SUSAN and Canny. The method has the better results of edge detection.
    The sub-pixel edge location technology using moment were studied further in this paper based on the 1-D ideal step edge. The paper presented that the locating precision of spatial moment relates the sampling interval, calculating counter and edge symmetry. The gray level moment edge locating can acquire no error estimate when we do not consider the noise and selecting the symmetry edge in two limit states (inter-pixel edge and intra-pixel edge). The author presented the method of sub-pixel edge locating based on back and forth difference and curve fitting. This method has the same locating precision as the gray level moment in the two limit states and has the better result at the other condition.
    This paper developed a plane rotundity gridding template to proofreading the lens distortion. Using this template we can calculate the lens distortion coefficients. The author presented the two steps calibration for the computer vision image precision measurement, calculating the coefficients of distortion in the lab, pixel value and test data in the scene. As there are only linear matrix calculation and geometry distortion proofreading, this method solved the problems between the speed and precision in computer vision calibration. This paper analyzed the auto-focus judging function and presented the mean-square judged-function weighted in condition on the basis of mean-square difference judge-function. Selecting the appropriate scope in the computer vision image precision measurement, it will be reach the good focus effect. The technology problems of realizing the precision measurement using computer vision have been solved basically when we use the image in focus, the high precision edge location and calibration technology, distortion proofreading, callipers and knowledge. It is possible that we will use the computer vision widely in industry. This has important significance to promote the application of vision test technology.
引文
[1] 范伟政,马炳和.微机械与微细加工技术.西北工业出版社,2000:137~159.
    [2] D.Marr, Vision, W.H.Freeman and Company,1982.
    [3] Aloimonos Y,Rosenfeld A. A Response to “Ignorance,Myopia, and Naive in Computer Vision System”by R.C. Jain and T.O. Binford. CVGIP: Image Understanding, 1991,53(1):120~124.
    [4] Bajcsy R. Active Perception. Proc. Of IEEE,1988,76(8):996~1005.
    [5] Ballade D H,Brown C M. Principles of Animate Vision. CVGIP: Image Understanding,1992,5691]:3~21.
    [6] Thompson W B. Qalitative Constraints for Structure from Motion. CVGIP:Image Understanding.1992,5691]:69~77.
    [7] 田思,袁占亭.计算机视觉系统框架的新构思.计算机工程与应用,2000(6):57~59.
    [8] 刘曙光,刘明远,何钺.机器视觉及其应用.机械制造,2000(7):20~22.
    [9] 龙甫芸,郑南宁.计算机视觉模型的研究与发展.信息与控制,1997,Vol.26,No.2:112~126.
    [10] http://www.smq.com.cn/jishu-jx.htm.
    [11] http://chanye.finance.sina.com.cn/oldnews/jd/2002-11-26.shtml.
    [12] Chin,T.T. and Harlow, C.A. Automated visual inspection: a survey. IEEE Trans on PAMI,1989:557~573.
    [13] Tsatoulis,C. and Fu,K.S. A Computer vision system for assembly inspection. Intelligent Robots and Computer Vision,1984:352~357.
    [14] Gregory,P.J. and Taylor,C.J. Knowledge-based models for computer vision. Proceedings of the 4th International Conference on Robot Vision and Sensory Control,1988:325~330.
    [15] Schmiderber,E.J. and Ahlers,R.J. Quality control with a robot-guided electro-optical sensor, Ibid:27~36.
    [16] 邹定海,叶声华,王春和.用于在线测量的视觉检测系统.仪器仪表学报,1995,Vol.16(4):337~340.
    [17] Decker,H. A difference technique for automatic inspection of casting parts. Pattern Recognition Lett.1993(2):125~129.
    [18] Hobson,J.P. Development of a combustion chamber cooling ring inspection machine. Proceedings of the 5th International Conference on Robert Vision and Sensory Control. 1990:359~368.
    [19] Mills,R. Development of a linescan camera for high accuracy measurement. Machine Vision. 1991:267~277.
    [20] Lim,K,C. and Lee,J.W. Dimension measurement of 3D objects through stereometric image processing. Ibid:495~508.
    [21] Hashim,A.A. and Clements,P.E. Computer vision in a manufacturing process. Proceedings on Robots Vision. 1994:417~427.
    [22] Lu,R.S. On-line measurement of the straightness of seamless steel pipes using machine vision technique. Sensors and Actuators.2001(94):95~101.
    [23] Mu-Chen Chen. Roundness measurement for discontinous perimeters via machine vision. Computer in Industry. 2002(4):185~197.
    [24] 周亘.微机在工件不圆度自动测量中的应用.基础自动,2001,Vol. 8(6):50~53.
    [25] 廖强,米林,周忆,徐宗俊.微尺寸视觉精密检测系统设计.重庆大学学报,2002(12):21~23.
    [26] 熊海林,陈香萍.圆度误差的一种微机图像测量法.计算机技术与应用,1998(4):25~28.
    [27] 郭海涛,孙大军,张殿伦,数字图像目标圆度的计算方法,黑龙江大学自然科学学报,2001,Vol.18(2):53~55.
    [28] Mitachell,O.R. Global and partial shape discrimination for computer vision. Robotics and Robotic Sensing Systems. 1988:38~46.
    [29] Sternberg,S.R. Industrial inspection by morphological virtual gauging. Computer Society Workshop on Computer Architectures for Pattern Analysis. 1983:237~247.
    [30] Bremner,J.F. Automatic vision inspect system for the inspection of shapes cut in sheet material. Pro. On Image Processing. 1986:40~43.
    [31] Hodgson,R.M. and Mcneill,S.J. The design of image processing systems for real-time inspection applications. Proc. On Image Processing. 1986:126~129.
    [32] Taylor,R.W. and Rehkogler,G.E. Development of a system for automated detection of apple bruises. Proceedings of the Society of Manufacturing Engineers Conference.1990:55~65.
    [33] Davies,E.R. Design of cost-effective systems for the inspection of certain food products during manufacture. Proceedings of 4th International conference on Robot Vision.1984:437~446.
    [34]应义斌.水果尺寸和面积的机器视觉检测方法研究.浙江大学学报,2000(3):229~232.
    [35]邱道尹,张红涛,陈铁军,汤文博等.基于机器视觉的储粮害虫智能检测系统软件设计.农业机械学报,2003(2):83~85.
    [36]左奇,史忠科.基于胶囊完整性检测系统研究.西安交通大学学报,2002(12): 1262~1265.
    [37] Wilder,J. Automatic optical inspection of keyboards. Proc. IEEE conf. On Industrial Applications of Machine Vision. 1989:133~138.
    [38] Hudson, D.L. Practical solution using a new approach to robot vision. Image and Vision Compu. 1983(1):234~240.
    [39] Laligent, O. et.al. Wavelets transform in artificial vision inspection of threading. In Proceedings of the IEEE International Conference on Instrumentation. 1993(11):513~518.
    [40] Manbir S,Sodhi and KHALIL. Surface roughness monitoring using computer vision. Mach Tools Manufact. 1985,vol.36(7):817~828.
    [41] Newman,T.S. et.al. Model-based classification of quadric surfaces. Image Understanding. 1993(2):235~249.
    [42] Burgess,D.C. Industrial image processing at speed. Proceedings of the 5th International Conference on Robot Vision.1990:609~620.
    [43] Park,J.S and Tou,J.T. A solder joint inspection system for automated printed circuit board manufacturing. In Proceedings of the IEEE International Conference on Robotics and Automation. 1990:1290~1295.
    [44] West,G.A. et.al. CAD based inspection: using a vision cell demonstrator. In Proceedings of the IEEE Workshop on Directions in Automated CAD-Based Vision. 1991(6):155~164.
    [45] Kyrki,V and kalviainen,h. High precision 2D geometrical inspection. IEEE,2000:779~782.
    [46] West,M.A. et.al. Computer controlled optical testing of high density printed circuit boards. Res. And Dev., 1988:50~59.
    [47] Perkins,W.A. Model-based inspection system for component boards. Pattern \Recognition. 1984(17):135~140.
    [48] Kayalp,A.E. and Jain,R. A knowledge-based automatic on-line wafer inspection system. Proceedings of the Society of Manufacturing Engineers Conference on Vision,1985:117~130.
    [49] 杨敏.基于机器视觉的发动机气门杆直径及圆度检测研究.华南理工大学博士学位论文,2004:1~35.
    [50] http://www.china-vision.net/bbs/.
    [51] Piyu Tsai,Chin-Chen Chang and Yu-Chen Hu,An Adaptive Two-Stage Edge Dection Scheme for Digital Color Images.Elsevier Science Ltd.2002:329~343.
    [52] 林晓梅,李琳娜,牛刚,杨晓红.基于小波边缘检测的图像去噪方法.光学精 密工程,2004 年第1 期:88~93.
    [53] 明亮,谢桂海,王寅龙,贾换峰.高斯图像噪声实现的两种改进.计算机工程与应用,2004.3:53~56.
    [54] 王怀野,张科,李言俊.一种自适应各项异性高斯滤波方法.计算工程与应用,2004.10:18~19.
    [55]于起峰,陆宏伟,刘肖琳著.基于图像的精密测量与运动测量.科学技术出版社,2002.
    [56] T.Poggio, H.Voorhees and A.Yuille, A Regularized Solution to Edge Detection. Tech. Rep. MA, Rep. AIM-833, MIT Artificial Intell. Lab., May 1985.
    [57] Sudeep Sarkar and Kim L.Boyer. On Optimal Infinite Impulse Response Edge Detection Filter. IEEE Trans. Pattern Analysis and Machine Intelligence, Vol. 13, No. 11, pp.1154-1170, November 1991
    [58] Julez, B., A Method of Coding TV Signals Based on Edge Detection. Bell System Tech. (38), No. 4, July 1959, pp. 1001-1020. Compression,Video. Television.
    [59] L.G.Roberts. Machine Perception of Three-Dimension Solids in Optical and Electro-Optimal Information Processing, J.t. Tippett, et al., Ed. Cambridge, MA: MIT Press, 1965, 99~197.
    [60] John Canny, Member, IEEE. A Computational Approach to Edge Detection. IEEE Trans. Pattern Analysis and Machine Intelligence, Vol. PAMI-8, No. 1, pp.679~697, November 1986.
    [61] Hemant D.Tagare and Rui J.P.deFigueiredo. On the Localization Performance Measure and Optimal Edge Detection. IEEE Trans. Pattern Analysis and Machine Intelligence, Vol. 12, pp.1186~1190, 1990.
    [62] L.A.Spacek. Edge Detection and motion detection. Image Vision Computation, vol.4, pp.43, 1986.
    [63] Maria Petrou and Josef Kittler. Optimal Edge Detectors for Ramp Edges. IEEE Trans. Pattern Analysis and Machine Intelligence, Vol.13, No. 5,pp.483~491, MAY 1991.
    [64] R.Deriche. Using Canny's Criteria to Derive a Recursively Implemented Optimal Edge Detector. Int. J. Comput. Vision, vol.1, no.2, 1987.
    [65] D.Demigny and Tawfik Kamlé. A Discerte Expression of Canny's Criteria for Step Edge Detector Performance Evaluation,”IEEE Trans. Pattern Analysis and Machine Intelligence, Vol.19, No. 11, pp.1199~1210, Nov. 1997.
    [66] D.Demigny, F.G. Lorca and L. Kessal. Evaluation of Edge Detectors Performances with a Discrete Expression of Canny's Criteria. in Proc. Int. Conf. Image Processing, Washington, MA, pp. 169–172, Oct. 1995.
    [67] D.Demigny and M.Karabernou. An Effective Resolution Definition or How to
    Choose an Edge Detectior, It’s Scale Parameter and the Threshold. Proc. IEEE Int. Conf. Image Processing, Vol. 1, pp.829~832, Lausanne, Sept. 1996.
    [68] D.Demigny. On Optimal Linear Filtering for Edge Detection.IEEE Trans. Image Processing, Vol.11, NO. 7, pp. 728~737,JULY 2002.
    [69] Haralick R M. Digital step edge s from zero crossing of second direction derivatives, IEEE Trans. On PAMI,1984,6(1):58~68.
    [70] W.Frei and C.Chen. Fast Boundary Detection: A Generalization and a New Algorithm. IEEE Transactions On Electronic Computers, Vol. C-26, Oct. 1977.
    [71] W.K.Pratt, Digital Image Processing, New York: Wiley-Interscience, 1978.
    [72] Berzins V. Accuracy of Laplacian detections. CVGIP,1984,27(2):195~210.
    [73] 杨烜,梁德群.基于方向信息的多尺度边缘检测方法.西安电子科技大学学报,1997,24(4):424~530.
    [74] S.Mallat. A theory for multiresolution signal decomposition: the wavelet representation, IEEE Trans. PAMI,1989,11(7):674~693.
    [75] S,Mallat, S.Zhong, Characterization of signals from multiscale edges, IEEE Trans. PAMI,1992,14(7):710~732.
    [76] S.Mallat, W.L.Hwang, Sigularity detection and processing with wavelets, IEEE Trans.IT,1992,38(2):617~643.
    [77] S.Mallat, Zero-crossings of a wavelet transform, IEEE Trans. IT,1991,37(4):1019~1033
    [78] 王玉平,蔡元龙,多尺度B 样条小波边缘检测算子,中国科学(A 辑),1995,25(4):426~437.
    [79] A. Grossmann, Wavelet transform and edge detection, in stochastic procession in physics and engineering, ed. M. hazewinkel, et al.1986.
    [80] T.Aydin, Y.Yemez, E.Anarim, B.Sankur, Multidirectional and multiscale edge detection via M-Band wavelet transform, IEEE Trans, IP,1996,5(9):1370~1377.
    [81]刘宏兵,杨万海,马剑虹,图像小波边缘提取中阈值选取的一种自适应方法,西安电子科技大学学报(自然科学版),2000 年Vol.27(3):294~296.
    [82]聂祥飞,基于小波变换的图像边缘检测,中国有线电视,2004 年第03/04 期:65~67.
    [83] Marr D, Hildreth E. Theory of Edge Detection. London:Proc Roy Soc,1980.
    [84] Lu S,et al. Improving edge measurement on noisy image by hierarchical NN. Pattern Recognition Letters,1991:12~155.
    [85] 韩军伟.景物边缘提取技术的研究与应用.西北工业大学硕士学位论文,2001年3 月:24~39.
    [86] 张艳珍.微机视觉相关理论及技术研究.大连理工大学博士学位论文.2001 年4月:16~35.
    [87] 孔祥维,谢存,徐蔚然.基于多特征和模糊推理的边缘检测. 电子学报,2000年,Vol.28(6):36~39.
    [88] 杨烜,梁德群.基于边缘视觉特征描述的自适应多尺度小波边缘检测方法.电子科学学刊,1998,20(5).
    [89] 杨烜,梁德群.边缘检测中B 样条小波有效尺度的研究.西安科技大学学报,1998,25(2):215~219.
    [90] 杨烜,梁德群.一种基于边缘有序度的边缘评价方法.西安交通大学学报,1998,32(7).
    [91] 袁野. 摄像机标定方法及边缘检测和轮廓跟踪算法研究. 大连理工大学博士学位论文.2002 年3 月:1~31.
    [92] http://www.fmrib.ox.ac.uk/~steve/susan/susan/susan.html.
    [93] 陆宏伟,于起峰.最小核值相似区低层次图象处理算法的改进及应用.应用光学,2000,2191]:32~36.
    [94] 巫林,图像分割与三维几何信息提取的研究,南京理工大学硕士学位论文,2002年1月:33~40.
    [95] 李庆利.尺寸测量中的边缘检测算法研究.计算机测量与控制,2004.12(4),334~337.
    [96] Hueckel. ,M.F. A operator which locates edges in digitized pictures. JACM. 1971(18):113~125.
    [97] Tababai A.J. and Mitchell,O.E. Edge location to subpixel values in digital imagery. IEEE Trans. On Pami. 1984(2):188~210.
    [98] Huertas,A. and Medioni,G. Detection of intensity changes with subpixel accuracy using Laplacian-Gaussian mask. IEEE Trans. On PAMI 1986(5):651~664.
    [99] Englander, A. Expanding machine vision gauging with subpixel techniques. Machine Perception. 1987(6):9~18.
    [100] Edward P. Lyvers, Owen Robert Mitchell. Subpixel measurements using a moment-based edge operator. IEEE Trans. On PAMI. 1989(12):1293~1309.
    [101] Jensen,K. and Anastassiuo, D. Subpixel edge localization and interpolation of still images. IEEE Trans:Image Processing. 1995(3):285~295.
    [102] Kisworo,M. et.al. Modeling edges at subpixel accuracy using the local energy approach. IEEE Trans on PAMI. 1994(4):405~410.
    [103] Dyvers Edward P. Sub-pixel measurement using a moment-based edge operator[J].IEEE Transon PA-MI,1989,11(12):1293~1309.
    [104] 张烘涛,段发阶,叶声华.一种快速亚像素边缘检测方法研究.计量学报,2002,Vol.23,No.4:263~266
    [105] 李艳,彭嘉雄.基于D2 样条插值和LOG 算子的亚像素边缘检测. 华中理工大学学报,2000,Vol.28,No.3:77~79.
    [106] Y Shan, G. W Boon. Sup-pixel location of edges with non-uniform blurring a finite closed-form approach. Image Vision Computing. Image Vision Computing. 2000:1015~1022.
    [107] Geoffrey Doughorty, Effect of sub-pixel point spread function of a CT image system. Medical Engineering and Physics, 2000(22):503~507.
    [108] 王建民,浦昭邦,刘国栋.提高图像测量系统精度的细分算法的研究. 光学精密工程,1998(4):44~50.
    [109] 屈玉福,蒲昭邦,王亚爱.视觉检测系统中亚像素边缘检测技术的对比研究.仪器仪表学报.2003 年第四期增刊:460~462.
    [110] Fei-Long Chen, Shianr-When Lin. Subpixel estimation of circle parameters using prthogonal circular detector. Computer Vision and image understanding. 2000:206~221.
    [111] Paul H.Eichel and Edward J.Delp. Quantitative analysis of a moment-based edge operator. IEEE Trans. On SMAC. 1990(112):59~65.
    [112] Jack Koplowitz. Subpixel accuracy for digitized straight lines. IEEE Trans. On PAMI. 1990:278~279.
    [113] Lawrence O Gorman. Sub-pixel Precision of dtraight-edged shapes for registration and measurement. IEEE Trans. On PAMI. 1997(7):746~751.
    [114] 刘翠响.面向微区电特性及其均匀性分析的图像测量系统.河北工业大学硕士学位论文,2003:43.
    [115] Abdel-Aziz Y.L., Karara H.M., Direct linear transformation from computer coordinates into object space coordinates in close-range photogrammetry. In u. of Illinois Symposioum on Close-Range Photogrammetry. Urbana: Univ. of Illinois at Urbana-Champaign,1971.1~18.
    [116] W.Faig, Calibration of close-range photogrammetry system: mathematical formulation. Photogrammetric Eng. Remote Sensing. 1975,41912]:1479~1486.
    [117] Tsai R.Y. A versatile camera calibration technique for high-accuracy 3D machine vision metrology using off-the-shelf TV camera and lenses, IEEE Journal of Automation,1987,3(4):323~334.
    [118] Tsai R.Y. An efficient and accurate camera calibration technique for 3D machine vision. Proc. CVPR’86. New York: IEEE 1986,364~374
    [119] Martins H A, Birk JR, Kelley R B, Camera models based no data from two calibration planes, computer Graphics and Imaging Processing,1981,17(2):173~180
    [120] Wei G, Ma S, Two-plane calibration: a unified model, Proc. CVPR’91, Piscataway: IEEE,1991:133~138
    [121] Wei G, Ma S. Complete two-plane camera calibration and experimental comparisons. Proc. IEEE Int. Conf. On Computer Vision. Los Alamitos:IEEE, 1993,439-446.
    [122] Wei G, Ma S. Implicit and explicit camera calibration: theory and experiments. IEEE Trans. PAMI,1994,16(5).469~480.
    [123] Faugeras O D,Maybank S. Motion from point matches: multiplicity of solutions. Int. J. Computer Vision,1990,4:225~246
    [124] Maybank SJ, Faugeras O D. A theory of self-calibration of a moving camera. Int. J. Computer Vision,1992,8(2):123~151.
    [125] Faugeras O D, Mourrain B. On the geometry and algebra of the point and line correspondences between n images. Proc . IEEE Int. Conf. On Computer Vision. Piscataway: IEEE,1995,951~956
    [126] Hartley RI. A Linear method for reconstruction from lines and points. Proc. IEEE Int, Conf. On Computer Vision. Piscataway: IEEE 1995,882~887
    [127] S.D.Ma, A Self-calibration technique for active vision system. IEEE trans. Robotics and Automation,1996,12(1):114~120
    [128] R.I Hartley. Estimation of relative camera position for uncalibrated camera. Proc. Of the ECCV’92. Italy:Santa Margherita Ligure,1992,379~387
    [129] M.Pollefeys R.Koch.,L.Van Gool. Self-calibration and metric reconstruction in spite of varying and unknown internal camera parameters. Int. Journal Computer Vision. Dordrecht:Kluwer Academic publisher,1998,90~95
    [130] Fadi Domaika. Self-calibration of a stereo rig using monocular epipolar geometry. Processing of the IEEE International Conference on Computer Vision. Vancouver: IEEE,2001,vol2:467~471.
    [131] M.Pollefeys, L.Van Gool and M.Proesmans. Euclidean 3D Reconstruction from Images Sequences with Variable Focal Lengths. Computer Vision-ECCV’96. Lecture Notes in Computer Science, Spring-Verlag,1996. Vol.1064:31~42.
    [132] A.Heyden and K.Astrom. Euclidean Reconstruction from Image Sequences with Varying and Unknown Focal Length and Principal Point. Proc. IEEE Conference on Computer Vision and Pattern Recognition. Los Alamitos: IEEE Computer Soc.
    Press,1997:438~443
    [133] Wei Guo-Qing, Klaus Arbert, Gerd Hirzinger. Active self-calibration of robotic eyes and hand-eye relationships with model identification. IEEE Transactions on Robotics and Automatin,1998,14(1):158~166.
    [134] Luong Q T, Faugeras O D. The fundamental matrix: Theory, algorithms, and stability analysis. International Journal of Computer Vision,1996,17(1):43~75
    [135] Richard I Hartley. Self-calibration of stationary cameras. International Journal of Computer Vision,1997,22(1):5~23.
    [136] Richard I Hartley. In defense of 8-point algorithm, TPAMI,1997,19(6):580~593.
    [137] 杨长江,孙风梅,胡占义,基于二次曲线的纯旋转摄像机自标定,自动化学报,2001,27(3):310~317
    [138] Shai Avidan, Amnon Shashua. Threading fundamental matrics. IEEE Trans. On Pattern Analysis and Machine Intelligence. Los Alamitos:IEEE,2001,23(1):73~77.
    [139] Bill Triggs. Autocalibration from planes scenes. Proceedings of ECCV’98.1998.89~105.
    [140] Peter Sturm, Bill Triggs. A factorization based algorithm for multi-image projective structure and motion. Lecture Notes in Computer Science.1996. Vol 1065:709~720.
    [141] Emanuele Trucco, Alessandro Verri. Introductory techniques for 3-D computer vision. Prentice,1998.
    [142] 雷成,吴福朝.Kruppa方程与摄像机标定[J] .自动化学报, 2001, 27(5):621~630.
    [143] 郑南宁.计算机视觉与模式识别.北京:国防工业出版社,1998:22~31.
    [144] S.Ganapaphy, Decomposition of transformation matrics for robot vision. Proc. Int. Conf. Robotics and Automation. 1984:130~139.
    [145] 马颂德,张正友.计算机视觉.科学出版社,1998:52~60。
    [146] Dainis A.,Juberts M. Accurate remote measurement of robot trajectory motion. Proc. Int. Conference on Robotics and Automation.1985:92~99.
    [147] JuYang Weng,Paul Cohen. Camera calibration with distortion models and accuracy evaluation. IEEE Transactions on PAMI.1992,14(10):965~980.
    [148] ZHANG Zheng-you. A flexible new technique for camera calibration[R]. USA: Microsoft Corporation, 1998.
    [149] 高满屯,曲仕如,李西琴.计算机视觉研究中的投影理论和方法.西安:西北工 业大学出版社,1998.
    [150] Robert M.Haralick. Using perspective transformation in scene analysis. Computer Graphics and Image Processing.1980,13(3):191~221.
    [151] Caprile B.,Torre.V. using vanishing points for camera calibration. Int.J. of Computer Vision,1990,4(2):127~140.
    [152] Brillault B,O.Mahony. New method for vanishing points detection. CVGIP:Image Understanding. 1991,54(2):289~300.
    [153] Fadi Dornaika,Christophe Garcia. Pose estimation using point and line correspondences. Real-Time Imaging,1999,5(5):215~230.
    [154] J.wen and G.Schweitzer. Hybrid calibration of CCD camera using artificial neural nets. Int. Joint Conf. Neural Networks. Piscataway:IEEE,1991:227~342.
    [155] O.D.Faugers,G.Toscani. The Calibration Problem for 3D computer vision. Proc. of IEEE Conf. of Computer Vision and Pattern Recognition.
    [156] 杨长江,江威,胡占义.一种基于主动视觉的摄像机内参数自标定方法.计算机学报,1998,21(5):428~435.
    [157] 李华,吴福朝,胡占义.一种新的线性摄像机自标定方法.计算机学报,2000,23(11):1121~1129.
    [158] 雷成,吴福朝,胡占义.一种新的基于主动视觉系统的摄像机自标定方法.计算机学报,2000,23(11):1130~1136.
    [159] Basu A. Active calibration: alternative strategy and analysis. Proc IEEE Conf on Computer Vision and Pattern Recognition. Piscataway:IEEE,1993,495~500.
    [160] Du F, Brady M. Self-calibration of the intrinsic parameters of camera for active vision system. In Proc IEEE Conf on Computer Vision and Pattern Recognition. Piscataway:IEEE,1993,477~482.
    [161] R.Hartley, Self-calibration of stationary cameras. Int. Journal of Computer, 1997,22(1):5~23.
    [162] R.Hartley, Self-calibration from multiple views with a rotating camera. Lecture Notes in Computer Science. Spring-Verlag,1994,Vol.800~801:471~478.
    [163] Lourdes de Agapito, Richard I Hartley, Linear self-calibration of a rotating and zooming camera. CVPR’99. Los Alamitos: IEEE. 1999.15~21.
    [164] 袁野,余松煜,田中旭.一种基于平面直线的摄像机标定方法.上海交通大学学报,2004 年第4 期:586~588.
    [165] 吴福朝,阮宗才,胡占义. 非线性模型下的摄像机自标定. 计算机学报,2002, Vol.25No.3:276~283.
    [166] 祝世平等.一种新的能量谱-熵图像聚焦评价函数.北京航空航天大学学报, Vol.25,No.6,1999 年12 月.
    [167] 余英林.数字图象处理与模式识别.华南理工大学出版社,1990 年:91~94.
    [168] 吴振锋等.显微镜一种新的自动聚焦算法.数据采集与处理,2000 年第3 期:351~354.
    [169] 阎富强等.光纤近场测量中自动聚焦系统的研究.光子学报,1997 年第2 期:169~172.
    [170] 王任华.自动对焦算法研究.光电工程,2000 年第4 期:11~13.
    [171] 徐洁等.靶丸定位系统中的图像处理.光学精密工程,2001 年第6 期:568~571.
    [172] 李清军.一种新型视频调焦方法的研究.光学精密工程,1998 年第3 期:105~109.
    [173] 周曲.显微组织数字图像处理及自动测试.广东工业大学工学硕士学位论文,2003 年4 月:76~78.
    [174] 郭军,曾文涵,谢铁邦.弹头发射痕迹计算机图像比对系统研究.兵工学报,2003 年第4 期:504~508.
    [175] 李文思,陈海清,李俊,徐隆.红外导引头成像光斑图像处理及自动聚焦.量子电子学报,2003 年第3 期:364~370.
    [176] Groen F.C.A., Young I.T.,Ligthart G.A., comparison of different focus functions for use in autofocus algorithms. Cytometry,1985,6:81~91.
    [177] Yeo T.T.E.,Jayasooriah O.S.H.,Sinniah R.,Autofocusing for tissue microscopy. Image and Vision Coumpting, 1993,11(10):629~639.
    [178] Boddeke F.,Van V.L.,Netten H.,Toung I., Autofocusing in microscopy based on the OTF and sampling.Bioimaging,1994,2:193~203.
    [179] Chern N.K.,Nathaniel P.A.N.,Marcelo H.A.J., Practical issues in piexl based autofocusing for machine vision. Proceeding of the 2001 IEEE international Conference on robotics &automation, Seoul, Korea, May21~26,2001.
    [180] 康宗明,张利,谢攀.一种基于能量和熵的自动聚焦算法.电子学报, 2003年第4 期:552~555.
    [181] 郭彦珍,邱宗明,李信,王吉晖.图像测量技术中一种调焦的判别方法.西安理工大学学报,西安理工大学学报,2001 年第1 期:40~42.
    [182] 姜志国,韩冬兵,谢凤英,袁天云.基于全自动显微镜的图像新技术研究.中国体视学与图像分析,2004 年第1 期:31~36.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700