中国荷斯坦奶牛催乳素基因和微卫星DNA多态性与产奶性能的相关分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
选育优质高产的奶牛是提高其生产性能和牛场经济效益的主要途径,传统的通过外貌鉴定和生产性能测定由于存在环境因素的影响和时间、性别上的限制,局限性较大,而通过分子遗传标记结合生产性状进行奶牛遗传品质的选择是克服上述方法缺陷而且准确性强的选育方法。
     本实验选取了石家庄三鹿直属奶牛场和容城宏利达奶牛场共计130头荷斯坦奶牛,提取了其血液DNA,应用PCR-RFLP和微卫星DNA多态性检测技术,分别对荷斯坦奶牛的催乳素基因(PRL)和四个微卫星座位进行了DNA多态性分析,采用最小二乘模型分析催乳素(PRL)基因和微卫星座位的DNA多态性与奶牛产奶性能之间的关系。
     对中国荷斯坦奶牛催乳素(PRL)基因进行PCR-RFLP分析,检测到两个等位基因(A、a)、三种基因型(AA、Aa、aa),结果如下:对于基因频率,等位基因A为0.7538,等位基因a为0.2462。对于基因型频率,AA型为0.5462,Aa型为0.4154,aa型为0.0385。_χ2适合性检验的结果表明,催乳素基因在荷斯坦奶牛群体中处于Hardy-Weinberg平衡状态。催乳素基因的杂合度为0.3711,有效等位基因数为1.5901,多念信息含量为0.3022,属于中度多态。
     本实验还利用四个微卫星座位(ILSTS103、ILSTS96、CSSM66和BM6425)分析了荷斯坦奶牛群体的遗传结构和遗传变异,对四个微卫星座位的基因频率和基因型频率表进行了_χ2检验,结果表明这四个微卫星座位在荷斯坦奶牛群体中均处于Hardy-Weinberg平衡状态。经过_χ2独立性检验,同位于牛第14号染色体上的CSSM66和BM6425座位之间不存在连锁关系,二者在遗传上是相互独立的。根据等位基因频率计算得到的座位的等位基因数、平均多态信息含量、有效等位基因数和杂合度在群体中表现的范围分别为5~11、0.78~0.88、4.83~8.19和0.79~0.88,说明这四个微卫星座位在荷斯坦奶牛群体中表现出较高的多态性,同时也说明了在我国荷斯坦奶牛群体内具有较大的选择潜力。
     催乳素基因和四个微卫星座位对产奶量和乳成分影响的最小二乘统计分析结果表明,场、年、胎次等系统环境因素对奶牛产奶量影响极显著(p<0.01),另外,场对乳糖率的影响也达到极显著水平(p<0.01);催乳素基因对产奶量的影响均达到显著水平(P<0.05);ILSTS103、CSSM66、BM6425三个微卫星座位对产奶量的影响均达到极显著水平(P<0.01);ILSTS103、CSSM66和BM6425对乳蛋白率的影响显著(P<0.05),CSSM66还对乳脂率和干物质率的影响分别达到了极显著(p<0.01)和显著水平(P<0.05);没有检测到ILSTS96对产奶性能显著影响。
Selection of high quality catties is primary approach for increasing catties production performance and dairy farms economic benefit. Traditional judging of exterior and production performance have bigger limitation because of environmental factor influence and time, sex confinement, but selection of molecule genetic marker combining production trait for dairy genetic quality is high accuracy method to conquer these limitations.
    This experiment selects 130 Holstein dairy catties in the dairy farm belonging to Shi Jiazhuang Sanlu Group and the Honglida dairy farm in Rongcheng totally.Applied PCR-RFLP and microsatellite DNA polymorphism detection technique, Prolactin (bPRL) and four microsatellite loci Holstein cattle are analysed for DNA polymorphism. Effects of bPRL and microsatellite loci on milk performance were examined using least squares model.
    Frequency of variants in PRL were: PRL(A)0.7538, PRL(a)0.2462. For the genotype frequency of PRL, the genotype of AA is 0.5462, Aa is 0.4154, aa is 0.0385. The gene frequency and genotype frequency of PRL were analysed using chi-square test. The result showed that the Holstein dairy cattle lies in Hardy-Weinberg equilibrium state. The heterozygsity, number of effective alleles, and polymorphism information content were 0.3711, 1.5901, 0.3022, respectively. The PIC showed the medium polymorphism.
    This experiment made use of four microsatellite loci (ILSTS103, ILSTS96, CSSM66, BM6425 )analyzing dairy cattle construction and variation with inherit. The gene frequency and genotype frequency of four microsatellite loci were analysed using chi-square test. The result showed that the Holstein dairy cattle lies in Hardy-Weinberg equilibrium state. Through Chi-square independence test, the CSSM66 and BM6425 locating on the No. 14th chromosome together, is mutually independent on the heredity. The gene frequency and genotype frequency of four microsateliite loci were analysed using chi-square test. The result showed that the Holstein dairy cattle lies in Hardy-Weinberg state. The number of alleles, range of the polymorphism information content, number of effective alleles and the heterozygsity in the population .were 5 - 11, 0.78-0.88, 4.83~ 8.19 and 0.79~0.88. These resulted show that four microsatellite loci in Holstein cattle
    
    
    have high polymorphism. So there was a large selection potential in dairy cattle population. Least squares analysis showed that herd, year, season of calving and parity had significant effects on milk yield(P<0.01), In addition,herd had significant effects on lactose percent. PRL and three microsatellite loci(ILSTS103, CSSM66, BM6425) had significant effect on milk yield (P<0.05 or P<0.01). In addition, ILSTS103, CSSM66 and BM6425 had significant effects on protein percent (P<0.05), and CSSM66 had significant effects on fat percent and drymatter percent (P<0.05) .ILSTS96 hadn't significant effect on milk prodution.
引文
[1] 中国奶牛养殖网.我国奶牛业现状与发展趋势分析[EB/OL].http://8881yf.nease.net/a.htm.
    [2] Weller J I.Maximum likelihood techniques for the mapping and analysis of quantitative trait loci with the aid of genetic markers[J].Biometrics,1986,42:627~640.
    [3] Lander E S,Botstein D.Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps[J].Genetics, 1989,121: 185-199.
    [4] Haley C S,Knott S A.A simple regression method for mapping quantitative traits loci in line crosses using flanking markers[J].Heredity, 1992,69:315-324.
    [5] Botstein .D etal. Construction of a genetic linkage map in man using restriction fragment length polymorphism [J]. Am. J.Hum. Genet.,1980(32):314-331.
    [6] Nakamura. Y, etal. Variable number of tandem repeat markers for human gene mapping[J]. Science, 1987(235): 1616-1622.
    [7] Skinner. D. M, etal. The sequence of a hermit crab satellite DNA is (TAGG)n-(ATCC)n[J]. Biochemistry, 1974(13):3930-3937.
    [8] Alis. S. etal. DNA fingerpringting by oligonucleotide probes specific for simple repeats[J]. Human Genetics, 1986(74):239-243.
    [9] Haberfeld.A. etal.Heterosis and DNA fingerprinting in chickens[J].Poultry Scinence,1996(75): 951-953.
    [10] Williams. J. G,etal. DNA polymorphisms amplified by arbitrary primers are useful genetic markers[J]. Nucl. Acid. Res.,1990(18):6513-6535.
    [11] 曹新,王强,颜景斌等.牛催乳素基因组及其cDNA全长序列的分子克隆和分析[J].遗传学报,2002,29(9):768-773.
    [12] Niall H.D.,Hogan M.L.,Sauer R.,Rosenblum I.Y. & Greenwood F.C..Sequences of pituitary and placental lactogenic and growth hormones:Evolution from a primordial peptide by gene reduplication[J].Proceeding of the National Academy of Science,USA,1971,68,866-869.
    [13] Chien Y.H. & Thompson E.B.. Genomic organization of rat prolactin and growth hormone genes[J]. Proceeding of the National Academy of Science, USA, 1980,77,4583-4587.
    [14] Riddle O,Bates R W, Dykshorn S W, er al. The preparation,identification and assay of prolactin-a hormone of the anterior piruitary[J]. Am J Physiol,1933,105:191-216.
    [15] Kirken R A,Malabarba M G,Xu J et al. Prolactin signaling in mammary gland development[J]. J. Biol. Chem.,1997,12:7567-7569.
    [16] Yu-lee L Y, Luo G, Book M L et al. Lactogenic hormone signal transduction[J].Bi-ol. Reprod.,1998,58:295-301.
    [17] 牟玉莲.小尾寒羊高繁殖力候选基因-催乳素受体基因的研究[D].保定:河北农业大学硕士学位论文,2002.
    [18] Andrzej Dybus. Associations of growth hormone (GH) and prolactin (PRL) genes polymorphisms
    
    with milk production traits in Polish Black-and-White cattle[J]. Animal Science Papers and Reports,2002,20,4:203-212.
    [19] Camper S.A.,Luck D.N.,Yao Y.,Woychick R.P.,Goodwin R.G.,Lyons R.H. Jr.,Rottmann F.M.Characterization of the bovine prolactin gene[J].DNA, 1984,3,237-249.
    [20] E.M.Hallerman,A.Nave & Y. Kashi,Z. Holzer, M. Soller, J.S. Beckmann. Restriction fragment length polymorphisms in dairy and beef cattle at the growth hormone and prolactin loci[J]. Animal Genetics, 1987,18,213-222.
    [21] Lewin H.A.,Schmitt K.,Hubert R.,Van Eijk M.J.Arnheim N.. Close linkage between bovine prolactin and BoLA-DRB3 gene:genetic mapping in cattle by single sperm typing[J]. Genomics, 1992,13,44-48.
    [22] E.R.Chung,T.J.Rhim and S.K.Han. Associations between PCR-RFLP markers of growth hormone and prolactin genes and production traits in dairy cattle[J]. Korean of J.Anim.Sci., 1996,38:321-336.
    [23] E.R.Chung,W.T.Kim and C.S.Lee. DNA polymorphisms of κ-Casein, β-Lactoglobu-lin, Growth Hormone and Prolactin Genes in Korean cattle[J]. AJAS. 1998, 11(4):422-427.
    [24] Mitra, A.,Schlee,P.,Balakrishnan,C.R. and Pirchner, F. Polymorphisms at growth hormone and prolactin loci in Indian cattle and buffalo[J]. J.Anim.Genet., 1995,112:71.
    [25] J.Citek, V.Rehout, V.Neubauerova. Allele frequency at PRL(prolactin) and LGB(lac-toglobulin beta)genes in Red cattle breeds from Central Europe and in other br-eeds[J]. Czech J.Anim.Sci.,2001,46(10):433-438.
    [26] Andrzej Dybus.Associations of growth hormone (GH) and prolactin (PRL) genes polymorphisms with milk production traits in Polish Black-and-White cattle[J]. Animal Science Papers and Reports.2002,20(4):203-212.
    [27] Chrenek-P.Vasicek-D,Bauerova-M,Bulla-J. Simultaneous analysis of bovine growth hormone and prolactin alleles by multiplex PCR and RFLP[J]. Zivocisna-Vyroba, 1998,43(2):53~55.
    [28] G. Sulimova, S. Turkova, T. Tsedev, I. Zakharov and I.Udina.Polymorphisms of the bovine prolactin and growth hormone genes and association with selection for m-ilk fat production[C].7th World Congress on Genetics Applied to Livestock Product-ion,August 19-23,2002,Montpellier, France.
    [29] A.M.Ramos.C.Matos,C.Bettencourt,C.Pinheiro and T.Rangel-Figueiredo.Influence of a-S1 casein,b-lactoglobulin and prolactin genotypes on milk production traits in two Portuguese sheep breeds[C]. 7th World Congress on Genetics Applied to Live-stock Production,August 19-23,2002,Montpellier, France.
    [30] 赵养江.牛乳蛋白基因多态性分之遗传学基础的研究[D].中国农业大学博士学位论文,1998.
    [31] Ali S.,Muller C.,Eppien J.T. DNA fingerprinting by oligonucletide probes specific for simple repeats[J].Hum Genet, 1986, 74:239-243.
    [32] Tachida, H.Lizuka, M.Persistence of repeated sequences that evolve by replication slippage[J].Genetics, 1992,131:471-478.
    [33] Amos B, Schlorterer C, Tautz D. Social structure of pilot whales revealed by analytical DNA
    
    profiling[J]. Science, 1993, 260: 670-672.
    [34] 黄银花,李宁,孙汗,等.应用微卫星标记在家畜中定位数量性状主效基因[J].第七次全国畜禽遗传标记研讨会论文集,中国南昌,2000,Vol.7,No.1,42-46.
    [35] 张艳,张树义.微卫星方法简介[J].动物学杂志,1999,34(2):42-44.
    [36] 张丽娟,张保军,耿社民.微卫星标记与动物育种[J].黄牛杂志,2003,29(2):49-52.
    [37] 孙少华,师守堃.牛微卫星DNA的特性研究及其在遗传育种中的应用[J].黄牛杂志,1999,25(30):1-3.
    [38] 张细权,吴常信.三种遗传标记及其在分析畜禽遗传多样性上的应用[J].第六次全国畜禽遗传标记研讨会论文集,中国常州,Vol.6,No.1,6-12.
    [39] Zhang Y, Redaelli. L, et al. Molecular Genetic Markers[J]. Animal Genetics, 1995, 26:365-374
    [40] 王昕,耿社民,朱育红.微卫星标记在畜禽育种中的应用[J].黄牛杂志,2002,28(1):39-42.
    [41] Heyen,D.W.,J.I. Weller, M. Ron,M. Band,J.E. Beever, E. Feldmesser, Y. Da.G.R. Wiggans,P.M. VanRanden,and H.A.Lewin. A genome scan for QTL influencing milk production and health traits in dairy cattle[J]. Physiol Genomics, 1999,1:165-175.
    [42] 徐宁迎,H Thomsen,N Reisch,C Looft,E Kalm.利用微卫星进行奶牛数量性状具有位点定位的研究[J].遗传学报,2000,27(9):772-776.
    [43] M.Ron,D.W.Heyen,J.I.Weller,M.Band,E.Feldmesser,H.Pasternak,Y.Da,G.R.Wiggans,P.M. Vanraden,E. Ezra and H.A. Lewin. Detection and analysis of a locus affecting milk concentration in the US and Israeli dairy cattle populations[J]. Proc.6th World congr. Genet. Appl. Livest Prod. 1998,26:422-425.
    [44] Ron,M.,M.Band,A.Yanai,and J.I.Weller. Mapping quantitative trait loci with DNA microsatellites in a commercial dairy cattle population[J]. Anim.Genet.1994,25:259-264.
    [45] Qin Zhang,Didier Boichard,Ina Hoeschele,Cynthia Ernst,Andre Eggen,B.Murkve,Mar-garet Pfister-Genskow, Laree A.Witte, Fernando E.Grignola, Pekka Uimari,Georg Tha-ller and Michael D.Bishop. Mapping quantitative trait loci for milk production and health of dairy cattle in a large outbred pedigree[J]. Genetics, 1998,149: 1959-1973.
    [46] Weller J.I.,A.Yanai,Y.Blank,E.Feldmesser, H.Lewin et al. Detection of individual loci affecting somatic cell concentration in the U.S. Holstein population with the aid of DNA microsatellites. Proceedings of the Third international mastitis seminar.Tel Aviv, lsrael 1:3-13.
    [47] Georges,M.,D.Nielsen,M.Mackinnon,A.Mishra,R.Okimoto et al. Mapping quantitative trait loci controlling milk production in dairy cattle by exploiting progeny testing[J]. Genetics, 1995,139:907-920.
    [48] 李瑞彪,陈宏.泌乳性状遗传标记研究进展[J].黄牛杂志,2002,28(4):32-34.
    [49] M.S.Ashwell,C.P.Van Tassell. Detection of putative loci affecting milk,health, and type traits in a US Holstein population using 70 microsatellite marker in a genome scan[J]. J. Dairy Sci. 1999,82:2497-2502.
    [50] C.P.Van Tassell.M.S.Ashwell,T.S.Sonstegard. Detecting of putative loci affecting milk.health,and conformation traits in a US Holstein population using 105 mi-crosatellite Markers[J]. J. Dairy Sci.
    
    2000,83:1865-1872.
    [51] S.L.Rodriguez-Zas,B.R.Southey, D.W.Heyen,and H.A.Lewin. Detection of Quantitative trait loci influencing dairy traits using a model for longitudinal data[J].J.Dairy Sci. 2002.85:2681-2691.
    [52] M.S.Ashwell,C.P.Van Tassell, and T.S.Sonstegard. A genome scan to identify qu-antitative trait loci affecting economically important traits in a US Holstein Population[J]. J.Dairy Sci.84:2535-2542.
    [53] 魏学蕊,孙少华.奶牛重要经济性状的分子遗传标记研究进展[J].辽宁畜牧兽医,2002,2:34-36.
    [54] 单雪松,张沅,李宁.奶牛微卫星基因座与产奶性能关系的研究[J].遗传学报,29(5):430-433.
    [55] J.萨姆布鲁克,E.F 弗里奇,T.曼尼阿蒂斯著,金冬雁、黎孟枫等译.分子克隆实验指南(第三版)[M].北京:科学技术出版社,2002.
    [56] 吴冠芸,潘华珍.生物化学与分子生物学实验常用数据手册[M].北京:科学出版社,1999.
    [57] 孙少华.肉牛微卫星DNA的群体遗传变异分析及其应用研究[D].北京:中国农业大学博士学位论文,1999.
    [58] O.E.Othman and S.M.El Nahas. Synteny assignment of four genes and two microsa-tellite markers in river buffalo(Bubalus bubalis L.) [J]. J.Anim.Breed.Genet. 1999,116:161-168.
    [59] Barker J S F. A global protocl for determining genetic distances among domestic Livestock breeds[C]. Proc. 5th World Genet Appl. Livest. Prod, 1994, 21: 501-508.
    [60] J Slate,D W Coltman,S J Goodman,I MacLean,J M Pemberton,J L Williams.Bovine mi-crosatellite are highly conserved in red deer(Cervus elaphus),sika deer(Cervus nippon) and Soay sheep(Ovis aries) [J]. Animal Genetics, 1998,29:307-315.
    [61] Bishop M.D.,Kappes SM.,Keele J.W.,et al. A genetic linkage map of cattle[J]. Genetics, 1994,136:619-639.
    [62] Barendse W.,Vaiman D.,Kemp S.J. et al. A medium-density genetic linkage map of the bovine genome[J]. Mammalian genome, 1997,8:21-28.
    [63] Dowling T E,Moritz C,Palmer J D. et al. Nucleic acids :analysis of fragments and restriction sites.In:Hillis D M, Moritz C. eds. Molecular Systematics. 2nd ed[C]. Sanderland,M A,U S A:Sinauer Associates Inc.Publishers,249-320.
    [64] 张亚妮,耿社民,王昕,等.成华猪5个微卫星位点的遗传多样性研究[C].第八次全国畜禽遗传标记研讨会论文集,中国杨凌,2002,Vol.8,No.1,198-202.
    [65] 盛志廉,吴常信编著.数量遗传学[M].北京:中国农业出版社,1995.
    [66] 贵州农学院主编.生物统计附试验设计(第二版)[M].北京:农业出版社,1997.
    [67] Neilan B A,Leigh D A,Rapley, et al. Microsatellite genome screening:Rapid non-denaturing non-isotoic dinucleatide repeat analysis[J].Biotechniques, 1994,17(4):708-712.
    [68] Bostin D, White R.L.,Skolnick M.,et al.Construction of a genetic linkage map in man using restriction fragment length polymorphism[J].American Journal of Human Genetic,1980,32,314-331.
    [69] 魏学蕊.动物模型BLUP法在奶牛核心群选育中的应用研究[D].保定:河北农业大学硕士学位论文,2002.
    
    
    [70] 张沅主编.家畜育种学[M].北京:中国农业出版社,2001年.
    [71] 秦志锐.奶牛的遗传改良[M].北京:中国农业科技出版社,1993.
    [72] 胡子平,秦志锐.泌乳母牛305天奶量估计方法初步研究[J].中国畜牧杂志,1985,3:6-9.
    [73] 张沅,张勤主编.畜禽育种中的线性模型[M].北京:中国农业大学出版社,1993.
    [74] Lewin H.A.,Schmitt K.,Hubert R.,Van Eijk M.J.,Amheim N..Close lingkage between bovine prolactin and BotA-DRB3 gene:genetic mapping in cattle by single sperm typing[J]. Genomics, 1992,13:44-48.
    [75] Andreas Winter, Wolfgang Kramer, Fabian A.O. Wemer, et al. Association of a lysine-232/alanine polymorphism in a bovine gene encoding acyl-CoA: diacylglyc-erol acyltransferase (DGAT1) with variation at a quantitative trait locus for milk fat content[J]. Proc. Natl. Acad. Sci. U.S.A., 2002, 99:9300-9305.
    [76] Coppieters,W., J.Riquet, J.J.Arranz, et al. A QTL with major effect on milk yi-eld and composition maps to bovine Chromosome 14[J]. Mamm.Genome, 1998, 9: 540-544.
    [77] Grisart B., W.Coppieters, F.Famir, L.Karim, et al. Positional candidate cloni-ng of a QTL in dairy cattle:identification of a missense mutation in the bovine DGAT1 gene with major effect on milk yield and composition[J]. Genome Res., 2002, 12:222-231.
    [78] Juliette Riquet, Wouter Coppieters, Nadine Cambisano, et al. Fine-mapping of q-uantitative trait loci by identity by descent in outbred populations:Applicati-on to milk production in dairy cattle. Proc. Natl. Acad. Sci. U.S.A. 1999, 96: 9252-9257.
    [79] S.S.Moore, C.Li, J.Basarab, et al. Fine mapping of quantitative trait loci and assessment of positional candidate genes for backfat on bovine chromosome 14 in a commercial line of Bos Taurus[J]. J. Anita. Sci., 2003, 81: 1919-1925.
    [80] 卢圣栋主编.现代分子生物学实验技术[M].北京:高等教育出版社,1993.
    [81] C.W.迪芬巴赫,G.S.德维克斯勒.PCR技术实验指南[M].北京:科学出版社,1998.
    [82] 邓学梅.用于鸡基因定位的资源群体的建立和黑色素等质量性状的遗传分析[D].北京:中国农业大学博士学位论文,2001.
    [83] 姜运良.猪肌肉生长抑制素基因单核苷酸多态性及其与生产性能的关系分析[D].北京:中国农业大学博士学位论文,2000.
    [84] 李玉.肉用绵羊群体遗传结构和变异的微卫星DNA多态性分析[D].保定:河北农业大学硕士学位论文,2003.
    [85] 金冬雁.精编分子生物学实验指南[M].北京:科学出版社,2001.
    [86] 温进坤,韩梅.医学分子生物学理论与研究技术[M].北京:科学出版社,2002.
    [87] Murray. V, Chutima. M, et al. 1993. The determination of the sequence present in the shadow bands ofa dinucleotide repeat PCR[J]. Nucleic Acids Res, 21(10):2395-2398.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700