五个山羊品种微卫星和DQA基因的遗传多样性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
采用微卫星DNA标记技术和PCR-RFLP技术对5个山羊品种(崂山奶山羊、西农萨能奶山羊、关中奶山羊、板角山羊和贵州白山羊) 11个微卫星位点、DQA1和DQA2基因的遗传多样性进行了分析,探讨了各品种内的遗传变异及群体间的遗传关系,并分析了多态性基因座和多态性微卫星位点与崂山奶山羊和西农萨能奶山羊体尺指标、产奶性能以及产羔数的关系,旨在为山羊遗传资源的合理开发、利用及保护提供科学依据。
     1.应用筛选出的11个微卫星DNA标记对5个山羊品种进行了多态性分析。
     (1)除了BM203和BM6425外,其余的9个位点均具有多态性,共检测到了85个等位基因,平均每个位点检测到9.4个等位基因。表明这9个微卫星位点在5个山羊群体中多态性比较丰富。
     (2)以等位基因为基础,得出所有位点的平均杂合度在0.6649~0.8379之间,群体平均杂合度在0.7313~0.8002之间。9个微卫星位点均为高度多态(PIC>0.5),说明这5个山羊品种遗传变异大,遗传多样性丰富,遗传基础比较广泛。
     (3)对9个微卫星位点进行了中性测试,发现3个微卫星位点(BM315、BM1329和TGLA68)在95%的置信区间内,属于中性位点,而其余的6个位点则为非中性位点。
     (4)计算了总群杂合度和亚群杂合度以及遗传分化系数,表明群体间遗传变异程度不高;对所有微卫星位点进行F-统计量分析,Fst的变化范围是从BM1329的0.0304到BM315的0.1401,群体每代的迁移数在1.5351~7.9765,平均为4.2998。
     (5)计算了五个山羊群体的Nei氏标准遗传距离,并进行了UPGMA聚类分析,结果与这些山羊品种的起源、育成史和地理分布相符合。
     2.分析了微卫星不同基因型与崂山奶山羊和西农萨能奶山羊的生长发育性状和产奶量以及产羔数等指标之间的相关性,结果如下:
     (1)对生长发育性状的效应进行了分析,发现品种为其主要效应,也找到了一些性状的标记效应,并计算了其基因型的最小二乘均值。
     (2)对产奶量和产羔数的效应进行了分析,没有找到标记效应,品种效应为主要效应。
     3.应用PCR-PFLP方法对5个山羊品种的DQA1和DQA2基因座进行了多态性分析。在DQA1基因的两个酶切位点上,除了西农萨能奶山羊为中度多态外,其它4个品种均为低度多态。在DQA1-TaqⅠ-RFLP位点上,关中奶山羊和崂山奶山羊处于Hardy-Weinberg不平衡状态,而西农萨能奶山羊、板角山羊和贵州白山羊上均处于Hardy-Weinberg平衡状态;在DQA1-HaeⅢ-RFLP位点上,5个山羊群体中均处于Hardy-Weinberg平衡状态。
     在DQA2-PvuⅡ-RFLP位点上为单态。在DQA2-HaeⅢ-RFLP位点上,5个山羊群体在该位点上均处于Hardy-Weinberg不平衡状态(P>0.05)。除了西农萨能奶山羊属于高度多态外,其它4个山羊品种均处于中度多态。
     4.对DQA1和DQA2多态基因座与崂山奶山羊和西农萨能奶山羊的生长发育性状和产奶量以及产羔数等指标进行了关联分析,结果发现多态基因座对所有指标影响差异均不显著(P>0.05)。
In this paper, microsatellite DNA markers and PCR-RFLP technology were employed to detect the molecular genetic diversity of eleven microsatellite loci, DQA1 and DQA2 genes in five goat breeds, e.g. Laoshan dairy goat, Xinong Sannen dairy goat, Guanzhong dairy goat, Banjiao goat and Guizhou white goat. The genetic variability within populations and genetic relationships among them were discussed. Relationships between different genotype and body sizes, milk yields and litter sizes were analysed based on polymorphism. The study was aimed to provide scientific basis for proper development and protection of these goat breeds. The results were as followed:
     1. Eleven microsatellite loci were used to evaluate the genetic polymorphisms in five goat breeds.
     (1) Apart from BM203 and BM6425, the other nine loci were polymorphic and eighty-five alleles were detected, with a mean of 9.4, which indicted that the nine loci were more polymorphic in the five goat breeds.
     (2) Based on alleles, the average heterozygosity of overall loci and populations ranged from 0.6649 to 0.8379, 0.7313 to 0.8002, respectively. The nine loci were high polymorphic (PIC>0.5). This showed that there were great variability and broad genetic base in the five goat breeds.
     (3) Neutrality test was conducted on the nine loci in the five goat populations. Three microsatellite loci (BM315、BM1329 and TGLA68) was in confidence interval (95%) and on the contrary the other six loci were not neutral loci.
     (4) Heterozygosity in subpopulation, Total Heterozygosity, and coefficient of gene differentiation (Gst) of the nine microsatellite loci were calculated, which demonstrated small genetic differentiation between the five goat breeds. F-statistics of each microsatellite locus was analysed and the value of Fst and Nm ranged from 0.0304 (BM1329) to 0.1401 (BM315), 1.5351 to 7.9765 (the mean was 4.2998), respectively.
     (5) Genetic distance was calculated among the five goat breeds and UPGMA tree was constructed, which showed that the results were in accordance to their origin, history and geographical distribution.
     2. Relationships between microsatellite markers and two dairy goat breeds’production traits were analysed. The results were as followed:
     (1) The analysis result of growth trait showed the effects of breed were major effect. Some marker effects were found and the least square means were obtained.
     (2) The analysis result of milk yield and litter sizes showed the effects of breed were major effect in most indexs. No marker effects were found in the two dairy breeds.
     3. The genetic polymorphisms of DQA1 and DQA2 were detected by PCR-RFLP in five goat breeds. At the two RFLP loci of DQA1 gene, SN was moderate polymorphisms and the other four populations were low polymorphisms. Except GZ and LS, other three populations (SN, BJ and GW) were at Hardy-Weinberg equilibrium at TaqⅠ-RFLP locus. At the HaeⅢ-RFLP locus, the five populations were at Hardy-Weinberg equilibrium.
     There was no polymorphism at the DQA2 PvuⅡ-RFLP locus. At the DQA2 HaeⅢ-RFLP locus, the five goat populations were not at Hardy-Weinberg equilibrium. Apart from SN with high polymorphisms, the other four populations showed moderate polymorphisms.
     4. The effects of genotypes of the two genes on the traits were analysed by linear model and there were not statistically significantly between the effects of genotypes and the traits.
引文
[1] 中国家畜家禽品种志编委会, 中国羊品种志编写组. 中国羊品种志[M]. 上海: 上海科学技术出版社. 1989, 1-25.
    [2] 韩文兴, 王作洲. 我国著名的地方良种-崂山奶山羊[J]. 中国草食动物, 2003, 23(3): 49-50.
    [3] 李建文. 关中奶山羊[J]. 中国养羊, 1995: 5-8.
    [4] 王武强. 浅谈我省地方畜禽品种资源保护及开发利用[J]. 家畜生态, 2002, 23(1): 56-59.
    [5] Sokolov V E, Aniskin V M, Serbenyuk M A. Chromosome homology of heterochromatin in goat, sheep, and ox studied by banding techniques[J]. Chromosoma, 1990, 42: 383-402.
    [6] 张武学. 山羊和绵羊染色体研究现状[J]. 青海畜牧兽医学院学报, 1991, 8(2): 32-35.
    [7] 门正明, 陈彩安, 韩建林. 萨能山羊染色体组型分析[J]. 甘肃农业大学学报, 1985, 1: 36-39.
    [8] 詹铁生, 田玉山, 雒鸣峰, 等. 西农莎能山羊间性遗传机制研究[J]. 遗传学报, 1994, 21(5): 356-361.
    [9] 班兆侯, 王珊, 刘若余. 贵州山羊核型及C-带的多态性[J]. 贵州农业科学, 1995, 3: 23-25.
    [10] 雷初朝, 李瑞彪, 陈宏, 等. 山羊与绵羊的染色体核型比较[J]. 西北农业大学学报, 2001, 10(3): 12-15.
    [11] Makino S. The chromosome complexes in goat (Capra hircus) and sheep (Ovis aries) and their relationship[J]. Cytologia (Tokyo), 1943, 13: 39-54.
    [12] Wurster D H, Benirschke K. Comparative cytogenetic studies in the order Carnivora[J]. Chromosoma, 1968, 24(3): 336-382.
    [13] Anne R, Dain. Difference in chromosome lengths between male and female sheep[J]. Nature, 1972, 237: 455-457.
    [14] 李积友. 绵羊和山羊染色体同源性及其染色体组型进化关系的研究[J]. 畜牧与兽医, 1995, 27(1): 38-39.
    [15] Evans H J, Buckland R A, Sumner A T. Chromsomes homology and heterochromotin in goat, sheep and OX studied by banding techniques[J]. Chromosoma, 1973, 42: 383-402.
    [16] Kaftanovskaya H M, Serov O L. High-revuiution GTG-banded chromosomes of cattle, sheep, and goat-a comparative study[J]. The journal of heredity, 1994, 85: 395-400.
    [17] Henderson L M, Bruere N. Conservation of nucleolus organizer regions during evolution in sheep, goat, cattle, and audad[J]. Can. J. Genet. Cytol., 1979, 21: 1-8.
    [18] 潘爱銮, 王杰, 彭先文. 三个山羊群体血液蛋白多态性研究[J]. 中国畜牧杂志, 2002, 3: 12-14.
    [19] 张细权, 李加琪, 杨关福. 动物遗传标记[M]. 北京: 中国农业大学出版社, 1997, 133-156.
    [20] 罗军, 李建文, 刘祝奎. 山羊乳蛋白多态性与产奶性能的关系研究[J]. 西北农业大学学报, 1994, 22(1): 12-16.
    [21] 耿社民, 常洪, 吴锦淑, 等. 西农萨能奶山羊群体的遗传变异分析[J]. 家畜生态, 1995, 16(3): 11-14.
    [22] 王玲, 左福元, 赵智华. 重庆本地山羊血清同工酶多态性的研究[J]. 四川畜牧兽医, 2005, 7: 23-24.
    [23] 韩海霞, 王建民, 王桂芝, 等. 山东境内五个山羊种群生化遗传多态性研究[J]. 家畜生态学报,2006, 27(6): 28-32.
    [24] Lander E S, Botsten D. Mapping mendelian factors underlying quantitative traits using RFLP linkage maps[J]. Genetics, 1989, 121: 185-199.
    [25] Hartmut R K, Ian K M, Ack I E, et al. Fish species identification in canned tuna by PCR-SSCP validation by a collaborative study and investigation of intra species variability of the DNA patterns[J]. Food Chemistry, 1999, 64: 263-268.
    [26] Jeffreys A J, Wijson V, Thein S L. Hypervariable minisatellite regions in human DNA[J]. Nature, 1985, 314(7): 67-73.
    [27] Fisher R F, Long S R. DNA footprint analysis of the transcriptional activator proteins NodD1 and NodD3 on inducible nod gene promoters[J]. J. Bacteriol. 1989, 171(10): 5492-5502.
    [28] Schiffer M, White R. Three random loci in human genome with base pair change polymorphisms [J]. Cytogenet cell genet., 1982, 32: 314-315.
    [29] Epplen J T. A simple repeated GATA/GACA sequence in animal genome[J]. Heredity, 1988, 79: 409-416.
    [30] Nakamura Y, Leppert M O, Connell P, et al. Variable number of tandem repeat markers for human gene maping[J]. Science, 1987, 235: 1616-1622.
    [31] Williams J G, Kubelik A R, Livak K J, et al, DNA polymorphisms amplified by arbitrary primers are useful genetic markers [J]. Nucl Acid Res, 1990, 18: 6513-6535.
    [32] Zabeau M G, Vos P, et al. European patent 0535858, AI: 1993-03-31.
    [33] Martinez A Z, Delgado J V, Rodero A, et al. Genetic structure of the Iberian pig breed using microsatellites[J]. Anim. Genet., 2000, 31: 295-301.
    [34] Orita M K, Suzuki Y K, Sekiya T, et al. Rapid and sensitive detection of mutations and DNA polymorphisms using the polymerase chain reaction[J]. Genomics, 1989, 5: 874-879.
    [35] Paran I, Michelmore R W. Development of PCR-based markers linked to downy mildew resistance in lettuce[J]. Theor Appl. Genet., 1993, 85(3): 985-993.
    [36] Primmer C R, Borge T, Lindell J, et al. Single2nucleotide polymorphism characterization in species with limited available sequence information: hiGH nucleotide diversity revealed in the avian genome[J]. Molecular Ecology, 2002, 11: 603-612.
    [37] Hatey F, Tosser-klopp G, Clouscard martinaco C, et al. Expressed sequence tags for genes: a review [J]. Genet. Sel. Evol., 1998, 30(5): 521-541.
    [38] Etscheid M, Riesner D. TGGE and DGGE. In: Karp A, Issac P. G. and Ingram D S (eds), Molecular Tools for Screening Biodiversity[M]. Chapman & Hall, London, 1998, 133-156.
    [39] Alfons Ginel, Heinz Sedler. Plant transposable enements and gene tagging[J]. Plant Mol. Biol., 1992, 19: 39-49.
    [40] Vora G J, Meador C E, Stenger D A, et al. Nucleic acid amplification strategies for DNA microarray-based pathogen detection[J].Appl. Environ Microbiol. 2004, 70(5): 3047-3054.
    [41] Naoko Takezaki. Genetic distance and reconstruction of phylogenetic trees from mocrosatellite DNA[J]. Genetics, 1997, 144: 389-399.
    [42] 陈宏, 蓝贤勇, 李瑞彪, 等. CSN1S2、CSN3和β-lg基因对西农萨能奶山羊产奶性能的影响[J]. 遗传学报, 2005, 32(8): 804-810.
    [43] 蓝贤勇, 陈宏, 潘传英, 等. CSN3、CSN1S2和β-1g基因多态与西农萨能奶山羊产羔数的相关性研究[J]. 中国农业科学, 2005, 38(11): 2333-2338.
    [44] 蓝贤勇, 陈宏, 潘传英, 等. 西农萨能奶山羊随机微卫星扩增多态DNA(RMAPD)与经济性状的相关性[J]. 畜牧兽医学报, 2006, 37(6): 523-529.
    [45] 宋美玲, 尚友国, 于艳, 等. 三个山羊品种FSHR基因部分序列的克隆与分析[J]. 山东农业大学学报(自然科学版), 2006, 37(3): 397-401.
    [46] 蓝贤勇,陈宏,潘传英,等. 山羊FSHR基因第10外显子的PCR-SSCP检测及其序列分析[J]. 农业生物技术学报, 2006, 14(4): 484-488.
    [47] 蓝贤勇. 西农萨能奶山羊经济性状的DNA分子标记及5个山羊品种DNA多态性研究[D]. 西北农林科技大学硕士论文, 陕西杨凌, 2004.
    [48] 马月辉. 畜禽遗传资源研究[D]. 中国农业大学论文, 北京, 2000.
    [49] 刘长国, 罗军, 杨公社, 等. 陕西省境内5个山羊品种遗传背景的RAPD分析[J]. 西北农林科技大学学报(自然科学版), 2003, 31(3): 19-24.
    [50] 左福元, 孔路军, 赵智华, 等. 重庆本地山羊群体遗传关系的RAPD分析[J]. 西南农业大学学报(自然科学版), 2005, 27(2): 193-197.
    [51] 陈祥, 廖正录, 李国红, 等.贵州白山羊遗传结构的RAPD分析[J]. 四川畜牧兽医, 2004, 31(8): 20-21.
    [52] 李瑞彪, 陈宏, 雷初朝, 等. 西农萨能奶山羊β-乳球蛋白基因5′侧翼区多态性分析[J]. 西北农林科技大学学报(自然科学版), 2004, 32(1): 74-76.
    [53] 蓝贤勇, 陈宏, 雷初朝, 等. 5个山羊品种β-1g 5′侧翼区多态性研究[J]. 西北农林科技大学学报(自然科学版), 2005, 33(2): 19-22.
    [54] 蓝贤勇, 陈宏, 张润锋, 等. 5个山羊品种CSN1S2基因的Alw26Ⅰ酶切多态性分析[J]. 遗传, 2005, 27(3): 363-366.
    [55] 蓝贤勇, 陈宏, 张润锋, 等. 西农萨能奶山羊CSN1S2基因多态与产奶量、体尺指标的相关分析[J]. 畜牧兽医学报, 2005, 36(4): 318-322.
    [56] 毛凤显, 皇甫江云, 赵有璋. 贵州地方山羊品种遗传背景的微卫星分析[J]. 畜牧与兽医, 2006, 8(2): 13-15.
    [57] Skinner D M, Beattie W G, Blattner F R et al. The sequence of a hermit crab satellite DNA in (-TAGG-)n-(-TAGG-)n [J]. Biochemistry, 1974, 13: 3930-3937.
    [58] Ali S,Muller C R, Epplen J T. DNA finger printing by oligo-nucleotide probes specific for simple repeats[J].Human Genetics, 1986, 74: 239-243.
    [59] Jeffreys A J, Wilson V, Neumann R et al. Amplification of human minisatellites by the polymerase chain reaction: towards DNA fingerprinting of single cells[J]. Nucleic Acids Res., 1988, 16: 10953-10971.
    [60] Litt M, Luty J A. A hypervariable microsatellite revealed by in vitro amplification of a dinucleotide repeat within the cardiac muscle actin gene [J]. Am J Hum Genet, 1989, 44(3): 397-401.
    [61] Bachmann K. Tansley review No.63:Molecular markers in plant ecology[M]. New Phytol, 1994, 126: 403-418.
    [62] Weber J L. Informativeness of human (dG-dT)n?(dA-dC)n polymorphisms[J]. Genome, 1990, 7: 524-530.
    [63] Levinson G, Gutman G A. Slipped-strand mispairing:a major mechanism for DNA sequence evolution[J]. Mol. Biol. Evol., 1987, 4: 203-221.
    [64] Strand M, Prolla T A, Liskay R M,et al. Destabilisation of tracts of simple repetitive DNA in yeast by mutations affecting DNA mismatch repair[J]. Nature, 1993, 365: 274-276.
    [65] Coggins L W, O'Prey M. DNA tertiary structures formed in vitro by misaligned hybridization of multiple tandem repeat sequences[J]. Nucleic Acids Res. 1989, 17(18): 7417-7426.
    [66] Wahls W P, Wallace L J, Moore P D. Hypervariable minisatellite DNA is a hotspot for homologous recombination in human cells[J]. Cell, 1990, 60(1): 95-103.
    [67] Streisinger G, Owen J E. Mechanisms of spontaneous and induced frameshift mutation in bacteriophage T4[J]. Genetics, 1985, 109: 633-659.
    [68] 龚炎长. 猪微卫星 DNA 的研究方法进展[C]. 第五次全国畜禽遗传标记研讨会论文集, 成都, 1996, 9-14.
    [69] Jin L, Zhong Y. The exact numbers of possible microsatellites motifs[J]. Animal J. human Genetic, 1994, 55: 582-683.
    [70] Akkaya M S, Bhagwat A A, Cregan P B. Length polymorphism of simple sequence repeat DNA in soybean[J]. Genetics, 1992, 132: 1131-1139.
    [71] 卢对栋. 现代分子生物实验技术[M]. 第 2 版, 1999.
    [72] 曹永新, 潘玉春等主编. 家畜多样性的保护[M]. 北京: 中国农业出版社, 1995, 1-14.
    [73] Saitbekova N, Gaillard C, Obexer-Ruff G, et al. Genetic diversity in Swiss goat breeds based on microsatellite analysis[J]. Animal Genetics, 1999, 30: 36-41.
    [74] Gortari M J de, Freking B A, Kappes S M, et al. Extensive genomic conservation of cattle microsatellite heterozygosity in sheep[J]. Animal Genetics, 1997, 28: 274-290.
    [75] Arranz J J. Genetic relationships among Spanish sheep using microsatellite[J]. Animal Genetic, 1998, 29: 435-440.
    [76] Luikart G. Power of 22 microsatellite markers in fluorescent multiplexes for parentage testing in goats (Capra hircus) [J]. Animal Genetics, 1999, 30: 431-438.
    [77] Kim K S. Genetic diversity of goats from Korea and China using microsatellite analysis[J]. Asian-Aust. J. Animal Sci., 2002, 5: 1461-1465.
    [78] Kotze A, Swart H. Grobler J P, et al. A genetic profile of the Kalahari red goat breed from southern Africa[J]. South African Journal of Animal Science, 2004, 34(Supplement 1): 10-12.
    [79] Chenyambuga S W. Genetic characterization of indigenous goats of Sub-saharan Africa using microsatellite DNA markers[J]. Journal of Animal Sciences, 2004, 17(4): 1445-1452.
    [80] Abruzzo ed el Molise, Caporale G., Campo Boario. A panel of polymorphic microsatellites in the threatened Apennine chamois(Rupicapra pyrenaica ornata)[J]. Molecular Ecology Notes, 2005, 5: 372-374.
    [81] Yang L. Determination of genetic relationships among five indigenous Chinese goat breeds with six microsatellite markers[J]. Animal genetics, 1999, 30: 1452-1455.
    [82] Meng H L. Genetic relationships among twelve Chinese indigenous goat populations based on microsatellite analysis[J]. Genet. Sel. Evol., 2002, 34: 729-744.
    [83] 张英杰. 微卫星标记OarAE101和MCM38在3个山羊品种中的遗传多态性研究[J]. 草食家畜, 2003, 2: 24-26.
    [84] Sun W. Genetic differentiation between sheep and goat based on microsatellite DNA[J]. J. Anim. Sci., 2004, 17: 583-587.
    [85] 孙允东. 山东地方山羊遗传多样性研究[D]. 山东农业大学硕士论文.山东泰安, 2003.
    [86] 张宁波, 王建民, 尚友国. 利用微卫星标记对波尔山羊遗传多样性的研究[J]. 山东畜牧兽医, 2004, 1-2.
    [87] 张涛, 陈玉林, 张恩平. 南江黄羊 4 个微卫星位点遗传多态性研究[J]. 安徽农业科学, 2005, 33(4): 650-651.
    [88] 杨章平, 常洪, 孙伟. 7 个绵羊微卫星 DNA 标记在绵(山)羊群体中的多态性检测[J]. 西北农林科技大学学报(自然科学版), 2004, 32(12): 69-74.
    [89] 王昕. 中国部分地方猪种微卫星 DNA 指纹的群体遗传学研究[D]. 西北农林科技大学硕士论文. 陕西杨凌, 2001.
    [90] 郭泽坤. 体细胞克隆山羊微卫星 DNA 分析[J]. 生物化学与生物物理进展, 2002, 29(4): 655-658.
    [91] 刘建,唐慧林,杨跃飞,等. 克隆波尔山羊的微卫星 DNA 鉴定[J]. 中国药科大学学报, 2005, 36(1): 69-72.
    [92] 孙业良, 谢庄, 刘国庆, 等. 利用微卫星 DNA 技术进行绵羊亲子鉴定[J]. 安徽农业大学学报, 2005, 32(3): 301-305.
    [93] Vaiman D, Schibler L, Bourgeois F, et al. A genetic linkage map of the male goat genome[J]. Genetics, 1996, 144(1): 279-305.
    [94] Schibler L, Vaiman D, Oustry A, et al. Comparative gene mapping: affine-scale survery of chromosome rearrangements between ruminants and humans [J]. Genome research, 1998, 8: 901-915.
    [96] 张英杰, 赵有璋, 刘月琴, 等. 微卫星DNA标记在三个山羊品种中的遗传多态性研究[J]. 中国草食动物, 2003, 23(4): 7-9.
    [97] 张英杰, 刘月琴, 孙洪新, 等. 利用微卫星DNA多态性预测引进肉用绵羊品种杂种优势[J]. 中国农业科学, 2006, 39(5): 1076-1082.
    [98] 张涛. 南江黄羊微卫星多态性及多胎性状的分子标记研究[D]. 西北农林科技大学硕士学位论文, 陕西杨凌, 2005.
    [99] Jin M, Guo C L. Correlation analysis of economic traits in Liaoning new breed of cashmere goats using microsatellite DNA marker[J]. Acta Genetica Sinica, 2006, 33(3): 230-235.
    [100] 王建民, 孙允东, 李宏滨, 等. 探讨微卫星作为地方山羊品种生长性状的遗传标记[J]. 畜牧兽医学报, 2006, 37(10): 961-966.
    [101] 管峰, 艾君涛, 庞训胜, 等. 黄淮山羊微卫星多态性及其与产羔数相关性的研究[J]. 中国畜牧杂志, 2006, 42(23): 4-7.
    [102]孙东晓, 张沅. 反刍家畜主组织相容复合物的研究进展[J]. 中国畜牧杂志, 2002, 38(5): 46-47.
    [103] Arriens M A, Hofer A, Obexer-Ruff G., et al. Lack of association of bovine MHC I class alleles with carass and reproductive traits[J]. Animal Genetics, 1996, 27: 429-431.
    [104] W. E. 保罗编著(吴玉章译). 基础免疫学(上册)[M].科学出版社, 2003, 297-317.
    [105] Andersson L, Lunden A, Sigurdardottir S, et al. Linkage relationship in bovine MHC region, high recombination frequency between class II subregion[J]. Immunogenetics, 1988, 27: 273-280.
    [106] Stone R T. BoLA-DIB: species distribution, linkage with DOB and northern analysis [J]. Animal Genetics, 1993, 24: 41-45.
    [107] Amorena B, Stone W. H. Serologically defined (SD) locus in cattle[J]. Science, 1978, 201(4351): 159-160.
    [108] Nesse L L, Larsen H J. Lymphocyte antigens in Norwegian goats: serological and genetics studies [J].Animal Genetics, 1987, 18: 261-268.
    [109] Abraham A J, Cameron L J, Robinson P U, et al. The caprine MHC contains DYA genes[J]. Immunogenetics, 1993, 37(4): 292-295.
    [110] Takada T, Kikkawa Y, Yonekawa H, et al. Analysis of goat MHC class II DRA and DRB genes: identification of the expressed gene and new DRB alleles[J]. Immunogenetics, 1998, 48: 408-412.
    [111] Amillsa M, Sulasa C, Sancheza A, et al. Nucleotide sequence and polymorphism of the caprine major histocompatibility complex class II DQA1(Cahi-DQA1) gene[J]. Molecular Immunology, 2005, 42: 375-379.
    [112] Zhou H, Hickford J G H , Fang Q. Polymorphism of the DQA2 gene in goats[J]. J. Anim. Sci. 2005, 83: 963-968.
    [113] Amills M, Sulas C, Sànchez A, et al. Structural characterization of the caprine major histocompatibility complex class II DQB1 (Cahi-DQB1) gene[J]. Molecular Immunology, 2004, 41: 843-846.
    [114] Amills M, Francino O, Sanchez A. Nest PCR allows the characterization of TaqⅠ and PstⅠ RFLPs in the second exon of the caprine MHC class II DRB gene[J]. Veterinary immunology and immunopathology, 1995, 48: 313-321.
    [115] Amills M, Francino O, Sanchez A. A PCR-RFLP typing method for the caprine class II DRB gene[J]. Veterinary immunology and immunopathology, 1996, 55: 255-260.
    [116] Sun D X, Zhang Y. Polymorphisms of the Second Exon of MHC-DRB Gene in Chinese local sheep and goat [J]. Biochemical Genetics, 2004, 42(9/10): 385-390.
    [117] Meng-Hua Li, Kui Li, Juha Kantanen, et al. Allelic variations in exon 2 of caprine MHC class II DRB3 gene in Chinese indigenous goats [J]. Small Ruminant Research, 2006, 66: 236-243.
    [118] Mainguy J, Worley K , Steeve D, et al. Low MHC DRB class II diversity in the mountain goat: past bottlenecks and possible role of pathogens and parasites[J]. Conservation Genetics, 2007, (Sous presse).
    [119] Sheikh F D, Bhattacharya T K, Kumar P, et al. DRB3.2 gene polymorphism and its association with pashmina production in Changthangi goat[J]. International Journal of Immunogenetics, 2006, 33(4): 271-276.
    [120] Bota J, Karlssonb L J E, Greefb J, et al. Association of the MHC with production traits in Merino ewes[J]. Livestock Production Science, 2004, 86: 85-91.
    [121] Zanotti M. Histocompatibility and production performances in Italian Holstein Friesian bulls[A]. In: Proceedings of the 4th World Congress on Genetics Applied to Livestock Production[C]. Edinburgh, UK, 1990, 16: 489.
    [122] Sharif S, Mallard B A, Wikie B N, et al. Association of bovine major histocompatibility complex DBR3 (BoLA-DRB3) with production traits in Canadian dairy cattle[J]. Animal Genetics, 1999, 30: 157-160.
    [123] Tautz D. Hyper variability of simple sequence as a general source for polymorphic DNA markers[J]. Nuleic Acids Research, 1989, 17: 6463-6467.
    [124] Hamada H, Petrino M G, Kakunaga T. A novel repeated element with Z-DNA-forming potential is widely found in evolutionarily diverse eukaryotic genomes[J]. Proceedings of the National Academy of Sciences of the United States of America, 1982, 79: 6465-6469.
    [125] Takezaki N, Nei M. Genetic distance and reconstruction of phylogenetic trees from microsatellite DNA [J]. Genetics, 1996, 144: 389-399.
    [126] Nei M. F-statistics and analysis of gene diversity in subdivided population[J]. Ann. Human Genet, 1977, 41: 225-233.
    [127] Wright S. Evolution and the genetics of populations. Vol.3 Experimental results and evolutionary deductions[M]. University of Chicago Press, Chicago, 1977.
    [128] Nei M. Estimation of average heterozygosity and genetic distance from a small number of individuals[J]. Genetics, 1978, 89: 583-590.
    [129] Nei M. Genetic distance between populations[J]. American Naruralist, 1972, 106: 283-293.
    [130] Nei M, Tajima F and Tateno Y. Accuracy of estimated phylogenetic trees from molecular data[J]. Journal of Molecular Evolution, 1998, 19: 153-170.
    [131] Millgan B G. Molecular genetic analysis of populations[M]. (eds By Hoelzel A. R. ). Oxford: Oxford University Press, 1992, 59-88
    [132] Botstein D, White R L, SkolnickM, et al. Construction of a genetic linkage map in man using restriction fragment length polymorphisms[J]. American Journal of Human Genetics, 1980, 32: 314-331.
    [133] 常洪. 家畜遗传资源学纲要[M]. 中国农业出版社, 1999.
    [134] 陈幼春, 曹红鹤, 李宏滨. 品种内亚群定点随机抽样法的应用研究[J]. 黄牛杂志, 2001, 27(1): 1-3.
    [135] Barker J S F. A global protocol for determining genetic distances among domestic livestock breeds. In: Proceedings of the 5th World Congress on Genetics Applied to Livestock Production, Guelph and Ontario, Canada, 1994, 21: 501-508.
    [136] 陈幼春. 关于分子水平下遗传距离检测的模型和适宜样本数的讨论[C]. 第五次全国畜禽遗传标记研讨会论文集, 成都, 1996, 130-132.
    [137] 张继全, 邵春荣, 王毓英, 等. Nei 氏标准遗传距离的估测精度[J]. 畜牧兽医学报, 1998, 29(1): 27-32.
    [138] 王吉振. 绵羊高繁殖力基因 FecB 和 FecX1 的连锁微卫星位点的遗传研究[M]. 中国农业大学硕士学位论文, 2001.
    [139] 赵红珊, 黄尚志, 李辉, 等. 短重复序列PCR产物变性胶电泳影子带新解:正负链电泳行为的差异[J]. 中华医学遗传学杂志, 1999, 16(5): 328-330.
    [140] 王存芳, 曾勇庆. 遗传多样性与畜禽品种资源的保存利用[J]. 当代畜牧, 2001, 1: 41-43.
    [141] 孙允东, 马月辉, 王建民, 等. 山东省地方山羊品种群微卫星基因座的遗传多样性[J]. 家畜生态学报, 2006, 27(2): 1459-1464.
    [142] Takahashi H, Nirasawa K, Nagamine Y, et al. Genetic relationships among Japanese native breeds of chicken based on microsatellite DNA polymorphisms[J]. Journal of Heredity, 1998, 89: 543-546.
    [143] Nei M, Takezaki N. The root of phylogenetic tree of human population[J]. Molecular Biology, 1996, 13: 170-177.
    [144] Chen H J, Yue Y S, Fan X Z. A comparative study of genetic distance and clustering analysis among Shandong domestic chicken breeds[J]. Acta Veterinaria et Zootechnica Sinica, 2004, 35(1): 33-36.
    [145] 梁春年, 姚军, 杨博辉, 等. 高原超细型细毛羊经济性状的微卫星标记研究[J]. 畜牧兽医学报, 2005, 36(12): 1265-1269.
    [146] 储明星, 周国利, 金海国, 等. 7个微卫星座位与北京荷斯坦母牛体细胞评分关系的研究[J]. 遗传学报, 2005, 32(5): 471-475.
    [147] 赵宗胜, 王根林, 马玉萍, 等. 绵羊微卫星标记与部分毛用性状的关系研究[J]. 畜牧兽医学报, 2006, 37(9): 864-869.
    [148] Zhang Q, Boichard D, Hoeschele I, et al. Mapping quantitative trait loci for milk production and health of dairy cattle in a large outbred pedigree [J]. Genetics, 1998, 149: 1959-1973.
    [149] 储明星, 安永福, 方丽, 等. 5个微卫星座位与河北荷斯坦母牛乳成分性状关系研究[J]. 畜牧兽医学报, 2006, 37(6): 537-543.
    [150] 储明星, 周国利, 金海国, 等. 7个微卫星座位与北京荷斯坦母牛体细胞评分关系的研究[J]. 遗传学报, 2005, 32(5): 471-475.
    [151] Andersson L, Rask L. Characterization of the MHC class II region in cattle-the number of DQ genes varies between haplotypes[J]. Immunogenetics, 1988, 27: 110-120.
    [152] Scott P C, Gogolin-Ewens, K J, Adams, T E, et al. Nucleotide sequence, polymorphism and evolution of ovine MHC class II DQA genes[J]. Immunogenetics, 1991, 34: 69-79.
    [153] Wright H, Ballingall K T. Mapping and characterization of the DQ subregion of the ovine MHC[J]. Animal Genetics, 1994, 25: 243-249.
    [154] Wang L, Yu T P, Tuggle C K, et al. A directed search for quantitative trait loci on chromosomes 4 and 7 in pigs[J]. Journal of Animal Science, 1998, 76: 2560-2567.
    [155] Dirk J de Koning, Janss L L G, Rattink A P, et al. Detection of quantitative trait loci for backfat thickness and intramuscular fat content in pigs (Sus scrofa)[J]. Genetics, 1999, 152: 1679-1690.
    [156] Yoshitaka N, Haley C S, Sewalem A, et al. Quantitative trait loci variation for growth and obesity between and within lines of pigs (Sus scrofa)[J]. Genetics, 2003, 164: 629-635.
    [157] 杨军, 张冬杰, 刘娣. 大白猪SLA-DQ基因表达规律的研究[J]. 江苏农业科学, 2007, 2: 118-120.
    [158] Vaiman M, Renard C, Bourgeaux N. In: Proceedings of international symposuim on the molecular biology of the major histocompatibility complex of domestic animal species[M]. Iowa State University Press, Iowa, USA, 1988: 23-38.
    [159] 彭勇波, 李奎, 樊斌, 等. 猪SLA-DQA一个新SNP的发现及其遗传效应的研究[J]. 中国农业科学, 2005, 38(12): 2526-2530.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700