多普勒天气雷达分辨率提高理论与方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多普勒天气雷达分辨率的提高,将有利于提高天气雷达对中小尺度气旋和龙卷风等灾害性的天气探测能力,有利于通过天气雷达获得更精细的天气过程回波特征,为预警和预报提供更加准确的数据依据。
     要提高天气雷达距离分辨率和方位分辨率,直接办法是增大发射信号带宽和增大天线直径;但这涉及天气雷达发射机、接收机及天线的硬件改动,改造周期长、成本高;对于已布网、正在业务运行的新一代多普勒天气雷达网来说,这是不现实的。本文针对现在正在使用的多普勒天气雷达系统,着重研究在天气雷达接收机后端,通过信号处理方法、数据处理方法及数据获取方式等方面进行改进,来实现多普勒天气雷达分辨率的改善与提高。
     本文的主要工作和贡献体现在以下几个方面:
     (1)多普勒天气雷达在现有机械天线连续扫描和谱矩处理方式下,天线有效波束宽度较由雷达天线尺寸和波长等因素决定的固有波束宽度有较大的展宽,从而导致天气雷达实际方位分辨率的降低。本文研究了天气雷达天线有效波束宽度的计算方法,并从理论上分析了天气雷达在不同扫描方式下有效波束宽度的展宽程度;研究了降低雷达方位采样间隔和方位重叠采样以及数据加权两种方法,来减少天线有效波束的展宽,以实现天气雷达实际方位分辨率的提高,并用实验仿真和雷达实际数据验证了两种方法的有效性。
     (2)针对分辨率提高后,因脉冲积累数减少或信噪比降低而带来的多普勒天气雷达谱矩估计精度降低的实际问题,本文给出了距离过采样和白化滤波算法,与方位重叠采样以及数据加权这两种方法进行有机结合的处理方法,既使方位分辨率得到提高,又使谱矩估计的精度得到改善。论文理论分析了采用该方法后谱矩估计精度的改善程度,并使用实验仿真和雷达实际数据对方法的有效性进行验证。结果表明,使用距离过采样和白化滤波算法,可弥补因减少有效波束宽度展宽、提高方位分辨率而带来的精度降低问题。
     (3)论文结合天气雷达回波信号模型和距离过采样方法,建立了基于距离过采样回波信号进行距离高分辨率重构的数学模型;把发射脉冲宽度决定的距离分辨单元细分成更小的距离分辨子单元,相当于对距离分辨单元内分布式散射体中心进行更细划分。并在最小方差无失真响应(MVDR)算法研究基础上,提出了利用最陡下降法的改进MVDR算法来实现距离向高分辨率回波信号的重构。仿真结果表明,对点目标和不均匀分布的天气目标,该方法能重构距离分辨率单元内部散射目标的平均功率和径向速度变化特征,实现距离分辨率的提高。
     (4)针对天气雷达反射率因子的分辨率提高问题,本文从雷达气象方程入手,结合分布式气象目标特点,推导了天气雷达分辨率体积内反射率因子与雷达回波平均功率之间的数学模型,并经离散化处理后建立了反射率因子在距离向和方位向二维分辨率提高的矩阵方程;提出了同时利用距离过采样和增加方位观测密度两种数据获取方式,来获得距离向和方位向部分相关的雷达观测数据样本;并提出将一维、二维截断奇异值分解法(TSVD)和Tikhonov方法两种正则化算法引入到了天气雷达反射率因子的分辨率提高应用中。仿真实验结果表明,基于正则化算法来提高天气雷达反射率因子的距离和方位分辨率具有一定效果,可获得更精细的反射率因子回波结构。
The resolution improvement of Doppler weather radar will be helpful to enhancethe detecting ability for these small-scale disaster weather systems, to acquire muchfiner echo structures and to provide more precise radar data for forecasting and earlywarning.
     To improve the range resolution and angular resolution of weather radar,the directmethods are to increase the radar signal bandwidth and increase the diameter of antenna.However, This methods will be related to a great deal of hardware modifications ofradar transmitter, receiver and antenna, which will result in much longer alterationperiod and huge cost of reconstruction, thus it can be not feasible for theoperation-working weather radar networks of CINRAD. This dissertation will befocused on the research of methods to enhance weather radar resolution through theimprovements of signal processing or data processing at the back-end of radar receiver.
     The main work and contribution of this dissertation are as follows.
     (1) The antenna motion combined with time averaging in the spectral estimation ofDoppler weather radar will create an effective broadened beamwidth, which is widerthan that of determined by radar antenna diameter and radar wavelength, and results inthe degradation of effective azimuthal resolution. This dissertation investigates thetheoretical computation method of antenna effective beamwidth for scanning weatherradar and theoretically calculates the effective beamwidth under different volumecoverage patterns (VCP); investigates two methods of decreasing the radar azimuthalsampling interval, overlapping radials and data weighting to decrease the broaden ofeffective beamwidth and improve the azimuthal resolution of weather radar,experimental results from radar simulation and actual radar data have proved theavailability of these two methods.
     (2) Aiming at the actual problems of the errors in the spectral processing due to thedecrease of pulse average number and signal to noise ratio, this dissertation gives theprocessing methods of combining the methods of range oversampling and whiteningfilter with the ones of overlapping radials and data weighting, which can both enhancethe azimuthal resolution and also improve the accuracy of spectral estimation.Theoretically analyzes their detailed performance of improvement degree, and teststheir availability from radar simulation and actual data. Experimental results indicate that these methods can remedy the accuracy decrease due to the processing of azimuthalresolution and meet the need of radar operation application.
     (3) Combined with the echo signal model of weather radar and the technique ofrange oversampling, This dissertation builds on the mathematical model for higherrange resolution reconstruction, which divides the basic cell of range resolution intomuch smaller cells and it is equivalent to the divisions for the distributed weather scattercenters in one range resolution cells along range direction. Based on the investigation ofthe algorithm of minimum variance distortionless response (MVDR), this dissertationdevelops a robust MVDR algorithm based on the steepest descent method to realize theecho signal reconstruction of higher range resolution. Experimental results indicate thatfor the target objects and asymmetrical weather objects, these methods can reconstructthe gradient changes of echo power and radial velocity for the scatter centers within therange resolution cell and can improve the range resolution of radar.
     (4) Aiming at the resolution improvement of weather radar reflectivity factor, thisdissertation derives a mathematical model between reflectivity factor and radar echopower based on the radar meteorology equation and a matrix equation is set up for theimprovement of range and azimuthal resolution, and then an oversampling technique inrange and angular is proposed to acquire multiple partially correlated measurements inphysical weather radar system, and two regularization algorithms of one and twodimensional truncated singular value decomposition (TSVD) and Tikhonovregularization are first provided to be applied in weather radar resolution improvementof reflectivity factor. Experiments results have shown that the proposed methods basedon regularization algorithm are efficient for range and angular resolution enhancementof reflectivity factor and can reconstruct much finer weather echo structure.
引文
[1]李柏,古庆同,李瑞义等.新一代天气雷达灾害性天气监测能力分析及未来发展[J].气象,2013,39(3):265-280.
    [2]李柏,俞小鼎等.天气雷达发展与应用[M].北京:气象出版社,2011,1-359.
    [3]郑媛媛,俞小鼎,朱红芳等.2003年7月8日安徽系列龙卷的新一代天气雷达分析[J].气象,2004,30(1):38-41.
    [4]郑媛媛,俞小鼎,方翀等.一次典型超级单体风暴的多普勒天气雷达观测分析[J].气象学报,2004,62(3):317-328.
    [5]黄远盼,梁珊珊.贺州市一次致灾害冰雹天气过程诊断分析[J].气象研究与应用,2012,33(2):18-23.
    [6]吕作俊,朱伟军,牛淑贞等.豫西深秋一次典型超级单体风暴的多普勒雷达分析[J].气象环境与科学,2010,33(3):32-40.
    [7]廖玉芳,俞小鼎,郭庆.一次强对流系列风暴个例的多普勒天气雷达资料分析[J].应用气象学报,2003,14(6):656-662.
    [8]张培昌等.杜秉玉等.雷达气象学[M].北京:气象出版社,2001,118-170.
    [9]何建新等.现代天气雷达[M].成都:电子科技大学出版社,2004,323-409.
    [10]焦中生等.气象雷达原理[M].北京:气象出版社,2005,1-385.
    [11]马振华等.气象回波信息处理[M].北京:科学出版社,1986,59-61
    [12] A. S.Mudukutore, V. Chandrasekar and R. J. Keeler. Pulse compression for weather radars[J].IEEE Trans. Geosci. Remote Sens.,1998,36(1):125-142.
    [13] R. A. Brown, L. R. Lemon. Single Doppler radar vortex recognition Part II: tornadic vortexsignatures[C].17th Conf. on Radar Meteorology, Seattle,1976,104-109.
    [14] R. A. Brown, D. W. Burgess. Tornado detection by pulsed Doppler radar[J]. Mon. Wea. Rev.,1978,106(1):29-38.
    [15] D. W. Burgess, L. R. Lemon. Severe thunderstorm detection by radar[C]. Radar in meteorology,D. Atlas,1990,619-656.
    [16] R. J. Donaldson, P. R. Desrochers. Tornado detectionand warning by radar the Tornado: itsStructure, dynamics, prediction and hazards[J]. Geophys. Monogr.,1993,79(1):203-221.
    [17] V. T.Wood, R. A. Brown and D. Sirmans. Improved tornado detection using simulated andactual WSR-88D data with enhanced resolution[J]. J. Atmos. Oceanic Technol.,2002,19(11):1759-1771.
    [18] D. S.Zrni, R. J. Doviak. Effective antenna pattern of scanning radars[J]. IEEE Trans. Aerosp.Electron. Syst.,1978,12(5):551-555.
    [19] D. S.Zrni, R. J. Doviak. Matched filter criteria and range weighting for weather radar[J]. IEEETrans. Aerosp. Electron. Syst.,1978,14(6):925-930.
    [20] V. T.Wood, R. A. Brown. Effects of radar sampling ons single-Doppler velocity signatures ofmesocyclones and tornadoes[J]. Wea. Forecasting,1997,12(1):928-938.
    [21] R. J.Donaldson. Vortex signature recognition by a Doppler radar[J]. J. Appl. Meteor.,1970,9(1):661-670.
    [22] C. D.Curtis, S. M. Torres and E. Forren. High-resolution WSR-88D base data on the KOUNresearch radar [C].31st Conf. on Radar Meteor., Seattle,2003,964-966.
    [23] V. T. Wood, R. A. Brown and D. C. Dowell. Simulated WSR-88D velocity and reflectivitysignatures of numerically modeled tornadoes[J]. J. Atmos. Oceanic Technol.,2009,26(5):876-893.
    [24] A.Rodger, R.A.Brown, A.Bradley, et al. Improved detection of severe storms usingexperimental fine-resolution WSR-88D measurements[J]. J. Atmos. Oceanic Technol.,2005,20(1):3-14.
    [25] M.S.Torres, C.D. Curtis. Design considerations for improved tornado detection usingsuper-resolution data on the NEXRAD network[C]. Third European Conf. on radar meteorologyand hydrology, Barcelona,2006,1-4.
    [26] M.S.Torres, C.D. Curtis. Initial implementation of super-resolution data on the NEXRADnetwork[C].23rd Conf. on IIPS, American,2007,1-6.
    [27] B.C.Seo, W. F. Krajewski. Scale Dependence of radar rainfall uncertainty: Initial evaluation ofNEXRAD’s new super-resolution data for hydrologic applications[J]. J. Hydrometeor,2010,11(5):1191-1198.
    [28] X. Ming, S. Liu, T.Y. Yu. Variational analysis of oversampled dual-Doppler radial velocity dataand application to the analysis of tornado circulations[J]. J. Atmos. Oceanic Technol.,2007,24(3):403-414.
    [29] S. Liu, X. Ming and T.Y. Yu. Over-sampling of radial velocity and3dvar analysis ofdual-doppler observations[C].32nd Conf. on Radar Meteorology,American,2005,16-20.
    [30] S. Liu, P. Zhang, L. Wang, et al. Problems and solutions in real-time Doppler wind retrievals[C].31st Conf. on Radar Meteorology, Seattle,2003,308-309.
    [31] S. Liu, C. Qiu, Q. Xu, and P. Zhang. An improved time interpolation for three-dimensionalDoppler radar wind analysis[J]. J. Appl. Meteor.,2004,43(2):1379-1391.
    [32] S. Liu., J. Gao and A. Shao. An improved method for Doppler wind and thermodynamicretrievals[J].Adv. Atmos. Sci.,2005,21(3):90-102.
    [33] S.Liu, M. Xue, and Q. Xu. Using wavelet analysis to detect tornadoes from Doppler radarradial-velocity observations[J] J.Atmos. Oceanic Technol.,2007,24(1):344-359.
    [34] R.Doviak, D. S. Zrni. Doppler radar and weather observations[M]. San Diego: Academic Press,2nd ed,1993.
    [35] J.Rottger,G. Schmidt. High-resolution VHF radar sounding of the troposphere andstratosphere[J]. IEEE Trans. Geosci. Electron.,1979,17(4):182-189.
    [36] P.Magain, F. Courbin and S. Sohy. Deconvolution with correct sampling[J]. Astrophys. J.,1998,494(1):472-477.
    [37] D. Robert, S.Palmer, T.Y. Yu, et al. Coherent radar imaging using Capon’s method[J]. RadioSci.,1998,33(6):1585-1598.
    [38] R.D.Palmer, T.Y. Yu, and P. B. Chilson. Range imaging using frequency diversity[J]. RadioSci.,1999,34(1):1485-1496.
    [39] T.Y. Yu, R. D. Palmer. Atmospheric radar imaging using multi-receiver and multiple-frequencytechnique [J]. Radio Sci.,2001,36(1):1493-1503.
    [40]张凌,杨硕文,刘锦丽等.一种反演雷达波束内不均匀反射率场的方法[J].遥感学报,1998,2(2):81-89.
    [41] G. Zhang, T. Y. Yu,R. J. Doviak. Angular and range interferometer to refine weather radarresolution[J]. Radio Sci.,2005,40(1):3013-3023.
    [42] T. Y. Yu, G. Zhang, A. Chalamalasetti, et al. Resolution enhancement technique using rangeoversampling[J] J. Atmos. Oceanic Technol.,2006,23(2):228-240.
    [43] N.Schutgens, D. Donovan. Retrieval of atmospheric reflectivity profiles in case of long radarpulses[J]. Atmos. Res.,2004,72(3):187-196.
    [44] G. R.Stitt, S. A. Bowhill. Improving range resolution with a frequency hopping technique[J].Middle Atmosphere Program,1986,20(1):448-457.
    [45] N.Bharadwaj,V. Chandrasekar, Resolution Enhancement System for Networked RadarSystem[C],35th Conf. on Radar Meteorology,American,2011,1-4.
    [46] K.Suwa,M. Iwamoto. A two-dimensional bandwidth extrapolation technique for polarimetricsynthetic aperture radar images[J]. IEEE Trans. Geosci. Remote Sens.,2007,45(1):45-54.
    [47] K. Suwa,M. Iwamoto. Bandwidth extrapolation technique for polarimetric radar data[J]. IEICETrans. Commun.,2004,87(2):326-334
    [48]丁义元,杨建宇,张卫华等.改进实孔径雷达角分辨力的广义逆滤波方法[J].电子学报,1993,21(9):15-19.
    [49]白文斯密,马洪,常军.一种利用多核解卷积提高雷达角分辨力的方法[J].电讯技术,2008,48(12):43-47.
    [50]王盛利,倪晋鳞,张光义.用ISAR改进雷达角分辨力的研究[J].兵工学报,2008,24(1):57-61.
    [51]肖弟权,黄巧明,刘仁义.用反滤波方法压缩天线波瓣的计算机仿真[J].成都气象学院学报,1994,9(4):12-18.
    [52]尹红刚,张德海.使用BG反演算法细分重建微波辐射计图像[J].遥感技术与应用,2006,21(2):120-124.
    [53] R. Sethmann, B. A. Burns, and G. C. Heygster. Spatial resolution improvement of SSM/I datawith image restoration techniques[J]. IEEE Trans. Geosci. Remote Sens.,1994,32(1):89-104.
    [54] D. G. Long, D. L. Daum. Spatial resolution enhancement of SSM/I data[J]. IEEE Trans. Geosci.Remote Sens.,1998,36(2):407-417.
    [55] M.R.Farrar,E.A.Smith. Spatial resolution enhancement of terrestrial features using deconvolvedSSM/I microwave brightness temperatures [J]. IEEE Trans. Geosci. Remote Sens.,1992,30(2):349-355.
    [56] G.Mazzarella,M. Migliaccio. A SVD-based reconstruction scheme for microwave radiometersmeasurements[C]. In Proc. Antennas Propagat.Soc. Int. Symp.,2000,1940-1943.
    [57] P.J.Stephens,A.S.Jones. A computationally efficient discrete Backus-Gilbert footprint-matchingalgorithm [J]. IEEE Trans. Geosci.Remote Sens.,2002,40(8):1865-1878.
    [58] M.Migliaccio, A.Gambardella. Microwave radiometer spatial resolution enhancement[J]. IEEETrans. Geosci. Remote Sens.,2005,43(5):1159-1169.
    [59] M. Migliaccio, A.Gambardella. On the superresolution of microwave scanning radiometermeasurements[J]. IEEE Trans. Geosci. Remote Sens.Letter,2008,5(4):796-800.
    [60] S. C. Park, M. K. Park, and M. G. Kang. Super-resolution image reconstruction:A technicaloverview[J]. IEEE Signal Process. Mag.,2003,20(3)21-36.
    [61]王正明等.SAR图像分辨率提高技术[M].北京:科学出版社,2006,20-151.
    [62]许人灿,刘朝军,黄小红等.基于超分辨ISAR成像的空中目标自动识别[J].系统工程与电子技术,2006,28(1):46-48.
    [63]张平,商建,杨汝良.一种有效的二维MUSIC超分辨SAR成像算法[J].系统仿真学报,2010,22(1):184-187.
    [64]姚红梅,王军锋,刘兴钊.最小熵谱外推技术及其在雷达超分辨中的应用[J].现代雷达,2005,27(3):18-22.
    [65]张华.脉冲多普勒气象雷达信号处理研究[D].南京:南京理工大学,2003,1-73.
    [66] M.I. Skolnik. Radar handbook[M]. Mc Graw HiLL,Third Edition,2008,19.1-19.3.
    [67] R.J.Doviak, D.S. Zrnic. Receiver bandwidth effect on reflectivity and Doppler velocityestimates[J]. J. Appl. Meteor.,1979,18(1):69-76.
    [68] D. S. Zrni.Weather radar-recent developments and trends[C]. MRRS-2008SymposiumProceedings. Kiev,2008,174-178.
    [69] S.M Torres, Estimation of doppler and polarimeric variables for weather radar [D]. Norman,Oklahoma:University of oklahoma,2001,32-72.
    [70] C. Koivunen,A. B. Kostinski. The feasibility of data whitening to improve performance ofweather radar[J]. J. Appl. Meteorol.,1999,38(6):741-749.
    [71] S.M Torres, D.Zrnic. Whitening In range To improve weather radar spectral moment estimatesPart I: formulation and simulation[J]. J.Atmos. Oceanic Technol.,2003,20(1).:1433-1448.
    [72] R. Ivi′c, D. S. Zrnic, and S. M. Torres. Whitening in range to improve weather radar spectralmoment estimates. Part II: experimental evaluation[J]. J. Atmos. Ocean. Technol.,2003,20(11):1449-145.
    [73] S.M Torres, and I. R. Ivi. Demonstration of range oversampling techniques on theWSR-88D[C].32nd International Conference on Radar Meteorology, Albuquerque,2005,4R.5.
    [74] I. R.Ivi, A. Zahrai, and S. Torres. Decorrelation in range of oversampled weather radar signalsusing FIR filter[C].32nd Conf. on Radar Meteorology, Albuquerque,2005,4.12.
    [75] S.M Torres, C.Curtis,and J. R. Cruz.Pseudowhitening of weather radar signals to improvespectral moment and polarimetric variable estimates at low signal-to-noise ratios[J]. IEEE Trans.Geosci. Remote Sensing,2004,42(5):941-949.
    [76] E.Hefner,EV. Chandrasekar. Whitening dual-polarized weather radar signals with a hermitiantransformation[J]. IEEE Trans. Geosci. Remote Sensing,2008,46(8):2357-2364.
    [77] M.A.G.Izquierdo, M.G. Hernández, O. Graullera. Signal-to-noise ratio enhancement based onthe whitening transformation of colored structural noise[J]. Ultrasonics,2000,38(1):500-502.
    [78] S. M. Torres, D. S. Zrnic. Whitening of signals in range to improve estimates of polarimetricvariables[J]. J. Atmos. Ocean. Technol.,2003,20(12):1776-1789.
    [79] S. M. Torres.Processing of oversampled signals in range on polarimetric weather radars withmismatched channels[J]. J. Atmos. Oceanic Technol.,2009,26(7):1289-1301.
    [80] C. Curtis, S.M. Torres. Adaptive range oversampling to achieve faster scanning on the NationalWeather Radar Testbed Phased Array Radar[J]. J. Atmos. Oceanic Technol.,2011,28(2):1581-1597.
    [81] C.Curtis,S.M.Torres. Range oversampling techniques on the National Weather RadarTestbed[C].26th Conf. on Interactive Information and Processing Systems (IIPS) forMeteorology, Oceanography, and Hydrology, Atlanta,2011,15B.3.
    [82] S.M.Torres. Range oversampling techniques for polarimetric radars with dual transmitters[J].33rd International Conference on Radar Meteorology, Cairns,2007,7.5.
    [83] C.Curtis, S.M.Torres. Efficient range oversampling processing on the National Weather RadarTestbed[J].27th Conf. on Interactive Information and Processing Systems (IIPS), Seattle,2011,13B.6.
    [84] T.Uttal, R. Kropfli. The effect of radar pulse length on cloud reflectivity statistics[J]. J. Atmos.Oceanic Technol.,2001,18(2):947-961.
    [85] S. M. Torres, C. Curtis. The importance of accurately measuring the range correlation for rangeoversampling processing[J]. J. Atmos. Oceanic Technol.,2013,30(2):261-273.
    [86] S. M. Torres and C. Curtis. The impact of signal processing on the range weighting function forweather radars[J]. J. Atmos. Oceanic Technol.,2012,29(2):796-806.
    [87] S. M. Torres, C. Curtis. A fresh look at the range weighting function for modern weatherradars[C].35th Conf. on Radar Meteor., Pittsburg,2011,16B.1.
    [88]高志球.天气多普勒雷达回波信号处理的模拟试验[J].遥感技术与应用,1998,13(4):43-49.
    [89] D. S.Zrni′c. Simulation of weather like doppler spectra and signals[J]. J. Appl. Meteorol.,1975,14(1):619-620.
    [90] J.Capon. high-resolution frequency-wavenumber spectrum analysis[J]. Proceeding of IEEE,1969,57(8):1408-1419.
    [91] S. Kidera. Super-resolution UWB radar imaging algorithm based on extended capon Withreference signal optimization[J]. IEEE Trans. Antenna Propag.,2011,59(5):1606-1615.
    [92] G.F.Herrmann, L.Kelley. Enhanced resolution in simple radars[J]. IEEE Trans. Aerosp.Electron. Syst.,1989,25(1):64-72.
    [93] T.Y.Yu, W. O. J. Brown. High-resolution atmospheric profiling using combined spaced antennaand range imaging techniques [J]. Radio Sci.,2003,39(1):29-36.
    [94]何子述,夏威等.现代数字信号信号处理及其应用[M].北京:清华大学出版社.2009,75-132.
    [95]邓欣,廖桂生,刘宏清.递归的稳健LCMV波束形成算法[J].系统工程与电子技术,2007,29(3):449-453.
    [96]燕飞,赵书敏.基于最陡下降的稳健LCMV波束形成算法[J].计算机仿真,2012,29(6):117-120.
    [97] G.Galati, M. Naldi, and M. Ferri. Reconstruction of the spatial distribution of radar reflectivityof precipitation through linear-inversion techniques[C]. IEE Proc. Radar Sonar Navig.,1998,143(6):375-382.
    [98]王彦飞.反演问题的计算方法及应用[M].北京:高等教育出版社,2007,55-105.
    [99]寇婷.正则化方法在图像恢复中的应用研究[D].西安:西安理工大学,2007,23-26.
    [100]张贤达.矩阵分析与应用[M].北京:清华大学出版社,2004,20-87.
    [101]邹谋炎.反卷积和信号复原[M].北京:国防工业出版社,2001,50-82.
    [102]苗晴.图像复原中正则化方法的研究及应用[D].长沙:国防科学技术大学,2005,13-46.
    [103]赵侠,王正明,汪雄良等.复图像域正则化特征增强SAR成像方法[J].系统工程与电子技术,2004,26(8):1044-1048.
    [104]韩玉兵,吴乐南,张冬青.基于正则化处理的超分辨重建[J].电子与信息学报,2007,29(7):1713-1716.
    [105]李学华,何建新,何子述.天气雷达反射率数据方位分辨率提高技术[J].计算机工程与应用.2011,47(8):18-21.
    [106]余景景,刘芳,焦李成等.截断奇异值分解的生物发光断层成像重建问题[J].西北大学学报,2009,39(5):755-760.
    [107]张海燕,闵涛,艾克锋.二维截断奇异值分解方法在图像恢复中的应用[J].计算机工程与应用,2008,44(1):60-62.
    [108] M.W.Poon, R.H.Khan, S.Le-Ngoc. A singular value decomposition based method forsuppressing ocean clutter in high frequency radar[J]. IEEE Trans. on Signal Processsing,1993,41(3):1421-1424.
    [109] P.C.Hansen. The truncated SVD as a method for regularization[J].BIT,1987,27(1):534-553.
    [110] L.P. Song, S.Y. Zhang. Singular value decomposition-based reconstruction algorithm forseismic traveltime tom graphy[J]. IEEE Trans. Image Process.,1999,8(8):1152-1154.
    [111] A.N.Tikhonov. Regularization of incorrectly posed problems[J]. Soviet Mathematical Doklady,1963,4(1):1624-1627.
    [112] K. P. Gaikovich, A. V. Zhilin. Tikhonov’s algorithm for two dimensional image retrieval[C].in Proc. Int. Conf. MMET,1998,622-624.
    [113]冯立新.反问题的计算方法及应用[M].哈尔滨:哈尔滨工业大学出版社,2013,63-72.
    [114] D.Calvetti,S.Morigi,L.Reichel. Tikhonov regularization and the L-curve for largediscreteill-posed problems[J].Journal of Computational and Applied Mathematics,2000,123(2):423-426.
    [115]吴颉尔.正则化方法及其在模型修正中的应用[D].南京:南京航空航天大学,2011,24-28.
    [116] G.A. Sadowy,A.C.Berkun,W.Chun. Development of an advanced airborne precipitationradar[J]. Microwave J.,2003,46(1):84-98.
    [117] S. L. Durden, E. Im, F. K. Li. ARMAR: An airborne rain mapping radar[J]. J. Atmos. OceanicTechnol.,1994,11(3):727-737.
    [118] I. E. Smith, V.C. Chandrasekar, S.S. Chen, et al. Workshop reporton NEXRAD-In-Space ageostationary satellite Doppler weather radar for hurricane studies[C].33rd Radar MeteorologyConference,2007, Cairns,1-6..
    [119] S.L.Durden, Z.S.Haddad, A. Kitiyakara. Effects of nonuniform beam filling on rainfallretrieval for the TRMM precipitation radar[J]. J. Atmos. Ocean. Technol.,1998,15(3):635-646.
    [120] S.L.Durden and S.Tanelli. Predicted effects of nonuniform beam filling on GPM radar data[J].IEEE Trans. Geosci. Remote Sens. Let.,2008,5(2):308-310.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700