柑橘溃疡病菌致病性影响因素的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
柑橘溃疡病(Xanthomonas axonopdis pv. citri)是世界性的检疫性病害,为柑橘最重要的病害之一,已对多数柑橘主产国造成严重危害。湖南是中国主要的柑橘产区之一,全省推广的冰糖橙和脐橙等主栽甜橙品种受溃疡病的危害尤为严重。国内外对柑橘溃疡病的研究已开展了大量工作,但是溃疡病的致病机理尚不清楚,因此田间的防控效果不理想。因此,本研究从病原、寄主和环境三方面进行多因素的全面分析,探讨影响溃疡病菌在不同品种上侵染力差异的各项因素,同时开展致病相关因子的研究,以期对溃疡病的田间防治提供指导,对溃疡病菌与寄主互作及致病机理的研究提供理论基础。本文从病原和寄主的生物学特性与侵染力的关系分析到转录因子对病原菌致病性调控进行了较为系统的研究,基本达到了预期的研究目标,其主要研究结果如下:
     1.溃疡病菌在离体培养条件下培养12-18h时致病力最强,培养60h以后致病力明显下降。浓度是决定发病速度和程度的关键,在寄主器官没有伤口时,需要高浓度(108CFU/ml及以上)的足量病原菌(人工接种5μL)才能引起典型的溃疡病症状,并且浓度越高,发病越快。寄主受机械损伤有利于病原菌的侵染,注射接种或者通过针刺、摩擦等方法给寄主造成创伤后接种,只需102CFU/ml浓度的溃疡病菌就足以引发病害。因此,病原菌本身的生长发育状态,以及接触到寄主表面时的病原浓度是决定溃疡病菌在寄主上侵染程度的关键因子,而机械损伤则有利于增加溃疡病菌在寄主上侵染的严重性。
     2.采用多种接种方法接种不同柑橘种类品种叶片,冰糖橙、脐橙等甜橙品种最易感病,田间较少感病的温州蜜柑等宽皮柑橘人工接种时还是会表现典型的溃疡病症状,田间一般不感病的金柑,接种后仍不易感病,抗病的枸橼C-05在接种后,接种处全部出现褐化死亡的过敏反应,表现出主动抗病。所以,品种感病性差异与自身的遗传因素相关。
     3.在温室条件下,采用108CFU/ml的溃疡病菌进行喷雾接种,冰糖橙新抽生而未展开的叶片感病率较低;展开达到最大叶面积1/4的叶片和1/2的叶片感病最为严重;完全展开达到最大叶面积但未转绿的叶片也有发病,且发病率较低;完全展开达到最大叶面积且已转绿的叶片几乎没有病斑产生。而抗病的枸橼C-05仅在处于幼嫩阶段的新叶上出现少数褐化死亡的斑点,所有的叶片均无典型溃疡病斑产生。该结果说明抗病品种的抗病性不受组织器官的发育阶段影响,而溃疡病在感病品种上的侵染力差异受叶龄影响。
     4.冰糖橙、纽荷尔脐橙、糖橙、宫本温州蜜柑、浏阳金柑和枸橼C-05等6个柑橘属种类品种中,以浏阳金柑气孔密度最小,为353.85个/mm2,其它5个感病性差异较大的种类品种气孔密度在515-551个/mm2之间,无显著差异,且在相同环境条件下,品种之间的气孔开张度也没有显著差异。因此,品种间的气孔的密度和开张度与品种感病性的差异没有必然的联系。
     5.在叶面不受伤时,喷雾接种108CFU/ml的溃疡病菌后,扫描电镜和EGFP标记菌示踪均观察到溃疡病菌在感病的冰糖橙和抗病的枸橼C-05叶面均能生长,菌体在叶面随机分布,没有气孔趋向性,没有识别气孔的能力。因此,根据以上结果认为柑橘气孔的形态特征和开闭特性不宜作为评价寄主对溃疡病的感病性或抗病性的指标。
     6.喷雾接种EGFP标记病原菌后,在激光共聚焦显微镜下观察到溃疡病菌在冰糖橙和枸橼叶面均能正常生长,其分布与扫描电镜所观察到的结果一致:但是,通过注谢和针刺接种EGFP标记菌时,在激光共聚焦显微镜下观察到溃疡病菌在冰糖橙叶片的叶肉组织增殖迅速,很快引发病害,而在枸橼C-05的叶肉组织中,溃疡病菌的生长受到抑制,最终未能诱发病症。结合其他接种结果分析,说明溃疡病菌的侵染确实没有气孔偏好性,且枸橼C-05在叶表面没有阻止细菌进入的物理障碍,而是在细菌进入叶肉组织后抑制其进一步的繁衍定殖。
     7.根据气象因素与发病规律的分析,病害发生前均需要雨水,平均气温接近20℃时,春梢与夏秋梢一样发病,在发病期间,一直都伴随着不同大小的刮风天气。因此,水和温度是柑橘溃疡病发生的必要条件,风则是加重病害发生的辅助条件。所以,当温度即回升至20℃时,在降雨之前必须进行药剂喷施以预防柑橘溃疡病。
     8.根据已公布的柑橘溃疡病菌基因组序列的信息,通过生物学相关软件进行分析,发现柑橘溃疡病菌基因组中的7个GntR转录因子,分属4类亚家族,其中有2个(XAC-0568和XAC0877)属于FadR亚家族,3个(XAC0711.XAC1640和XAC3532)属于HutC亚家族;1个(XAC0737)属于MocR亚家族,1个(XAC1548)属于YtrA亚家族。通过对同源基因的分析,发现转录因子XAC1548与十字花科中的转录调控因子XC2736相似率高达98%,该因子证实参与了致病性调控;同时,在XAC1548基因上游启动子序列有一个不严谨的与致病相关的植物诱导启动子(PIP box),这一切表明,XAC1548可能参与了溃疡病的致病性调控。
     9.将柑橘溃疡病菌GntR基因家族的XA C1548命名为gntR1Xac,且成功构建了gntR1Xac基因敲除载体,获得了gntR1Xac缺失的溃疡病菌,活体接种试验表明缺失突变体丧失了在感病泳糖橙上的致病性,这意味着XAC1548转录因子在溃疡病的致病过程中参与了调控作用。
Citrus canker(Xanthomonas axonopdis pv. citri, Xac) is a quarantine disease worldwide, one of the most serious diseases to citrus industry causing great damages to numerous citrus producing countries. Especially, the infected fruits loss their commercial value and are restricted to export to the fresh fruit market where citrus grows. Hunan province is one of the main citrus producers in China, and the rapidly expanding sweet orange cultivars, like'Bingtang'and navel orange, have been seriously infected by canker disease in the field. There has been difficulty to effectively control the disease, because the reason of heavy disease outbreak on sweet orange is not clear. A great number of researches have been carried out on citrus canker disease, the results, however, are often contradictory in the point of evaluating the susceptibility and resistance of the host plants. The mechanism, therefore, of pathogenesis and resistance related to the disease, and the interaction between the pathogen and the host have remained backward. It is necessary to conduct series of researches to comprehensively investigate factors associated with pathogenicity in order to provide useful information for the disease control and technical background for further studies on the interaction between the pathogen and the host, and on the mechanism of pathogenensis. In this study, systematical investigations were performed starting from the biology of the pathogen and the host towards the regulation of pathogenesis by transcription factors. Expected research purpose has been achieved and the main results are following:
     1The bacteria cultured in vitro for12-18h have the highest virulence, while those cultured for60h substantially lose their pathogenicity. The inoculation concentration of the pathogen is determinant for the speed and severity of the disease development. When the host is not wounded, enough quantity (5ul) of higher concentration (108CFU/ml or more) should be inoculated to cause canker symptoms. The higher is the inoculumn concentration, the shorter time needs for disease development. Wounding the host tissues provided great assistance for the bacteria invasion. Only102CFU/ml of pathogen bacteria by infiltration inoculation can cause disease symptom. So. the development stage of pathogen and the bacteria concentration adhered on the host surface are the key factors to determine the severity of infection, and the mechanical damages is the important condition for the severity of infection.
     2With different inoculation methods on leaves at various developmental stages in greenhouse.'Bingtang' sweet orange and' Newhall' navel orange showed severe disease symptoms;'Miyamoto' satsuma. less infected in field, appeared typical symptoms; and Liuyang kumquat is hardly infected:no symptoms appeared on the leaves of citron C-05at all but with hypersensitive response to the inoculation. Therefore, the genetic background of the host determines the occurrence and the severity of the disease.
     3In greenhouse, leaves of'Bingtang'sweet orange at different ages on the new shoots were inoculated by spraying with10CFU/ml Xac suspensions. The results indicated that the young leaves un-expanded had low infection rate, those of1/2to1/4full size leaves were highly susceptible, while full size but not matured leaves were less susceptible; the mature leaves were not infected. This is a little different from the observation in the orchard, where the leaf reached full size but not mature is heavily infected. According to the results, for the susceptible varieties, the control of the disease should be performed from the bud burst through the whole shoot developmental period. The similar inoculation was done on citron C-05, only little brown and dead spots appeared in the young laves, but the leaves at all the developmental stages did not show any typical symptom, meaning that the resistance of this genotype is not related to shoot growing stage.
     4Among' Bingtang' sweet orange,'Newhall'navel orange,'Succari' sweet orange.'Miyamoto' satsuma mandarin, Liuyang kumquat and citron C-05, only Liuyang kumquat possesses significantly lower stoma density with No.353.85/mm2, the remaining5genotypes had No.515-551/mm" without any significant differences. Under uniform environmental conditions, all the citrus genotypes showed similar stomata opening-closure trends in the whole day. So, the stomata structure does not have substantial effects on the susceptibility of host variety.
     5When leaf was not wounded, spray inoculation with108CFU/ml pathogen, it was observed under SEM and by monitoring with EGFP labeled Xac that the bacteria grew normally on the leaf surfaces of both suceptible'Bingtang' sweet orange and the resistant citron C-05. The bacteria distributed randomly on the leaves without special choice to go through the stomata. These results indicated that the stomata characters are not the indicators of resistance or susceptibility of certain citrus genotype.
     6With the analysis on the relationship between disease occurrence and the meteorological factors, it was observed that rainfall is necessary before the occurrence of canker disease, and the spring flash can be also infected, as well as summer and autumn shoots when the temperature reached about20℃. Wind seems co-exist with rainfall during the disease development period. Therefore, rainfall and temperature are the requirements for canker disease outbreak, while the wind is the supplementary condition. So, before rainfall arrives with temperature about20℃, practice should be performed to control the disease.
     7When the labeled bacteria were inoculated by spraying on leaf surface of'Bingtang' sweet orange and citron C-05, the bacteria can grew normally and the diffusion of Xac on the leaf surface was the same as observed with SME. When the labeled pathogen was inoculated by infiltration into 'Bingtang' sweet orange, the propagation of Xac inside the mesophyll was clearly observed after inoculation with high speed. While in citron inoculated by the same method, the bacteria growth were inhibited and the disease did not develop. Here it is clearer that the resistance of citron C-05does not rely on any physical obstacles on leaf surface to prevent the entrance of pathogen, but on the action to restrict the bacteria to grow in mesophyll.
     8Based on the Xac genomic information, seven GntR family transcription factors were detected in Xac genome with bioinformatic analysis software. These seven factors are further classified into four sub-families, i.e. XAC-0568and XAC0877in FadR subfamily; XAC0711, XAC1640and XAC3532in HutC subfamily; XAC0737in MocR subfamily and XAC1548in YtrA subfamilies. Based on homological researches, it was found that XAC1548possesses98%of homology with XC_2736from Brassica and the later was proven to play an important role in the pathogenic process. Meanwhile, there is a PIP (Plant-inducible promoter) box, which is related to pathogenesis, in the promoter sequence upstream the XAC1548gene. All these results indicated that XAC1548may participate in pathogenesis of Xac. This is the first characterized GntR transcription factor in Xac.
     9The gene of XAC1548is named gntR1Xac-and the knock out of the gene was realized in Xac. The gntR1Xac-mutated Xac was obtained. By in vivo inoculation assay, it was observed that the Xac mutant lost its pathogenecity, implying the role of the XAC1548in pathogenesis of Xac. This is the first Xac GntR transcription factor that is verified for its regulation function of pathogenesis. This result will provide basis of further researches on pathogenesis in Xac.
引文
1. 白先放,梁伟,薛番艳.刘兴艳,苏辉昭,安世琦,李瑞芳.陆光涛(2012)用两种突变方法对甘蓝黑腐病菌XC_1348基因的功能解析.基因组学与应用生物学,31(3):249-256
    2. 巢进,肖启明,谭周进,谢新文(2005)柑桔溃疡病病菌的分离探讨.湖南农业科学(5):53-55
    3. 陈文新(1998)细菌系统发育.微生物学报38(3):240-243
    4. 陈孝仁,程保平,王新乐,董莎萌,王永林,郑小波,王源超(2009)利用绿色荧光蛋白研究大豆疫霉与大豆的互作.科学通报54(13):1894-1901
    5. 陈志谊,王玉环,殷尚智(1992)水稻纹枯病抗性机制的研究.中国农业科学 25(4):41-46
    6. 董金皋,黄梧芳(1995)植物的形态结构与抗病性.植物病理学报25(1):1-3
    7. 郝敏,邢达,谢波,周俊初,曾列先(2002)含有绿色荧光蛋白基因的质粒载体的构建及其在水稻白叶枯细菌中的表达.激光生物学报11(6):427-430
    8. 胡春华(2008)pthA-nls及其scFv基因转化柑橘获得抗溃疡病新种质的研究.博士学位论文.湖南农业大学
    9. 胡小平,张吉光,陈婧,周书涛,杨家荣,康振生(2010)新疆野苹果和秦冠的抗黑星病特性.植物病理学报40(6):609-614
    10.李春强,梁慧施,夏亦荠,彭明(2012)GFP标记的尖孢镰刀菌西瓜专化型侵染西瓜过程观察.热带作物学报32(10):1935-1939
    11.李大志,邓子牛,甘霖,熊兴耀,张秋明(2005)柑橘溃疡病研究进展.湖南农业大学学报(自然科学版)31(4):105-108.
    12.李淼.檀根甲,李瑶,承河元,李珂(2002)猕猴桃品种叶片组织结构与抗溃疡病的关系.安徽农业科学30(5):740-742
    13.李润唐,张映南,田大伦(2004)柑橘类植物叶片的气孔研究.果树学报21(5):419-424
    14.刘利平(2008)‘卡特’夏橙薄层培养再生体系建立及其转基因应用初探.硕士学位论文.华中农业大学,
    15.刘勇勤,于莉,刘菲菲,李赤,彭红艳,徐秀德(2011)绿色荧光蛋白标记的香蕉枯萎病菌的获得及其在香蕉中的侵染研究.中国植物病理学会2011年学术年会论文集
    16.刘进,刘建锋,曾义(2001)寄主植物的形态结构抗病性.四川林业科技22(3):54-56
    17.罗志萍,洪霓(2006)柑橘溃疡病菌免疫荧光和生物学检测技术研究.植物检疫20(5):272-274
    18.瞿金旺(2006)根癌农杆菌介导亚精胺合成酶基因MdSPDS1的柑橘遗传转化及离体再生.硕士学位论文.华中农业大学,
    19.沈崇尧译,Agrios,G. N著(2009)植物病理学,北京:中国农业大学出版社
    20.舒广平,刘寿明,易志龙,吴艳纯.袁珠阶,胡昌弟,王伏强(1998)湖南省柑桔溃疡病发病情况调查及防治技术建议.湖南农业科学(2):40-41
    21.孙惠敏.李保同.郭明程,陈慈相,谢金招,刘德力(2011)几种杀菌剂对柑桔溃疡病的生物活性.江西农业大学学报33(1):38-42
    22.王震,郭爱玲,冯莉(2007)绿色荧光蛋白基因在植病研究中的应用.中国农学通报23(6):493-496
    23.王中康,孙宪昀,夏玉先:周常勇,殷幼平(2004)柑桔溃疡病菌PCR快速检验检疫技术研究.植物病理学报34(1):14-20
    24.温寿星,黄镜浩,陈瑾,蔡子坚,包榕,张凌媛(2009)叶片结构与柑橘溃疡病抗性的初步研究. 中国农学通报25(13):66-69
    25.吴文川,洪敏霓,王丽媛(1986)适合柑橘溃疡病生长的一种培养基.植物保护学会会刊28(2):225-228
    26.薛番艳,苏辉昭,刘兴艳,梁伟,李磊,李瑞芳,陆光涛(2012)基因组学与应用生物学.31(4):333-340
    27.徐磊(2008)柑橘溃疡病病原菌的分子鉴定与抗病资源的筛选.硕士学位论文湖南农业大学.
    28.姚廷山,周常勇(2009)柑桔溃疡病菌的分离研究.中国南方果树38(3):47-49
    29.严婉荣,戴良英(2012)3种基因突变方法在微生物中的应用研究进展.中国农学通报28(18):179-184
    30.殷晓敏,徐碧玉,郑雯,曾会才,马蔚红,王家保,李焕苓,金志强(2011)香蕉枯萎病菌侵染香蕉根系的组织学过程.植物病理学报41(6):570-575
    31.殷幼平,袁训娥,李强,王中康(2010)生防菌枯草芽孢杆菌CQBS03的绿色荧光蛋白基因标记及其在柑橘叶片上的定殖.中国农业科学43(17):3555-3563
    32.袁承东(1993)柑橘溃疡病在国内外危害防治及其研究综述.植物检疫7(5):369-372.
    33.张戈壁,阳廷密,李喜庆,陈竹生(2004)不同柑桔品种柑桔溃疡病抗病能力的测定.植物保护学报31(002):221-222
    34.张昕,张炳欣,喻景权,张震,沈卫峰,陈振宇,石江(2005)生防菌ZJY-1及ZYY-116的GFP标记及其在黄瓜根围的生态适应性.应用生态学报16(11):2144-2148
    35.赵振玲,钱建宁(2000)蚕豆叶片气孔及其抗锈病性研究.云南农业大学学报15(1):88-90
    36.赵文祥,韩阳春,崔一平,赵梅勤,李玉荣,邹丽芳,陈功友(2010)HrcJ参与了Ⅲ型分泌装置的形成从而决定条斑病菌在非寄主上的过敏反应和在水稻上的致病性.中国农业科学43(1):79-86
    37.左存武.孙清明,黄秉智,李春雨,易干军(2010)利用根系分泌物与绿色荧光蛋白标记的病原菌互作关系鉴定香蕉对枯萎病的抗性.园艺学报37(5):713-720
    38. Al-Saadi A, Gabriel D (2002) Molecular characterization of a new Xanthomonas citri strain isolated in Florida. Phytopathology 92:S3.
    39. Allison S, Phillips A (1990) Nucleotide sequence of the gene encoding the repressor for the histidine utilization genes of Pseudomonas putida. J Bacteriol 172:5470-5476
    40. Alvarez F. Alegra A, Colmenero J (1991). Relationship between the time-domain Kohlrausch-Williams-Watts and frequency-domain Havriliak-Negami relaxation functions. Physical Review B 44(14):7306.
    41. Andreu MG, Tamang B, Friedman MH, Rockwood D (2009) The benefits of windbreaks for Florida growers. FOR192 Gainesville:University of Florida Institute of Food and Agricultural Sciences Retrieved August 14,2009 from http://edisifasufledu/FR253
    42. An SQ, Lu GT, Su HZ, Li RF, He YQ. Jiang BL, Tang DJ, Tang JL (2011) Systematic Mutagenesis of All Predicted gntR Genes in Xanthomonas campestris pv. campestris Reveals a GntR Family Transcriptional Regulator Controlling Hypersensitive Response and Virulence. Molecular Plant-Microbe Interactions 24(9):1027-1039
    43. Arlat M, Gough CL, Barber CE, Boucher C, Daniels M.T (1991). Xanthomonas campestris contains a cluster of hrp genes related to the larger hrp cluster of Pseudomonas solanacearum. Mol. Plant-Microbe Interact 4:593-601.
    44. Astua-Monge G, Freitas-Astua J, Bacocina G, Roncoletta J, Carvalho SA, Machado MA (2005). Expression profiling of virulence and pathogenicity genes of Xanthomonas axonopodis pv. citri. Journal of bacteriology 187(3):1201-1205.
    45. Astua-Monge G, Minsavage GV. Stall RE. Davis MJ. Bonas U, Jones JB (2000) Resistance of tomato and pepper to T3 strains of Xanthomonas campestris pv. vesicatoria is specified by a plam-inducible
    46. Aziz RK, Breitbart M. Edwards RA (2010). Transposases are the most abundant, most ubiquitous genes in nature. Nucleic Acids Research 38(13):4207-4217.
    47. Buttner D, Bonas U (2010) Regulation and secretion of Xanthomonas virulence factors. FEMS microbiology reviews 34 (2):107-133
    48. Behlau F, Belasque J, Bergamin A, Graham JH, Leite RP, Gottwald TR (2008) Copper sprays and windbreaks for control of citrus canker on young orange trees in southern Brazil. Crop Prot 27 (3-5):807-813. doi:DOI 10.1016/j.cropro.2007.11.008
    49. Berthier Y, Verdier V, Guesdon J, Chevrier D, Denis JB, Decoux G, Lemattre M (1993). Characterization of Xanthomonas campestris pathovars by rRNA gene restriction patterns. Applied and environmental microbiology 59(3):851-859.
    50. Bowie J, Luthy R, Eisenberg D (1991) A method to identify protein sequences that fold into a known three-dimensional structure. Science (New York, NY 253(5016):164-] 70.
    51. Brunings AM, Gabriel DW (2003) Xanthomonas citri:breaking the surface. Mol Plant Patho] 4 (3):141-157
    52. Burhan M. Sahi ST. Ahmad S (2007) Screening of citrus cultivars for source of resistance against citrus canker under field conditions. Pakistan J Bot 39 (5):1867-1871
    53. Buttner D. Bonas U (2002) Getting across-bacterial type III effector proteins on their way to the plant cell. Embo J 21 (20):5313-5322
    54. Capecchi MR (1989). Altering the genome by homologous recombination. Science 244(4910):1288-1292.
    55. Chalfie M. Tu Y, Euskirchen G, Ward WW. Prasher DC (1994) Green fluorescent protein as a marker for gene expression. Science 263 (5148):802-805
    56. Chalupowicz L. Zellermann EM, Fluegel M. Dror O. Eichenlaub R. Gartemann KH. Savidor A, Sessa G, Iraki N. Barash I, Manulis-Sasson S (2012) Colonization and movement of GFP-labeled Clavibacter michiganensis subsp. michiganensis during tomato infection. Phytopathology 102 (1):23-31.
    57. Chen C, Ye Q, Zhu Z, Wanner B, Walsh C (1990) Molecular biology of carbon-phosphorus bond cleavage. Cloning and sequencing of the phn (psiD) genes involved in alkylphosphonate uptake and C-P lyase activity in Escherichia coli B. J Biol Chem 265:4461-4471
    58. Civerolo E (1984) Bacterial canker disease of citrus. J Rio Grande Val Hortic Soc 37:127-146
    59. Coletta-Filho HD, Takita MA. de Souza AA. Neto.JR, Destefano SA. Hartung JS, Machado MA (2006) Primers based on the rpf gene region provide improved detection of Xanthomonas axonopodis pv. citri in naturally and artificially infected citrus plants. Journal of applied microbiology 100 (2):279-285
    60. Cuberoa J. Gella I. Johnsonb EG, Redondob A. Graham JH (2011) Unstable green fluorescent protein for study of Xanthomonas citri subsp. citri survival on citrus. Plant Pathol 60 (5):977-985
    61. Cuff JA, Clamp ME, Siddiqui AS, Finlay M, Barton G.T (1998) JPred:a consensus secondary structure prediction server. Bioinformatics 14 (10):892-893.
    62. da Silva AC, Ferro JA, Reinach FC. Farah CS. Furlan LR. Quaggio RB. Monteiro-Vitorello CB. Sluys MA. Almeida NF. Alves LM, Do Amaral AM, Bertolini MC, Camargo LE, Camarotte G, Cannavan F, Cardozo J, Chambergo F, Ciapina LP. Cicarelli RM, Coutinho LL. Cursino-Santos JR. El-Dorry H. Faria JB. Ferreira A.T, Ferreira RC, Ferro MI, Formighieri EF. Franco MC. Greggio CC, Gruber A, Katsuyama A M. Kishi LT, Leite RP. Lemos EG, Lemos MV, Locali EC. Machado MA. Madeira A M, Martinez-Rossi NM, Martins EC. Meidanis J, Menck CF. Miyaki CY, Moon DH, Moreira LM. Novo MT:Okura VK. Oliveira MC. Oliveira VR, Pereira HA. Rossi A. Sena JA. Silva C. De Souza RF, Spinola LA, Takita MA, Tamura RE. Teixeira EC, Tezza R1. Trindade Dos Santos M, Truffi D, Tsai SM. White FF. Setubal JC. Kitajima JP (2002). Comparison of the genomes oftwo Xanthomonas pathogens with differing host specificities. Nature 417:459-463.
    63. Das AK (2003) Citrus canker-A review. J Appl Hort 5 (1):52-60
    64. Dempsey D, Klessig DF (1994) Salicylic acid, active oxygen species and systemic acquired resistance in plants. Trends in cell biology 4(9):334-338
    65. Deng ZN. Xu L, Li DZ, Long GY, Liu LP. Fang F, Shu GP (2010) Screening citrus genotypes for resistance to canker disease (Xanthomonas axonopodis pv. cirri). Plant Breeding 129 (3):341-345
    66. Dong JM, Taylor JS. Latour DJ, Iuchi S, Lin EC (1993) Three overlapping let genes involved in L-lactate utilization by Escherichia coli. J Bacteriol 175 (20):6671-6678
    67. Dunger G, Arabolaza AL. Gottig N, Orellano E, G.Ottado J (2005). Participation of Xanthomonas axonopodis pv. citri hrp cluster in citrus canker and nonhost plant responses. Plant Pathology 54(6): 781-788.
    68. Dunger G, Relling VM, Tondo ML, Barreras M, Ielpi L. Orellano EG, Ottado J (2007) Xanthan is not essential for pathogenicity in citrus canker but contributes to Xanthomonas epiphytic survival. Arch Microbiol 88:127-135.
    69. Eddy SR (1998) Profile hidden Markov models. Bioinformatics 14(9):755-763.
    70. Egel DS, Graham JH, Stall RE (1991) Genomic Relatedness of Xanthomonas campestris Strains Causing Diseases of Citrus. Appl Environ Microbiol 57 (9):2724-2730
    71. Ellis.TG. Rafiqi M, Gan P, Chakrabarti A, Dodds PN (2009). Recent progress in discovery and functional analysis of effector proteins of fungal and oomycete plant pathogens. Current Opinion in Plant Biology 12(4):399-405.
    72. Epel BL, Padgett HS. Heinlein M. Beachy RN (1996) Plant virus movement protein dynamics probed with a GFP-protein fusion. Gene 173 (1):75-79
    73. Flor HH (1971). Current status of the gene-for-gene concept. Annual Review of Phytopathology 9(1): 275-296.
    74. Francis MI, Kostenyuk I, Orbovic V, Loskutov A, Zolotukhin M. Graham JH (2011) Automated Needle-free Injection Method for Delivery of Bacterial Suspensions into Citrus Leaf Tissues. Journal of Phytopathology 159 (5):347-351.
    75. Fujita Y, Fujita T. Miwa Y, Nihashi J, Aratani Y (1986) Organization and transcription of the gluconate operon, gnt, of Bacillus subtilis. J Biol Chem 261 (29):13744-13753
    76. Fulton D, Li Y, Laird M, Horsman B, Roche F. Brinkman F (2006) Improving the specificity of high-throughput ortholog prediction. BMC Bioinformatics 7:270
    77. Gurlebeck D, Thieme F, Bonas U (2006). Type Ⅲ effector proteins from the plant pathogen Xanthomonas and their role in the interaction with the host plant. Journal of plant physiology 163(3):233-255.
    78. Gabriel D (1999). The Xanthomonas avr/pth gene family. Plant-microbe interactions 4:39-55.
    79. Gabriel D, Kingsley M, Hunter J, Gotrwald T (1989) Reinstatement of Xanthomonas citri (ex Hasse) and X. phaseoli (ex Smith) to Species and Reclassification of All X. campestris pv. citri Strains. International Journal of Systematic Bacteriology 39 (1):14-22
    80. Gabriel DW. Hunter JE, Kingsley MT. Miller JW. Lazo GR (1988) Clonal population structure of Xanthomonas campestris and genetic diversity among citrus canker strains, vol 1. APS Press. First published
    81. Gao Y-G, Suzuki H, Itou H, Zhou Y. Tanaka Y. Wachi M. Watanabe N. Tanaka 1. Yao M (2008) Structural and functional characterization of the LldR from Corynebacterium glutamicum:a transcriptional repressor involved in L-lactate and sugar utilization. Nucleic Acids Res 36(22):7110-7123.
    82. Gao Y-G, Yao M. ltou H, Zhou Y, Tanaka 1 (2007) The structures of transcription factor CGL2947 from Corynebacterium glutamicum in two crystal forms:A novel homodimer assembling and the implication for effector-binding mode. Protein Sci 16 (9):1878-1886.
    83. Golmohammadi M. Cubero J. Penalver J, Quesada JM. Lopez MM, Llop P (2007) Diagnosis of Xanthomonas axonopodis pv. citri. causal agent of citrus canker, in commercial fruits by isolation and PCR-based methods. J Appl Microbiol 103(6):2309-2315.
    84. Goto M (1992) Citrus canker, vol 3. Plant diseases of international importance.
    85. Gottig N, Garavaglia BS, Garofalo CG, Zimaro T, Sgro GG. Ficarra FA, Dunger G, Daurelio LD, Thomas L, Gehring C, Orellana EG, Ottado J (2008). Xanthomonas axonopodis pv. citri uses a plant natriuretic peptide-Iike protein to modify host homeostasis. Proc Natl Acad Sci U S A 105(47):18631-18636.
    86. Gottig N, Garavaglia BS, Garofalo CG, Orellano EG, Ottado J (2009) A filamentous hemagglutinin-like protein of Xanthomonas axonopodis pv. citri, the phytopathogen responsible for citrus canker, is involved in bacterial virulence. PLoS ONE 4:e4358.
    87. G Gottwald TR, Graham JH, Schubert TS (2002) Citrus canker:the pathogen and its impact. Online. Plant Health Prog http://wwwplantmanagementnetworkorg/pub/php/review/citruscanker/
    88. Gottwald TR, Hughes G. Graham JH. Sun X. Riley T (2001) The citrus canker epidemic in Florida: The scientific basis of regulatory eradication policy for an invasive species. Phytopathology 91 (1):30-34
    89. Gottwald TR. McGuire RG. Garran S (1988) Asiatic citrus canker:Spatial and temporal spread in simulated new planting situations in Argentina. Ecology and Epidemiology 78 (6):739-745
    90. Graham JH. Gottwald TR. Cubero J, Achor DS (2004) Xanthomonas axonopodis pv. citri:factors affecting successful eradication of citrus canker. Mol Plant Pathol 5 (1):1-15
    91. Graham JH. Gottwald TR. Riley TD. Achor D (1992) Penetration through leaf stomata and growth of strains of Xanthomonas campestris in citrus cultivars varying in susceptibility to bacterial diseases. Phytopathology 82 (11):1319-1325
    92. Gudesblat GE. Torres PS. Vojnov AA (2009) Xanthomonas campestris overcomes Arabidopsis stomatal innate immunity through a DSF cell-to-cell signal-regulated virulence factor. Plant Physiol 149(2):1017-1027.
    93. Guo Y, Sagaram US. Kim JS. Wang N (2010) Requirement of the galU gene for polysaccharide production by and pathogenicity and growth In planta of Xanthomonas citri subsp. citri. Appl Environ Microbio 76:2234-2242.
    94. Guo YP, Figueiredo F. Jones J. Wang N (2011). HrpG and HrpX Play Global Roles in Coordinating Different Virulence Traits of Xanthomonas axonopodis pv. citri. Molecular Plant-Microbe Interactions 24(6):649-661.
    95. Hartung JS, Pruvost OP, Villemot I. Alvarez A (1996) Rapid and sensitive colorimetric detection of Xanthomonas axonopodis pv. citri by immunocapture and a nested-polymerase chain reaction assay. Phytopathology 86 (1):95-101
    96. Hawkins LA. Harvey RB (1919) Physiological study of the parasitism of Pythium debaryanum Hesse on the potato tuber. J Agric Res 18:275-303
    97. Haydon DJ. Guest JR (1991) A new family of bacterial regulatory proteins. Fems Microbiol Lett 79 (2-3):291-296.
    98. Heim R. Cubitt AB. Tsien RY (1995) Improved green fluorescence.
    99. Heinlein M, Epel BL, Padgett HS, Beachy RN (1995) Interaction of tobamovirus movement proteins with the plant cytoskeleton. Science 270 (5244):1983-1985
    100. Hoskisson PA, Rigali S (2009) Chapter 1 Variation in form and function:The helix-turn-helix regulators of the GntR superfamily. In:Allen IL, Sima S, Geoffrey MG (eds) Adv. Appl. Microbiol. 69:1-22.
    101. Hosoya S, Yamane K. Takeuchi M. Sato T (2002) Identification and characterization of the Bacillus subtilis D-glucarate/galactarate utilization operon ycbCDEFGHJ. Ferns Microbiol Lett 210:193-199
    102. Kelley L, MacCallum R, Sternberg M (2000) Enhanced genome annotation using structural profiles in the program 3D-PSSM. J Mol Biol 299:499-520
    103. Koizumi M (1985) Citrus canker:The world situation. Citrus Canker:An International Perspective LW Timmer. ed University of Florida. Lake Alfred:2-7
    104. Kovach ME. Elzer PH, Hill DS. Robertson GT. Farris MA. Roop RM. Peterson KM (1995). Four new derivatives of the broad-host-range cloning vector pBBRlMCS, carrying different antibiotic-resistance cassettes. Gene 166(1):175-176.
    105. Kroupitski Y. Golberg D. BelausovE. Pinto R. Swartzberg D. Granot D, Sela S (2009) Internalization of Salmonella enterica in leaves is induced by light and involves chemotaxis and penetration through open stomata. Applied and Environmental Microbiology 75(19):6076-6086
    106. Lahaye T. Bonas U (2001) Molecular secrets of bacterial type Ⅲ effector proteins. Trends Plant Sci 6 (10):479-485
    107. Larkin MA, Blackshields G. Brown NP. Chenna R. McGettigan PA, McWilliam H, Valentin F. Wallace IM, Wilm A, Lopez R. Thompson JD. Gibson TJ. Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23 (21):2947-2948. doi:10.1093/bioinformatics/btm404
    108. Laskowski RA. MacArthur MW. Moss DS. Thornton JM (1993) PROCHECK:a program to check the stereochemical quality of protein structures. J Appl Crystallogr 26(2):283-291.
    109. Lazo GR, Roffey R, Gabirel DW (1987). Pathovars of Xanthomonas campestris are distinguishable by restriction fragment-length polymorphism. International Journal of Systematic Bacteriology 37 (3) 214-221.
    110. Lee HY, An JH. Kim YS (2000) Identification and characterization of a novel transcriptional regulator, MatR, for malonate metabolism in Rhizobium leguminosarum bv. trifolii. Eur J Biochem 267 (24):7224-7229.
    111. Lee MH. Scherer M. Rigali S. Golden JW (2003) PlmA, a new member of the GntR family, has plasmid maintenance functions in Anabaena sp. strain PCC 7120. J Bacteriol 185(15):4315-4325. doi:10.1128/jb.185.15.4315-4325.2003
    112. Leite Jr RP, Mohan SK (1990) Integrated management of the citrus bacterial canker disease caused by Xanthomonas campestris pv. citri in the State of Parana. Brazil. Crop Protection 9 (1):3-7
    113. Li J. Wang N (2011) The wxacO gene of Xanthomonas citri ssp. citri encodes a protein with a role in lipopolysaccharide biosynthesis, biofilm formation, stress tolerance and virulence. Mol Plant Pathol 12: 381-396.
    114. Lindgren PB. Peet RC. Panopoulos NJ (1986) Gene cluster of Pseudomonas syringae pv.1 phaseolicola" controls pathogenicity of bean plants and hypersensitivity of nonhost plants. Journal of bacteriology 168 (2).512-52
    115. Liu JL. Wang XJ. Micheal T. Hu YJ. Liu XL, Dai LY, Wang GL (2010). Recent progress and understanding of the molecular mechanisms of the rice-Magnaporthe oryzae interaction. Molecular plant pathology 11(3):419-427.
    116. Lovell SC, Davis IW, Arendall WB, de Bakker PIW, Word JM, Prisant MG, Richardson JS. Richardson DC (2003) Structure validation by Calpha geometry:phi, psi and Cbeta deviation. Proteins Struct Funct Bioinf 50 (3):437-450.
    117. Lowe D (2009). Current situation. management and economic impact of citrus canker in Florida.
    118. Luthy R. Bowie JU, Eisenberg D (1992) Assessment of protein models with three-dimensional profiles. Nature 356 (6364):83-85
    119. Malavolta Junior V, Yamashiro T, Nogueira E, Feichtenberger E (1984) Distribuicao do tipo C de Xanthomonas campestris pv. citri no Estado de Sao Paulo. Summa Phytopathologica 10 (11)
    120. Malamud F, Torres PS, Roxana R, Rigano LA. Enrique R, Bonomi HR, Castagnaro AP, Marano MR, Vojnov AA (2011) Xanthomonas axonopodis pv. citri flagellum is required for mature biofilm and canker development. Microbiology 157:819-829.
    121. Marchler-Bauer A, Anderson J, Cherukuri P. DeWeese-Scott C, Geer L, Gwadz M, He S, Hurwitz D, Jackson J, Ke Z. Lanczycki C, Liebert C. Liu C. Lu F, Marchler G, Mullokandov M, Shoemaker B, Simonyan V, Song J, Thiessen P, Yamashita R, Yin J, Zhang D, Bryant S (2005) CDD:a Conserved Domain Database for protein classification. Nucleic Acids Res 33:D192-196
    122. Martin JT, Juniper BE (1970) The cuticles of plants. (London:Edward Arnold)
    123. Martins PMM, Lau IF, Bacci M, Belasque J, Do Amaral AM, Taboga SR, Ferreira H (2010). Subcellular localization of proteins labeled with GFP in Xanthomonas citri ssp. citri:targeting the division septum. FEMS Microbiology Letters 310(1):76-83.
    124. Matthijs S, Koedam N, Cornelis P, De Greve H (2000) The trehalose operon of Pseudomonas fluorescens ATCC 17400. Res Microbiol 151:845-851
    125. Mavrodieva V, Levy L, Gabriel DW (2004). Improved sampling methods for real-time polymerase chain reaction diagnosis of citrus canker from field samples. Phytopathology 94(1):61-68.
    126. McClintock A (1995). Imperial leather:Race, gender and sexuality in the colonial contest.
    127. McLean FT (1921) A study of the structure of the stomata of two species of Citrus in relation to citrus canker. Bulletin of the Torrey Botanical Club 48 (4):101-106
    128. Melotto M, Underwood W, Koczan J. Nomura K, He SY (2006) Plant stomata function in innate immunity against bacterial invasion. Cell 126 (5):969-980
    129. Melotto M, Underwood W. He SY (2008) Role of stomata in plant innate immunity and foliar bacterial diseases. Annual Review Phytopathology 46:101-122
    130. Metcalf W (1936) The influence of windbreaks in protecting citrus orchards. Journal of Forestry 34 (6):571-580
    131. Mersmann S. Bourdais G, Rietz S, Robatzek S (2010) Ethylene signaling regulates accumulation of the FLS2 receptor and is required for the oxidative burst contributing to plant immunity. Plant physiology 154(1):391-400
    132. Mukherjee S, Zhang Y (2011) Protein-protein complex structure predictions by multimeric threading and template recombination. Structure 19 (7):955-966.
    133. Nunez MF. Teresa Pellicer M, Badia J, Aguilar J, Baldoma L (2001) The gene yghK linked to the glc operon of Escherichia coli encodes a permease for glycolate that is structurally and functionally similar to L-lactate permease. Microbiology (Reading. England) 147 (4):1069-1077
    134. Page R (1996) Tree View:an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12:357-358
    135. Pabo CO, Sauer RT (1992) Transcription factors:structure families and principles of DNA recognition. Annual Review of Biochemistry 61:1053-1095
    136. Pellicer MT. Fernandez C. Badia J. Aguilar J. Lin ECC. Baldoma L (1999) Cross-induction of glc and ace operons of Escherichia coli attributable to pathway intersection. Characterization of the glc promoter. J Biol Chem 274 (3):1745-1752.
    137. Petersen B, Petersen T. Andersen P. Nielsen M, Lundegaard C (2009) A generic method for assignment of reliability scores applied to solvent accessibility predictions. BMC Struct Biol 9 (1):51
    138. Prasad M, Singh R. Rekha A, Chand R (1997) Evaluation of lemon cultivars and acid limex lemon hybrids for resistance to Xanthomonas axonopodis pv. citri. Scientia Horticulturae 71 (3-4):267-272
    139. Quail M. Dempsey C, Guest J (1994) Identification of a fatty acyl responsive regulator (FarR) in Escherichia coli. FEBS Lett 356:183-187
    140. Quail MA, Guest JR (1995) Purification, characterization and mode of action of PdhR, the transcriptional repressor of the pdhR-aceEF-Ipd operon of Escherichia coli. Mol Microbiol 15(3):519-529.
    141. Ranjan S, Gundu R, Ranjan A (2006) MycoperonDB:a database of computationally identified operons and transcriptional units in Mycobacteria. BMC Bioinformatics 7 (Suppl 5):S9
    142. Reid BG, Flynn GC (1997) Chromophore formation in green fluorescent protein.36(22):6786-6791
    143. Reizer A, Deutscher J. Saier MH, Reizer J (1991) Analysis of the gluconate (gnt) operon of Bacillus subtilis. Mol Microbiol 5 (5):1081-1089.
    144. Rigali S. Derouaux A, Giannotta F, Dusart J (2002) Subdivision of the Helix-Turn-Helix GntR Family of Bacterial Regulators in the FadR, HutC, MocR. and YtrA Subfamilies. Journal of Biological Chemistry 277 (15):12507-12515.
    145. Rigali S. Schlicht M, Hoskisson P. Nothaft H, Merzbacher M. Joris B. Titgemeyer F (2004) Extending the classification of bacterial transcription factors beyond the helix-turn-helix motif as an alternative approach to discover new cis/trans relationships. Nucleic Acids Res 32:3418-3426
    146. Rigano LA, Siciliano F. Enrique R, Sendin L. Filippone P, Torres PS, Questa J, Dow JM. Castagnaro AP. Vojnov AA, Marano MR (2007) Biofilm formation, epiphytic fitness, and canker development in Xanthomonas axonopodis pv.citri. Mol. Plant-Microbe Interact 20:1222-1230.
    147. Roy A. Kucukural A, Zhang Y (2010) I-TASSER:a unified platform for automated protein structure and function prediction. Nat Protoc 5 (4):725-738
    148. Schaad NW, Postnikova E, Lacy G, Sechler A, Agarkova IV, Stromberg PE, Stromberg VK, Vidaver AM (2006). Emended classification of xanthomonad pathogens on citrus. Papers in Plant Pathology: 96
    149. Schock F. Dahl M (1996) Expression of the tre operon of Bacillus subtilis 168 is regulated by the repressor TreR. J Bacteriol 178 (15):4576-4581
    150. Schubert TS, Rizvi SA, Sun XA, Gottwald TR, Graham JH, Dixon WN (2001) Meeting the challenge of eradicating citrus canker in Florida-Again. Plant Dis 85 (4):340-356
    151. Schubert TS, Sun X (2003) Bacterial citrus canker. Plant Pathology Circular No.377,5 ed. Fl. Dept. of Agriculture & Cons. Svcs. Division of Plant Industry. Available online at: http://www.doacs.sate.fl.us/pi/enpp/pathology/pathcirc/ppcirc377-rev5.pdf.
    152. Sessions A, Burke E, Presting G. Aux G, McElver J, Patton D. Dietrich B. Ho P. Bacwaden J. Ko C. Clarke JD. Cotton D. Bullis D. Snell J. Miguel T. Hutchison D, Kimmerly B. Mitzel T. Katagiri F, Glazebrook J. Law M. Goff SA (2002) A high-throughput Arabidopsis reverse genetics system. The Plant cell 14 (12):2985-2994.
    153. Shimomura O. Johnson FH. Saiga Y (1962) Extraction, purification and properties of aequorin, a bioluminescent protein from the luminous hydromedusan, Aequorea. Journal of cellular and comparative physiology 59 (3):223-239
    154. Shiotani H, Ozaki K, Tsuyumu S (2000). Pathogenic interactions between Xanthomonas axonopodis pv. citri and cultivars of pummelo (Citrus grandis). Phytopathology 90(12):1383-1389.
    155. Silue D, Notteghem JL, Tharreau D (1992). Evidence of a gene-for-gene relationship in the Oryza sativa-Magnaporthe grisea pathosystem. Phytopathology 82(5):577-580.
    156. Simon R, Priefer U, Puhle A (1983). A broad host range mobilization system for in vivo genetic engineering:transposon mutagenesis in gram negative bacteria. Nature Biotechnology 1(9):784-791.
    157. Sippl MJ (1993) Recognition of errors in three-dimensional structures of proteins. Proteins Struct Funct Genet 17 (4):355-362
    158. So J-S, Lim HT, Oh E-T, Heo T-R, Koh S-C, Leung KT, Lee H, Trevors JT (2002) Visualizing the infection process of Xanthomonas campestris in cabbage using green fluorescent protein. World J Microb Biot 18(1):17-21
    159. Stall RE. Civerolo EL (1991). Research Relating to the Recent Outbreak of Citrus Canker in Florida*. Annual Reviews in Phytopathology 29(1):399-420.
    160. Stall RE. Seymour CP (1983) Canker, a threat to citrus in the Gulf-Coast states. Plant Dis 67 (5):581-585
    161. Stefan F. Bonas U (1995) Sequence and expression analysis of the hrpB pathogenicity operon of Xanthomonas campestris pv. vesicatoria which encodes eight proteins with similarity to components of the Hrp, Ysc, Spa, and Fli secretion systems. Molecular Plant-Microbe Interactions 8 (6):845-854
    162. Sumathi K. Ananthalakshmi P. Roshan MNAM. Sekar K (2006) 3dSS:3D structural superposition. Nucleic Acids Res 34 (suppl 2):W128-W132.
    163. Sun D, Setlow P (1993) Cloning and nucleotide sequence of the Bacillus subtilis ansR gene, which encodes a repressor of the ans operon coding for L-asparaginase and L-aspartase. J Bacteriol 175 (9):2501-2506
    164. Sun X. Stall RE. Jones JB, Cubero J. Gottwald TR, Graham JH. Dixon WN, Schubert TS, Chaloux PH, Stromberg VK, Lacy GH. Sutton BD (2004) Detection and characterization of a new strain of citrus canker bacteria from Key/Mexican lime and alemow in South Florida. Plant Dis 88 (11):1179-1188.
    165. Swarup S. Yang Y, Kingsley MT. Gabriel DW (1992). A Xanthomonas citri pathogenicity gene, pthA, pleiotropically encodes gratuitous avirulence on nonhosts. Mol. Plant-Microbe Interact 5:204-213.
    166. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5:Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28 (10):2731-2739.
    167. Tondo ML, Petrocelli S, Ottado J, Orellano EG (2010) The monofunctional catalase KatE of Xanthomonas axonopodis pv. citri is required for full virulence in citrus plants. PLoS ONE 5 (5):e10803
    168. Tsien RY (1998) The green fluorescent protein. Annual review of biochemistry 67 (1):509-544
    169. van Aalten DMF. DiRusso CC, Knudsen J (2001) The structural basis of acyl coenzyme A-dependent regulation of the transcription factor FadR. The EMBO Journal 20 (8):2041-2050
    170. van Aalten DMF. DiRusso CC. Knudsen J. Wierenga RK (2000a) Crystal structure of FadR, a fatty acid-responsive transcription factor with a novel acyl coenzyme A-binding fold. Embo J 19 (19):5167-5177
    171. van Aalten DMF. Knudsen J, DiRusso CC. Kokko T. Wierenga RK (2000b) Crystallization and X-ray diffraction studies of the fatty-acid responsive transcription factor FadR from Escherichia coli. Acta Crystallographica Section D 56 (4):469-471
    172. Vauterin L, Rademaker J. Swings J (2000). Synopsis on the taxonomy of the genus Xanthomonas. Phytopathology 90(7):677-682.
    173. Vauterin L, Swings J. Kersters K (1991). Grouping of Xanthomonas campestris pathovars by SDS-PAGE of proteins. Journal of General Microbiology 137(7):1677.
    174. Vauterin L, Swings J. Kersters K. Gillis M, Mew TW, Schroth MN, Palleroni NJ, Hildebrand DC, Stead DE, Civerolo EL (1990). Towards an improved taxonomy of Xanthomonas. International Journal Of Systematic Bacteriology 40(3):312.
    175. Verniere CJ. Gottwald TR, Pruvost O (2003) Disease development and symptom expression of Xanthomonas axonopodis pv. citri in various citrus plant tissues. Phytopathology 93 (7):832-843
    176. Verniere C. Hartung J, Pruvost O, Civerolo E, Alvarez A, Maestri P, Luisetti J (1998) Characterization of phenotypically distinct strains of Xanthomonas axonopodis pv. citri from Southwest Asia. European Journal of Plant Pathology 104 (5):477-487
    177. Viloria Z, Drouillard DL. Graham JH. Grosser JW (2004) Screening triploid hybrids of'Lakeland' limequat for resistance to citrus canker. Plant Dis 88 (10):1056-1060
    178. Wallner B. Elofsson A (2003) Can correct protein models be identified? Protein Sci 12 (5):1073-1086. doi:10.1110/ps.0236803Phytol 174 (1):212-223
    179. Wang Y, Fu X-Z, Liu J-H. Hong N (2011) Differential structure and physiological response to canker challenge between'Meiwa'kumquat and'Newhall'navel orange with contrasting resistance. Scientia Horticulturae 128:115-123
    180. Weisburg WG, Barns SM, Pelletier DA. Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173 (2).697-703
    181. Wengelnik K. Bonas U (1996) HrpXv. an AraC-type regulator, activates expression of five of the six loci in the hrp cluster of Xanthomonas campestris pv. vesicatoria. J Bacteriol 178 (12):3462-3469
    182. Wiederstein M. Sippl MJ (2007) ProSA-web:interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res 35 (suppl 2):W407-W410.
    183. William H. Andrew D, Klaus S (1996) VMD:visual molecular dynamics. J Mol Graph 14 (1):33-38
    184. Xu J, Zhang J, Wang L. Zhou J. Huang H, Wu J. Zhong Y, Shi Y (2006) Solution structure of Urml and its implications for the origin of protein modifiers. Proceedings of the National Academy of Sciences 103(31):11625-11630.
    185. Yang P, Vauterin L. Vancanneyt M. Swings J. Kersters K (1993). Application of Fatty Acid Methyl Esters for the Taxonomic Analysis of the Genus Xanthomonas. Systematic and Applied Microbiology 16(1):47-71.
    186. Ye QX, Li ZY (1990) Introduction to reaction-diffusion equations
    187. Yellaboina S. Seshadri J, Kumar M. Ranjan A (2004) PredictRegulon:a web server for the prediction of the regulatory protein binding sites and operons in prokaryote genomes. Nucleic Acids Res 32:W318-320
    188. Yoshida K, Fujita Y. Ehrlich S (2000) An operon for a putative ATP-binding cassette transport system involved in acetoin utilization of Bacillus subtilis. J Bacteriol 182 (19):5454-5461
    189. Zhang Y, Callaway EM. Jones JB. Wilson M (2009) Visualisation of hrp gene expression in Xanthomonas euvesicatoria in the tomato phyllosphere. Eur J Plant Pathol 124 (3):379-390
    190. Zheng M. Cooper DR. Grossoehme NE. Yu M, Hung L-W. Cieslik M, Derewenda U. Lesley SA. Wilson IA. Giedroc DP. Derewenda ZS (2009) Structure of Thermotoga maritima TM0439: implications for the mechanism of bacterial GntR transcription regulators with Zn2+-binding FCD domains. Acta Crystallographica Section D 65 (4):356-365.
    191. Zoller MJ, Smith M (1982). Oligonucleotide-directed mutagenesis using M13-derived vectors:an efficient and general procedure for the production of point mutations in any fragment of DNA. Nucleic Acids Research 10(20):6487-6500.
    192. Zou LF, Li YR. Chen GY (2011). A non-marker mutagenesis strategy to generate poly-hrp gene mutants in the rice pathogen Xanthomonas oryzae pv. oryzicola. Agricultural Sciences in China 10(8): 1139-1150.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700