红枣多糖的分子修饰与生物活性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多糖是红枣中最重要的活性成分之一,具有较高的药用价值。对红枣多糖进行分子修饰和改性有助于提高和改善其生物活性,拓宽应用范围,同时也为进一步探索红枣多糖构效关系和丰富多糖构效关系理论积累基础资料。为此,本论文在对红枣多糖进行提取和分离纯化的基础上,将分子修饰技术应用到红枣多糖研究中,通过超声处理、盐酸降解和硫酸酯化、羧甲基化及乙酰化修饰,进一步对其进行分子修饰和改性,并采用体外试验法研究了红枣多糖及其分子修饰产物的抗氧化活性、降血糖作用以及对透明质酸酶的抑制作用,证实红枣多糖对α-淀粉酶、α-葡萄糖苷酶及透明质酸酶和非酶糖化反应具有抑制作用,分子修饰可显著改变红枣多糖的生物活性,且这种改变更多的与分子修饰导致的红枣多糖高级结构的变化有关。具体结果如下:
     一、红枣多糖制备
     1、热水浸提法提取红枣多糖的适宜条件为:料液比1:10、温度80℃、时间1h、提取2次。采用XAD-761树脂吸附法可有效分离红枣多糖提取液中的多酚物质,而且不影响红枣多糖的提取分离效果,达到了联合提取红枣多酚、多糖的目的。
     2、Sevag法可有效脱除红枣多糖中的蛋白质,活性炭脱色造成的多糖损失率较高。大孔吸附树脂对红枣多糖具有较好的脱色效果,而且可以重复使用,是红枣多糖的较佳脱色方法。
     3、采用DE52纤维素柱层析法可将红枣多糖分级纯化为1个中性多糖组分和3个酸性多糖组分,平均分子量均在1000kDa左右,其中酸性多糖组分ZJP-2为红枣多糖中的主要组分。通过HPLC分析和高碘酸氧化研究红枣多糖的单糖组成和连接键型,结果表明,红枣多糖是由半乳糖醛酸、鼠李糖、阿拉伯糖、半乳糖、木糖、葡萄糖等组成的杂多糖,主要连接键型为1→4糖苷键连接。
     二、红枣多糖的分子修饰
     1、超声处理可引起红枣多糖的降解。较低的温度、较高的超声功率、较低的多糖溶液浓度和变频处理有利于多糖的超声降解。在试验条件下,超声处理仅使红枣多糖分子量得到一定程度的降低,超声降解后红枣多糖的平均分子量仍在300kDa以上。盐酸降解可大幅降低红枣多糖的分子量,并随盐酸浓度的增加而增强。在一定盐酸浓度条件下得到的红枣多糖降解产物仍为相对均一的多糖。过氧化氢可强烈降解红枣多糖,但其分子量分布很宽,并且存在大量的小分子糖。
     2、采用氯磺酸-吡啶法可成功对红枣多糖进行硫酸酯化修饰,其最佳工艺条件为:氯磺酸与吡啶的体积比1:3,反应温度60℃,反应时间2.5h,在此条件下制备得到的红枣多糖硫酸酯的硫酸基取代度可以达到1.39。
     3、采用氢氧化钠-氯乙酸反应体系对红枣多糖进行羧甲基化修饰,产物的羧甲基取代度随着反应体系中NaOH浓度的增加而提高,但得率呈下降趋势,呈明显负相关关系。在使反应液的pH保持在最适条件下的同时,适当增大羧甲基化试剂与红枣多糖的比例,有利于羧甲基取代度的增加。在试验条件下,制备得到的羧甲基化红枣多糖的羧甲基取代度最高可达到0.22。
     4、用冰醋酸法和乙酸酐法均可对红枣多糖进行乙酰化修饰。用冰醋酸法制备的乙酰化红枣多糖的取代度较低,因此不适用于高乙酰基取代度的乙酰化修饰。高温和低pH条件不利于乙酸酐法对红枣多糖的乙酰化修饰,在室温条件下保持反应液的pH为9.5±0.5,可以较好地实现红枣多糖的乙酰化修饰。在试验条件下,制备得到的乙酰化红枣多糖的乙酰基取代度最高可达到0.29。
     5、红枣多糖的硫酸酯化、羧甲基化和乙酰化修饰均可明显改善其在水溶液中的分布状态,提高其溶解性。
     三、红枣多糖及其分子修饰产物的生物活性研究
     1、抗氧化活性
     红枣多糖及其经DE52纤维素柱层析分离纯化得到的各个级分对光照核黄素体系产生的超氧阴离子自由基、Fenton反应产生的羟自由基及DPPH自由基均具有较好的清除作用,并呈现一定的量效关系。在试验条件下,红枣多糖对超氧阴离子自由基、羟自由基及DPPH自由基的清除率分别可达99.01%、49.46%和36.89%。与原红枣多糖(ZJP)相比,经DE52纤维素柱层析分离纯化得到的各个级分的自由基清除活性均有一定程度的降低,酸性多糖组分ZJP-1、ZJP-2、ZJP-3较中性多糖ZJP-0表现出更强的自由基清除活性,说明红枣多糖中半乳糖醛酸对于其自由基清除活性具有重要作用。
     适度超声降解或者盐酸降解均可提高红枣多糖对不同体系产生的自由基的清除能力,但分子量降低至230kDa以下时其自由基清除活性大幅降低。超声处理对红枣多糖抗氧化活性的影响存在双重效应,既可通过调整分子大小影响红枣多糖抗氧化活性,又可通过声场作用造成多糖构象改变从而影响红枣多糖抗氧化活性。在试验条件下,超声处理最高可使红枣多糖对超氧阴离子自由基、羟自由基及DPPH自由基的清除率分别提高3.16、2.00、0.16倍,而盐酸降解则可使其分别提高4.78、1.46、0.22倍。
     不同取代基修饰对红枣多糖自由基清除活性产生的效应与自由基测试体系有关,红枣多糖清除自由基的效果与其构象密切相关。中等取代度的硫酸酯化红枣多糖S-ZJP-2(DS=0.79)、S-ZJP-3(DS=1.03)对超氧阴离子自由基的半抑制剂量(IC50)可较原红枣多糖(ZJP)降低一半以上,但对羟自由基和DPPH自由基清除活性的影响较小;羧甲基化修饰可显著提高红枣多糖的羟自由基清除活性,但不利于其超氧阴离子自由基和DPPH自由基清除活性的发挥;乙酰化修饰可大幅提高红枣多糖的羟自由基清除活性,在试验条件下,五种乙酰化红枣多糖对羟自由基的清除效果均较原多糖(ZJP)提高一倍以上,但乙酰化修饰导致红枣多糖超氧阴离子自由基活性的降低,并改变其清除DPPH自由基的动力学。中等硫酸酯化修饰是提高红枣多糖超氧阴离子自由基清除活性的最有效方法,而乙酰化修饰和羧甲基化修饰则是提高其羟自由基清除活性的重要手段。
     2、降血糖作用
     红枣多糖对-淀粉酶和-葡萄糖苷酶活性均具有抑制作用,其抑制效果随着多糖浓度的增加而增大,具有明显的量效关系。在试验条件下,红枣多糖对α-淀粉酶和-葡萄糖苷酶活性的最高抑制率分别为53.35%和62.65%,IC50分别为11.39mg·mL-1和16.61mg·mL-1。说明红枣多糖可能对淀粉酶促水解直至生成葡萄糖的整个过程的不同阶段产生影响,从而可有效延缓单糖的释放和吸收,抑制餐后高血糖。
     与原红枣多糖(ZJP)相比,除了中性多糖组分ZJP-0的抑制活性略有降低外,经DE52纤维素柱层析分离纯化得到的其它三种酸性多糖组分ZJP-1、ZJP-2、ZJP-3对-淀粉酶的抑制活性均有大幅提高,而四种级分对-葡萄糖苷酶的抑制作用和原多糖相比均有不同程度的提高。其中尤以ZJP-1对-淀粉酶和-葡萄糖苷酶的抑制作用最强,在同浓度条件下可分别较原红枣多糖(ZJP)提高0.63倍和1.67倍,说明ZJP-1在红枣多糖的-淀粉酶和-葡萄糖苷酶抑制活性中发挥主要作用。
     红枣多糖经超声降解处理后其对-淀粉酶的抑制活性减弱,而对-葡萄糖苷酶活性的抑制作用得到增强,并且抑制效果随着超声处理时间的延长而提高。低浓度的盐酸降解可提高红枣多糖对-淀粉酶和-葡萄糖苷酶活性的抑制作用,但过度降解则会造成抑制活性的降低。红枣多糖分子量在300~600kDa之间表现出较强的-葡萄糖苷酶抑制活性,但分子量降低至290kDa以下时其-葡萄糖苷酶抑制活性大幅降低。维持一定的链长和空间构象是发挥其活性的关键。在试验条件下,超声处理和盐酸降解最高可使红枣多糖对-葡萄糖苷酶活性的抑制率分别提高2.09倍和1.56倍,而盐酸降解还可使其对-淀粉酶活性的抑制率提高38.25%。
     不同取代基修饰均降低了红枣多糖对-淀粉酶的抑制活性,但可增强其对-葡萄糖苷酶的抑制活性。在试验条件下,硫酸酯化、羧甲基化和乙酰化修饰最高可使红枣多糖对-葡萄糖苷酶活性的抑制率分别提高1.87、5.08和3.97倍。羧甲基化修饰是提高红枣多糖-葡萄糖苷酶抑制活性的最有效方法之一。
     3、对非酶糖化反应的抑制作用
     红枣多糖及其经DE52纤维素分离纯化得到的不同级分对BSA-Glu体系非酶糖化反应中间产物Amadori和终产物AGEs的形成均具有一定的抑制作用,说明红枣多糖可能对由非酶糖化反应以及由此形成的糖化终产物引起的微血管病变等糖尿病并发症具有改善作用。与原红枣多糖(ZJP)相比,ZJP-0和ZJP-3对Amadori产物形成的抑制作用增强,而ZJP-1抑制作用略有降低,ZJP-2的抑制作用最弱。而从AGEs形成的情况来看,则只有ZJP-3的抑制作用高于原多糖,其它组分均较低,说明ZJP-3是一种较好的非酶糖化反应的抑制剂。
     超声降解和盐酸降解都可增强红枣多糖对非酶糖化反应的抑制作用,但抑制效果与降解程度没有明显的相关性。在试验条件下,超声降解最高可使红枣多糖对Amadori产物和AGEs形成的抑制率分别提高108.93%和29.41%,而盐酸降解最高可使其分别提高95.55%和29.65%。
     取代基修饰可对红枣多糖非酶糖化反应抑制活性产生较大影响。与未修饰的红枣多糖相比,低取代度的硫酸酯化红枣多糖对Amadori产物和AGEs的形成的抑制作用均得到提高,而高取代度的硫酸酯化红枣多糖的抑制活性却大幅下降;而较高取代度的羧甲基化修饰可以显著增强红枣多糖对非酶糖化反应的抑制作用,并且抑制活性的增强与羧甲基取代度之间有较好的相关关系;各乙酰化红枣多糖的取代度与其对非酶糖化反应的抑制效果没有相关性。在试验的三种取代基修饰中,以羧甲基化修饰对红枣多糖非酶糖化反应抑制活性的影响最大,在试验条件下羧甲基取代度最高的CM-ZJP-7对BSA-Glu非酶糖化反应体系中Amadori产物和AGEs的形成的抑制率分别可达到89.5%和86.3%。因此,羧甲基化修饰可作为提高红枣多糖非酶糖化反应抑制效果的重要手段之一。
     4、透明质酸酶抑制活性
     透明质酸的过度降解可导致关节疾病和过敏及其它类型的炎症反应,而且与肿瘤的发生、发展密切相关。本文研究结果表明,红枣多糖对透明质酸酶具有较强的抑制作用,而且随着红枣多糖浓度的增加而增强,呈现出较好的量效关系。因此,红枣多糖可以阻止体内透明质酸的分解,有助于维持透明质酸的功能,对于由于透明质酸过度降解造成的各种疾病可能会具有一定的防治作用。在试验条件下,其对透明质酸酶活性的抑制率最高可达93.55%,IC50为0.095mg·mL~(-1)。
     红枣多糖经DE52纤维素柱层析分离纯化得到的各个级分对透明质酸酶均有不同程度的抑制作用,其中ZJP-0和ZJP-1对透明质酸酶的抑制活性较原多糖略有提高,而ZJP-2和ZJP-3则较低,说明ZJP-0和ZJP-1在红枣多糖的透明质酸酶抑制活性中发挥主要作用。
     红枣多糖超声降解至平均分子量在600-660kDa时透明质酸酶抑制活性最强,降至600kDa以下时即呈下降趋势。低浓度盐酸降解对红枣多糖透明质酸酶的影响不大,但当盐酸浓度增大至0.4mol/L以上即红枣多糖平均分子量被降低到200kDa以下时,其对透明质酸酶的抑制活性急剧降低。这说明较高分子量对于维持红枣多糖较强的透明质酸酶抑制活性十分重要,保持一定的链长是发挥红枣多糖对透明质酸酶抑制活性的关键。适度超声降解有助于提高红枣多糖的透明质酸酶抑制活性。
     不同取代基修饰对红枣多糖的透明质酸酶抑制活性产生的效应有较大差别。红枣多糖经不同程度硫酸酯化修饰后对透明质酸酶活性的抑制作用均有不同程度的增强,并且其抑制活性随硫酸基取代度的增加而增强;而红枣多糖的乙酰化修饰则使其对透明质酸酶的抑制活性大大降低,且与乙酰基取代度之间没有相关性;低取代度羧甲基化修饰使红枣多糖对透明质酸酶的抑制活性降低,但较高的羧甲基取代会使红枣多糖的透明质酸酶抑制活性有所提高。在试验条件下,硫酸酯化和羧甲基化修饰最高可使红枣多糖对透明质酸酶活性的抑制率分别提高45.80%和39.76%。硫酸酯化修饰和高取代度羧甲基化修饰可作为提高红枣多糖对透明质酸酶抑制活性的重要手段。
     综上所述,分子修饰可通过多种机制影响红枣多糖的生物活性,且与各种活性的不同机理有关。通过分子修饰,一方面可以改善红枣多糖的溶解性,从而可使其在水溶性测试系统中发挥更好的活性。同时,通过分子修饰,还可以改变红枣多糖的空间构象,使更多/少的活性基团裸露出来,或形成/破坏红枣多糖的活性构型,造成红枣多糖活性的改变。不同生物活性产生的机理和要求的活性基团及构象特征不同,所以分子修饰产生的效果也存在很大差异。分子修饰导致的红枣多糖构象变化对于其生物活性的影响较理化性质改变更为重要,维持一定的链长和空间构象是发挥其活性的关键。
Polysaccharide is the most important bioactive component in jujube, the fruit of Zizyphusjujuba Mill. Due to its high potential for pharmaceutical use, many studies had been done toinvestigate the extraction, purification, structure and biological activities of Ziziphus jujubafruit polysaccharide (ZJP). Molecular modification of ZJP favors to improve its biologicalactivities and extend its application range. It was also helpful for the research on therelationship between structure and bioactivities of ZJP, so as to other polysaccharides. In thisdissertation, the ZJP was extracted, purified, degraded and chemically modified, and thebiological activities, including antioxidant activity, hypopoglycemic effect and inhibitoryeffect to hyaluronidase were studied for both the native and modified ZJP. It was proved thatthe ZJP could inhibit the activities of α-amylase, α-glucosidease, hyaluronidase andnon-enzymatic glycation, and molecular modification could alter the biological activitiessignificantly. Furthermore, the change of advanced structure of ZJP was thought to be morerelated to the alteration of its biological activities. The results detailed as follows:
     Preparation of Ziziphus jujuba fruit polysaccharide (ZJP)
     The optimum conditions for extraction of polysaccharide from Ziziphus jujuba fruit withhot water were:1:10for the ratio of material to water (w/v),80℃, extracting two times, andone hour for each time. By XAD-761resin adsorption, the combined extraction ofpolyphenols and polysaccharides from Ziziphus jujuba fruit was achieved with less effect onthe polysaccharide extraction.
     The protein in ZJP extract could be removed efficiently by Sevag method. And the colorcould be removed by macroporous adsorption resin with little loss of polysaccharide, whileactive carbon usually caused higher loss of polysaccharide due to its high adsorption topolysaccharide with poor decoloration effect to ZJP extract.
     By DE52-cellulose column chromatography, one neutral polysaccharide fraction namedas ZJP-0and three acidic polysaccharide fractions named as ZJP-1, ZJP-2and ZJP-3, wereobtained. The molecular weights of four fractions were about1000kDa. Among of them, ZJP-2was the major constituent. The monosacchaaride composition analysis by HPLC showedthat ZJP was a heteropolysaccharide which was composed of galacouronic acid, rhamnose, arabinose, galactose, xylose and glucose etc. Results of periodate oxidation indicated that themain link type of ZJP was (1→4) linkage.
     Molecular modification of Ziziphus jujuba fruit polysaccharide (ZJP)
     Ultrasonic treatment could cause the degradation of ZJP. Lower temperature, higherultrasonication power, lower concentration of ZJP and frequency conversion treatment washelpful for the ultrasonic degradation. Under the experimental conditions, Ultrasonictreatment only decreased the molecular weight of ZJP to a certain degree and the finalmolecular weight of ZJP was still above300kDa. Hydrochloric acid could degrade ZJPefficiently even at lower concentration under room temperature. Degradation of ZJP was moreviolent by increasing the concentration of hydrochloric acid and the molecular weight of ZJPreduced sharply. The degradation product of ZJP treated with a certain concentration ofhydrochloric acid was also relative homogeneous polysaccharide. Hydrogen peroxide couldalso degrade ZJP violently, but the molecular weight distribution of degradation product wastoo wide with a large number of low molecular sugars.
     By chlorosu1fonic acid-pyridine method, the ZJP could be sulfated successfully. Theoptimum conditions for sulfation of ZJP were:1:3of volume ratio of chlorosu1fonic acid topyridine,70℃of reaction temperature and2.5h of reaction time. Under these conditions, thedegree of substitution of sulfated ZJP was up to1.39.
     Carboxymethylated derivatives of ZJP were obtained by using sodium hydroxide-momochloroacetic acid reaction system. The degree of substitution of carboxymethylated ZJPincreased with higher concentration of NaOH in reaction system, but the yield of productsdecreased. There was a significant negative correlation between the degree of substitution andthe yield. Increasing the ratio of carboxy-methylation reagent to ZJP was helpful for theincrease of the degree of substitution of carboxymethyl.
     Acetylation of ZJP was achieved by using both acetic anhydride method and glacialacetic acid method respectively. By glacial acetic acid method, the degree of substitution ofacetylated ZJP was lower, so this method was not suitable for preparing acetylated ZJP withhigher degree of substitution. High temperature and low pH were unfavorable for the acetylsubstitution of ZJP by acetic anhydride method, and reaction at room temperature andconstant pH of9.5±0.5were in favor of the acetyl substitution.
     Sulfation, carboxymethylation and acetylation of ZJP could significantly improve thedistribution statue and solubility of ZJP in water.
     Biological activity of Ziziphus jujuba fruit polysaccharide (ZJP) and its molecularmodification products
     Antioxidant activity
     The antioxidant activity of ZJP and the fractions separated by DE52-cellulose columnchromatography was evaluated by using free radical scavenging test in various in vitro system.And ZJP and the fractions separated by DE52-cellulose column chromatography weredemonstrated to exhibit strong scavenging capacities towards superoxide anion radicalsgenerated by illuminating riboflavin, hydroxyl radical generated by Fenton reaction andDPPH with a dose-dependent pattern. Under the experiment conditions, the maximumscavenging percentage of ZJP to superoxide anion radical, hydroxyl radical and DPPH was upto99.01%,49.46%, and36.89%respectively. As compared with the native ZJP, the freeradical scavenging activities of fractions separated by DE52-cellulose columnchromatography decreased. Among of the fractions, acidic polysaccharide (ZJP-1, ZJP-2andZJP-3) showed stronger activity than the neutral polysaccharide (ZJP-0), which suggested thatgalacouronic acid may play an important role in free radical scavenging activity for ZJP.
     Properly degradation by ultrasonication or hydrochloric acid treatment could improve thefree radical scavenging capacity of ZJP, but the activity would decrease when the molecularweight was lower than230kDa. Ultrasonication treatment would iuflence the antioxidantactivity of ZJP by dual mechanisms. The molecular size and conformation of ZJP, whichcould be changed by ultrasonication, would both have impact on the antioxidant activity.Under the experiment conditions, the maximum scavenging percentage of ZJP to superoxideanion radical, hydroxyl radical and DPPH was increased by3.16,2.00and0.16timesrespectively by ultrasonication treatment, while increased by4.78,1.46and0.22times whendegraded with hydrochloric acid.
     The free radical scavenging effects of chemical modified ZJP derivatives were related tothe radical testing system, and the configuration might play an important role in the freeradical scavenging activity of ZJP. Appropriate sulfation could obviously improve thescavenging activity of ZJP to superoxide anion radical, and the IC50of sulfated ZJP withmoderate degree of substitution (DS) of0.79and1.03decreased by half compared with thatof the native ZJP. But there was less effect on hydroxyl radical and DPPH scavenging effect.Carboxymethylation could significantly improve the scavenging activity of ZJP to hydroxylradical, but was not favorable for superoxide anion radical and DPPH scavenging activity.The scavenging effect of five acetylation products of ZJP to hydroxyl radical were improvedsignificantly, but acetylation would lead to the decrease of the scavenging effect to superoxideanion radical. The acetylation also changed the kinetics of scavenging effect of ZJP to DPPH.Therefore, moderate degree of sulfation was the most effective method to improve thesuperoxide anion radical scavenging effect of ZJP, and acetylation and carboxymethylationwere important means to improve the hydroxyl radical scavenging effect of ZJP.
     Hypoglycemic effect
     The hypoglycemic effect of ZJP was evaluated by determination of the inhibitory effectagainst α-amylase and α-glucosidease in vitro. Results showed that ZJP could inhibitα-amylase and α-glucosidease effectively with an obvious dose-dependent manner. Under theexperiment conditions, the maximum inhibitory percentage against α-amylase andα-glycosidase was53.53%and62.65%with IC50of11.39mg·mL-1and16.61mg·mL-1respectively. Thus, ZJP might reduce postprandial hyperglycemia by affecting the wholeprocess from enzymatic hydrolysis of starch to the production of glucose and prolonging therelease and absorption of monosaccharide.
     As compared to the native ZJP, the inhibitory effect on α-amylase of fractions separatedby DE52-cellulose column chromatography, ZJP-1, ZJP-2and ZJP-3, were improvedsignificantly except ZJP-0with a slight decrease, and the inhibitory effects on α-glucosideaseof the four fractions were all improved to different degree. Among of the fractions, ZJP-1showed the strongest inhibitory activity on α-amylase and α-glucosidease,which suggestedthat ZJP-1may play an important role in the hypoglycemic activity of ZJP.
     The inhibitory effect against α-amylase of ZJP was decreased, but the inhibitory effectagainst against α-glucosidease was improved after ultrasonication treatment. Furthermore, theinhibitory effect against α-glucosidease increased with prolonging of treatment duration.When degraded with hydrochloric acid, the inhibitory effects of ZJP against α-amylase andα-glucosidease were improved at lower concentration of hydrochloric acid, but excessivedegradation led to lower activity. ZJP fractions with molecular weight from300to600kDashowed stronger inhibitory activity against α-glucosidease, but the activity was weaker whenthe molecular weight was lower than290kDa. Maintaining certain length of chain and spatialconformation of ZJP was crucial to perform its activity. Under the experiment conditions, themaximum inhibitory percentage of ZJP against α-glucosidease could be increased by2.09and1.56times respectively when treated with ultrasonication and hydrochloric acid, and themaximum inhibitory percentage of ZJP againstα-amylase was also improved by38.25%whendegraded with hydrochloric acid.
     The inhibitory effects against α-amylase of ZJP substituted with different groups alldecreased as compared to that of the native ZJP, but the inhibitory effects againstα-glucosidease were improved. Under the experiment conditions, the inhibitory percentage ofZJP modificated with sulfation, carboxymethylation and acetylation against α-glucosideasewas increased by1.87,5.08and3.97times respectively. Carboxymethylation was one of themost efficient methods to improve the inhibitory effect of ZJP against α-glucosidease.
     Inhibitory effect on non-enzyme glycation
     ZJP and the fractions separated by DE52-cellulose column chromatography weredemonstrated to inhibit the formation of Amadori products and AGEs, the intermediates andadvanced glycation endproducts of non-enzyme glycation (NEG), which suggested that ZJPmay improve the diabetic complications such as microangiopathy caused by NEG and AGEs.As compared to the native ZJP, the inhibitory effect on Amadori products formation of ZJP-0and ZJP-3increased, while that of ZJP-1and ZJP-2decreased. Furthermore, only ZJP-3showed stronger inhibitory effect on AGEs formation than that of the native ZJP, whichsuggested that ZJP-3may be a good inhibitor against non-enzyme glycation.
     The inhibitory effects of ZJP on non-enzyme glycation were improved with degradationby both ultrasonication and hydrochloric acid, but there was no obvious correlation betweenthe inhibitory effect and degradation degree. Under the experiment conditions, the maximuminhibitory percentage on Amadori products and AGEs formation of ZJP degraded withultrasonication was increased by108.93%and29.41%respectively, and that of ZJP degradedwith hydrochloric acid was improved by95.55%and29.65%respectively.
     Chemical modification affected the inhibitory effect of ZJP on non-enzyme glycationgreatly. As compared to the native ZJP, the sulfated ZJP with lower degree of substitutionshowed a higher inhibitory effect on Amadori products and AGEs formation, while thesulfated ZJP with higher degree of substitution showed a much lower inhibitory effect.Carboxymethylation ZJP with higher degree of substitution strongly inhibited the non-enzymeglycation with a good correlation between activity and degree of substitution. But there wasno relationship between activity and degree of substitution of aceylated ZJP. Among of thethree modification methods of different substitution groups, carboxymethylation showed thestrongest influence on inhibitory activity on non-enzyme glycation. Under the experimentconditions, the inhibitory percentage on Amadori products and AGEs formation of CM-ZJP-7was up to89.5%and86.3%respectively. Thus, carboxymethylation could be used as animportant means to improve the inhibitory effect of ZJP on non-enzyme glycation.
     Inhibitory activity on hyaluronidase
     Excessive degradation of hyaluronic acid could lead to joint diseases, allergy and othertype of inflammatory response and closely related to initiation and development of cancer.The ZJP was demonstrated to exhibit strong inhibitory effect on hyaluronidase with a strongdose-dependent pattern. Therefore, ZJP could be used as preventive and therapeutic agent forthe diseases caused by excessive degradation of hyaluronic acid due to its prevention ofdegradation of hyaluronic acid and maintaining the function of hyaluronic acid. Under theexperiment conditions, the maximum inhibitory percentage was up to93.55%with an IC_(50)of0.095mg·mL~(-1).
     All of ZJP and the fractions separated by DE52-cellulose column chromatographyshowed inhibitory effect on hyaluronidase. Among of the fractions, the inhibitory effect ofZJP-0and ZJP-1increased slightly, but that of ZJP-2and ZJP-3decreased, which suggestedthat ZJP-0and ZJP-1may play an important role in inhibitory activity on hyaluronidase.
     ZJP of molecular weight from600to660kDa by degradation with ultrasonicationshowed the strongest inhibitory effect on hyaluronidase, but descended when the molecularweight was lower than600kDa. There was little effect on the inhibitory effect onhyaluronidase when degraded with lower concentration of hydrochloric acid, but theinhibitory activity decreased sharply when the hydrochloric acid concentration was above0.4mol/L, which could cause the molecular weight of ZJP decreased to less than200kD. Thisindicated that higher molecular weight of ZJP was important to maintain its strongerinhibitory effect on hyaluronidase, the length of chain was crucial for the inhibitory activity.Ultrasonication degradation to a moderate extent was helpful to improve the inhibitory effectof ZJP on hyaluronidase.
     Chemical modification of ZJP with different substitution groups affected the inhibitoryeffect on hyaluronidase differently. As compared to the native ZJP, the inhibitory effect ofsulfated ZJP was improved with a good correlation between degree of substitution andinhibitory activity. While acetylation of ZJP caused the decreasing of inhibitory activity, andthere was no relationship between inhibitory activity and degree of substitution. Thecarboxymethylated ZJP with lower degree of substitution showed a lower inhibitory effect onhyaluronidase, while the carboxymethylated ZJP with higher degree of substitution showed ahigher inhibitory effect. Under the experiment conditions, the inhibitory percentage onsulfation and carboxymethylation could increase the inhibitory percentage of ZJP onhyaluronidase by45.80%and39.76%respectively, which indicated that sulfation andcarboxymethylation with higher degree of substitution could be used as important means toimproved the inhibitory activity of ZJP on hyaluronidase.
     In conclusion, the biological activities of ZJP were influenced by various mechanisms.The effect of molecular modification on biological activity was also related to the differentmechanism involved in each biological activity. By molecular modification, the solubility ofZJP was improved, thus the activity could be performed better in water soluble test system.Furthermore, with the change of spatial conformation due to molecular modification of ZJP,more or less active groups were revealed. Otherwise, the active configuration of ZJP wasformed or destroyed. All of these changes in structure or physical-chemical characteristicscould lead to the alteration of biological activities. The difference existed in the mechanismand active group or configuration characteristics according to different biological activity would be responsible for the different effect of the same modification. The change ofconfiguration caused by molecular modification seemed to be more important thanphysical-chemical characteristics for ZJP. Maintaining certain length of chain and spatialconformation of ZJP was crucial to perform its activity.
引文
蔡为荣,顾小红,汤坚.2010.仙人掌多糖提取纯化及其抗凝血活性研究.食品科学,31(6):131~136.
    曹奔,池爱平.2006.酶法提取木枣多糖对游泳小鼠血清酶的影响.食品科学,27(10):531~534.
    曹犇.2008.木枣多糖抗小鼠运动疲劳的实验研究.食品科学,29(9):571~574.
    陈春英,黄雪华,周井岩,徐辉碧,蒋岩,朱关福,孙定一.1998.硫酸化箬竹多糖的结构修饰及抗艾
    滋病毒活性.药学学报,1998,33(4):264~268.
    陈建国,步文磊,来伟旗,刘冬英,梅松,刘臻,孙丽华,江月仙,傅颖,王茵.2011.桑叶多糖降血糖
    作用及其机制研究.中药材,42(3):515~520.
    陈郎秋,邹新僖.1993.乙酰化红薯淀粉的性能研究().高等学校化学学报,14(6):872~875.
    陈蕾,吴皓.2008.多糖降解方法的研究进展.中华中医药学刊,26(1):133~135.
    陈士国,李兆杰,王玉明,李国云,孙蓓蓓,薛长湖.2010.鱿鱼墨多糖的硫酸酯化及抗凝血活性.高
    等学校化学学报,31(12):2407~2412.
    陈玉香,张丽萍,梁忠岩,苗春艳,张翼伸.1997.沙棘果水溶性多糖Hn的分离纯化与抗病毒研究.东北师大学报:自然科学版,(4):74~77.
    崔莹莹,张剑韵,张容鹄,黄龙全.2009.大蒜多糖的体外抗凝血作用及结构分析.食品与发酵工业,35(4):24~27
    戴玲,赵帜平,沈业寿,李剑峰,李明珠.2006.丹皮多糖对a-葡萄糖苷酶作用的影响.生物学杂志,23(2):23~25
    高英,叶小利,李学刚,朱小康,王亮,黄文文,李平,冯平.2010.黄精多糖的提取及其对α-葡萄糖苷酶抑制作用.中成药,32(12):2133~2137.
    顾有方,李卫民,李升和,陈会良,董策龙赵芝刚.2006.大枣多糖对小鼠四氯化碳诱发肝损伤防护作用的实验研究.中国中医药科技,13(2):105~107.
    关奇,杨万政,温中平.2005.沙棘果皮、叶中多糖的提取及其抑菌作用研究.国际沙棘研究与开发,3(2):17~20.
    郭瑞华,翟丽,刘正猛,王和平,赵运森,孙艳美,邹洪波.2005.豆豉及其多糖对α-葡萄糖苷酶抑制作用的研究及豆豉中降糖有效成分的初步分析.中药材,28(1):38~40
    郭燕君,袁华,张俐娜,甘胜伟.2006.灵芝多糖对阿尔茨海默病大鼠海马组织形态学及抗氧化能力的影响.解剖学报,37(5):409~413.
    何新益,刘仲华.2007.苦瓜多糖降血糖活性的高通量筛选研究.食品科学,28(2):313~316.
    贺珍俊.2004.多糖的分子修饰和抗凝血活性.[硕士学位论文].呼和浩特:内蒙古大学.
    胡顺珍,贾乐.2007.食药用真菌多糖构效关系研究进展.生物技术通报,(4):42~45.
    黄绍华,胡晓波,王震宙.2006.山药多糖对α-淀粉酶活力的抑制作用.食品工业科技,27(9):94~95.
    蒋鑫,徐静,李妍妍,丁进峰,苏秀榕.2011.海参消化道多糖降血脂功能的研究.中国食品学报,11(7):46~49.
    焦中高,刘杰超,周红平,王思新,杨公明.2008.枣果中酚类物质的高效液相色谱分析.食品与发酵工业,34(3):133~136.
    李春美,谢笔钧.2000.茶多酚及其氧化产物清除不同体系产生的活性氧自由基的分光光度法研究.精细化工,17(4):241~244.
    李德海,王志强,孙常雁,王萍.2010.黄伞子实体多糖的初步纯化及降血脂研究.食品科学,31(9):268~271.
    李坚斌,李琳,李冰,陈玲,黄国兴.2006.超声降解多糖研究进展.食品工业科技,27(9):181~184.
    李瑾,杜予民,姚评佳,魏远安.2007.壳聚糖超声可控降解及降解动力学研究.高分子学报,1(5):401~406.
    李进伟,丁霄霖.2006a.金丝小枣多糖的提取及脱色研究.食品科学,27(4):150~154.
    李进伟,丁霄霖.2006b.金丝小枣多糖的生物活性.食品生物技术学报,25(5):103~106.
    李进伟,范柳萍,张连富,李苹苹.2009.金丝小枣蛋白聚糖的分离纯化及其结构分析.食品工业科技,30(4):67~69.
    李静,王亚平.2005.当归多糖对骨髓巨噬细胞的影响及其与造血调控的关系.中草药,36(1):69~72.
    李小平,陈锦屏,邓红,盛文军.2005.红枣多糖沉淀特性及抗氧化作用.食品科学,26(10):214~216.
    李小平.2004.红枣多糖提取工艺研究及其生物功能初探.[硕士学位论文].西安:陕西师范大学.
    李雪华,龙盛京.2000.大枣多糖的提取与抗活性氧研究.广西科学,7(1):54~56,63.
    李志洲,杨海涛,邓百万.2004.大枣多糖的提取工艺.食品与发酵工业,30(11):127~129.
    林勤宝,高大维,于淑娟,扶雄.1998a.大枣多糖的分离和纯化.食品工业科技,19(4):20~21.
    林勤保,赵国燕.2005.不同方法提取大枣多糖工艺的优化研究.食品科学,26(9):368~371.
    林勤保,高大维,于淑娟,刘淑华.1998b.大枣多糖的单糖组成的高效液相色谱法研究.郑州粮食学院学报,19(3):57~61
    刘长安,赵帜平,沈业寿,戴玲.2005.丹皮多糖2b对体外非酶糖化反应及终产物生成的抑制作用.生物学杂志,22(1):20~21
    刘成梅,付桂明,涂宗财,万茵.2002.百合多糖降血糖功能研究.食品科学,23(6):113~114.
    刘海霞,牛鹏飞,王峰,李琴梅,仇农学.2007.大孔吸附树脂对大枣多糖提取液的脱色条件研究.食品与发酵工业,33(10):180~184.
    刘捷,张体祥,于立芹,卢奎.2009.硒化红薯叶多糖的制备及抗氧化活性研究.食品研究与开发,30(8):8~11.
    刘丽平,黄键,陈必链.2004.天然产物降血糖成分的研究进展.海峡药学,16(5):4~7.
    刘玲英,陈晓东,吴伯瑜,江琼.2010.芦荟多糖对体外培养人成纤维细胞增殖和分泌透明质酸与羟
    脯氨酸的影响.中西医结合学报,8(3):256~262.
    鲁周民,刘坤,闫忠心,李新岗.2010.枣果实营养成分及保健作用研究进展.园艺学报,37(12):2017–2024
    路筱涛,鲍淑.2002.刺梨多糖对小鼠抗应激功能和免疫功能的影响.广州中医药大学学报,19(2):141~142.
    罗晶洁,王尉,曹学丽.2011.桑叶多糖的分离纯化及对α-葡萄糖苷酶的抑制活性.食品科学,32(3):112~116
    罗莹,林勤宝.2007.大枣多糖脱蛋白方法的研究.食品工业科技,28(8):126~128.
    罗祖友,胡筱波,吴谋成.2007.植物多糖的降血糖与降血脂作用.食品科学,28(10):596~510.
    孟宪军,刘晓晶,孙希云,张琦,潘璇.2010.蓝莓多糖的抗氧化性与抑菌作用.食品科学,31(17):110~114.
    苗明三,苗艳艳,孙艳红.2006.大枣多糖对血虚大鼠全血细胞及红细胞ATP酶活力的影响.中国临床康复第,10(11):97~99.
    苗明三,盛家河.2001.大枣多糖对衰老模型小鼠、脾脏和脑组织影响的形态计量学观察.中药药理与临床,2001,17(5):18
    苗明三.2004a.大枣多糖对小鼠气血双虚模型胸腺及脾脏组织的影响.中国临床康复,8(27):5894~5895.
    苗明三.2004b.大枣多糖对免疫抑制小鼠腹腔巨噬细胞产生IL-1α及脾细胞体外增殖的影响.中药药理与临床,20(4):21~22.
    苗明三.2004c.大枣多糖对免疫抑制小鼠白细胞介素2及其受体水平的影响.中国临床康复,8(30):6692~6693
    聂凌鸿,宁正祥.2003.活性多糖的构效关系.林产化学与工业,23(4):89~94.
    庞启深,郭宝江,阮继红.1988.螺旋藻多糖对核酸内切酶活性和DNA修复合成的增强作用.遗传学报,15(5):374~381.
    彭永华,金征宇,王元凤,王玮.2006.优选茶多糖硫酸酯化工艺的研究.食品与机械,22(6):45~48.
    彭宗根,陈鸿珊,郭志敏,董飚,田庚元,王光强.2008.牛膝多糖硫酸酯体外和体内抗艾滋病病毒作用.药学学报,43(7):702~706.
    钱萍萍,刘长云.2003.糖尿病非酶糖化抑制剂研究进展.国外医学卫生学分册,30(3):137~140.
    曲蕾,姬胜利.2007.透明质酸及透明质酸酶与肿瘤的关系.中国生化药物杂志,28(2):127~129.
    邵传森,林佩芳.1991.中华猕猴桃多糖体外抗轮状病毒作用的初步观察.浙江中医学院学报,15(6):29~30.
    申建和,陈琼华.1987.黑木耳多糖、银耳多糖、银耳孢子多糖的抗凝血作用.中国药科大学学报,18(2):137~140.
    师然新,徐祖洪,李智恩.2000.降解的角叉菜多糖的抗肿瘤活性.海洋与湖沼,31(6):653~656.
    石碧,狄莹.2000.植物多酚.北京:科学出版社:19~20.
    水明磊,籍保平,李博,张桂芝,胡济美.2007.大孔树脂对苹果渣中多酚与果胶分离的研究.食品科学,28(12):50~55
    孙丽华,陈铭学.2001.天然产物中透明质酸酶抑制剂的研究.天然产物研究与开发,13(4):76~78.
    田庚元,李寿桐,宋麦丽,郑民实,李文.1995.牛膝多糖硫酸酯的合成及其抗病毒活性.药学学报,30(2):107~111.
    田丽梅,王旻,陈卫.2006.枸杞多糖对α-葡萄糖苷酶的抑制作用.华西药学杂志,21(2):131~133.
    田龙.2008.水溶性大豆多糖的抑菌活性研究.中国油脂,33(12):64~66.
    王慧铭,孙炜,黄素霞,项伟岚.2008.昆布多糖对大鼠减肥及降血脂作用的实验研究.中国现代应用药学,25(1):16~19.
    王俊钢,刘成江,吴洪斌,李宇辉,赵志永,金新文.2012.超声波协同纤维素酶提取骏枣多糖工艺优化.广东农业科学,(1):90~93
    王莉,张远,朱丽丹,赵鑫,陈正行.2010.硫酸酯化修饰米糠多糖的研究.食品工业科技,31(10):243~246
    王淼,于海燕,欧阳健明.2008.降解前后异枝麒麟菜硫酸多糖对草酸钙晶体生长的调控作用.物理化学学报,24(1):109~114.
    王思新,刘杰超,焦中高,王亚绿,马彩红,郭焕霞,王晓燕,李银杰.2005.树脂法吸附分离苹果汁中多酚物质的研究.果树学报,22(1):11~15
    王庭欣,王庭祥,庞佳宏.2007.海带多糖降血糖、血脂作用的研究.营养学报,29(1):99~100.
    王翔岩,齐云,蔡润兰,李晓红,杨美华,石钺.2009.肉苁蓉多糖的巨噬细胞活化作用.中国药理学通报,25(6):787~790.
    王忠民,王跃进,周鹏.2005.葡萄多糖抑菌特性的研究.食品与发酵工业,31(1):77~79.
    魏守蓉,薛存宽,何学斌,沈凯,袁彬,蒋鹏,朱军,李颖,曾玲.2005.绞股蓝多糖降血糖作用的实验研究.中国老年学杂志,25(4):418~420.
    巫光宏,王玉琪,何典路,何平,黄卓烈.2009.虎奶菇菌核水提多糖对糖尿病小鼠的抗氧化作用.天然产物研究与开发,21(2):334~338.
    吴笳笛,陈红漫.2006.水溶性苦瓜多糖的分离纯化及生物学活性的研究.食品科学,27(3):82~86.
    吴琼,代永刚,高长城,宁正祥.2009.酸降解水溶性银耳多糖及抗氧化作用研究.食品科学,30(13):93~96
    辛娟.2005.大枣多糖的提取与丹皮酚肿衍生物联合抗肿瘤的体内外实验研究.[硕士学位论文].重庆:重庆大学.
    熊燕飞,韩志红,刘欣安,吴桂兰.2005.香蕉多糖的提取及其抗肿瘤作用研究.中华实用中西医杂志,18(2):261~263.
    徐庆,滕俊英.2004.植物多糖的降血糖作用与机理.中国食物与营养,(8):105~107
    徐瑜玲,苗明三,孙艳红,苗艳艳.2004.大枣多糖对气血双虚模型小鼠造血功能的影响.中国临床
    康复,24(8):5050~5051.
    杨娟,陈付学,梁光义.2005.刺梨多糖对神经干细胞谷氨酸损伤的保护作用.营养学报,27(4):339~341.
    杨娟,杨付梅,孙黔云.2006.刺梨多糖的分离纯化及其神经营养活性.中国药学杂志,41(13):980~982.
    杨世平,孙润广.2005.陕北红枣中多糖的酶加水法提取工艺研究.武汉植物学研究,23(4):373~375.
    杨咏洁,梁成云,崔福顺.2010.荠菜多糖的超声波提取工艺及其抑菌活性的研究.食品工业科技,31(4):146~148,151
    杨云,刘福勤,冯卫生,孟江,田润涛.2004a.碱法提取大枣渣多糖及活性炭脱色的工艺研究.食品与发酵工业,30(7):30~32
    杨云,孟江,冯卫生,田润涛,2004c.大枣酸性多糖ZJ-6的化学研究.食品科学,25(5):55~58.
    杨云,田润涛,冯卫生,孟江,苗明三.2004b.大枣渣多糖制备工艺的研究.林产化学与工业,24(3):91~94.
    姚文华,尹卓容.2006.大枣多糖脱色的工业化试验.食品工业,(5):41~43.
    叶明,李世艳,郝伟伟,杨柳,庄文颖.2009.金顶侧耳胞内多糖生物活性研究.菌物学报,28(4):558~563.
    叶绍明,岑颖洲,张美英,王一飞.2007.麒麟菜硫酸酯多糖体外抗病毒作用的研究.中国海洋药物,26(3):14~19.
    尹鸿萍,盛玉青.2006.盐藻多糖体内抑菌及抗炎作用的研究.中国生化药物杂志,27(6):361~363.
    于斐,李全宏.2011.南瓜多糖主要成分对α-葡萄糖苷酶的抑制作用.食品科技,36(9):202~206.
    于红,张文卿,赵磊,刘冰.2006.钝顶螺旋藻多糖抗病毒作用的实验研究.中国海洋药物,25(5):19~24.
    袁竹连,农万廷,陈山,韩忠.2008.大孔树脂纯化糖厂混合汁浮渣多酚抗氧化活性成分的研究.食品科技,(5):164~167.
    曾辉.2006.分子修饰魔芋多糖制备类Acemannan物质及其生物活性研究.[硕士学位论文].无锡:江南大学.
    张海容,郭祀远,李琳,蔡妙颜,郑必胜.2003.螺旋藻多糖及其硫酸酯清除羟自由基的活性[J].华南理工大学学报(自然科学版),31(6):76~79.
    张凌凌,潘景芝,张文婷,王琦.2010.树舌胞内粗多糖的提取及其抗炎活性研究.菌物学报,8(2):85~89,102
    张庆,雷林生,许军.2001b.大枣中性多糖对小鼠腹腔巨噬细胞膜电位的影响.中药药理与临床,17(6):22~24
    张庆,雷林生,许军.2002.大枣中性多糖对小鼠腹腔巨噬细胞内pH值的影响.中药药理与临床,18(1):9~10.
    张庆,雷林声,孙莉莎,杨淑琴.1998.大枣粗多糖体外抗补体活性及促小鼠脾淋巴细胞增殖作用.中药药理与临床,14(5):19~21.
    张庆,雷林声,孙莉莎,杨淑琴.1999.大枣中性多糖体外对小鼠腹腔巨噬细胞功能的影响.中药药理与临床,15(3):21~23
    张庆,雷林声,杨淑琴,孙莉莎.2001c.大枣中性多糖对小鼠腹腔巨噬细胞浆游离Ca2+浓度的影响.中药药理与临床,17(3)∶14~17
    张庆,雷林声,杨淑琴,孙莉莎.2001d.大枣中性多糖对小鼠腹腔巨噬细胞分泌肿瘤坏死因子及其mRNA表达的影响.第一军医大学学报,21(8):592~594
    张庆,雷林生,杨书琴,孙莉莎.2001a.大枣中性多糖对小鼠脾淋巴细胞增殖的影响.第一军医大学学报,21(6):426~428.
    张惟杰.1999.糖复合物生化研究技术.第二版.杭州:浙江大学出版社.
    张雯,赵旌旌,王捷思,朱兴磊,张敏,瞿伟菁.2010.金耳菌丝体多糖对实验性2型糖尿病大鼠的降血糖作用研究.天然产物研究与开发,22(1):49~53.
    张效林,曹利,苟小峰,亢茂德.2003. XDA-1树脂对茶多酚的吸附及吸附柱放大研究.离子交换与吸附,19(3):235~240
    张钟,吴茂东.2006.大枣多糖对小鼠化学性肝损伤的保护作用和抗疲劳作用.南京农业大学学报,29(1):94~97.
    昭日格图,娜日苏,博日吉汗格日勒图,韩景芬,领小,吐尔孙拜克.2009.黄芪多糖咀嚼片降血脂人体试食试验研究.食品科学,30(15):196~199.
    赵保路.氧自由基和天然抗氧化剂.北京:科学出版社,1999年7月:96~127.
    赵国燕.2005.大枣多糖的分离纯化和结构研究.[硕士学位论文].太原:山西大学.
    赵婷婷,张全斌,李智恩,徐祖洪.2009.坛紫菜多糖及其降解产品对免疫细胞增殖的影响.中药新药与临床药理,20(1):30~32.
    赵智慧.2006.枣水溶性多糖的研究.[博士学位论文].保定:河北农业大学.
    钟广泉.2007.裂褶多糖的超声降解规律性研究.[硕士学位论文].广州:华南理工大学.
    周瑞,田呈瑞,张静,刘娜.2010.鸡腿菇多糖羧甲基修饰及其抗氧化性研究.食品科学,31(13):10~15.
    朱玉婷,谭姚,莫开菊.2011.硫酸酯化修饰葛仙米多糖工艺研究.食品科学,32(24):46~49.
    Ananthi S, Raghavendran H R, Sunil A G, Gayathri V, Ramakrishnan G, Vasanthi HR.2010. In vitroantioxidant and in vivo anti-inflammatory potential of crude polysaccharide from Turbinaria ornata(Marine Brown Alga). Food Chem Toxicol,48(1):187~192.
    Aruoma O I.1998. Free radicals, oxidative stress, and antioxidants in human health and disease. J Am OilChem Soc,75:199~212.
    Asada M, Sugie M, Inoue M, Nakagomi K, Hongo S, Murata K, Irie S, Takeuchi T, Tomizuka N, Oka S.
    1997. Inhibitory effect of alginic acids on hyaluronidase and on histamine release from mast cells. BiosciBiotech Biochem,61:1030~1032.
    Athukorala Y, Ahn G N, Jee Y H, Kim G Y, Kim S H, Ha J H, Kang J S, Lee K W, Jeon Y J.2009.
    Antiproliferative activity of sulfated polysaccharide isolated from an enzymatic digest of Ecklonia cava onthe U~937cell line. J Appl Phycol,21(3):307~314.Azhar A, Hamdy M K.1979. Sonication effect on potato starch and sweet potato power. J Food Sci,44(3):801~804.
    Baba M, Schols D, Pauwels R, Nakashima H, De Clercq E.1990. Sulfated polysaccharides as potentinhibitors of HIV-induced syncytium formation: a new strategy towards AIDS chemotherapy. J AcquirImmune Defic Syndr,3(5):493~499.
    Bendjeddou D, Lalaoui K, Satta D.2003. Immunostimulating activity of the hot water-soluble
    polysaccharide extracts of Anacyclus pyrethrum, Alpinia galanga and Citrullus colocynthis. JEthnopharmacol,88:155~160.
    Bouhlal R, Haslin C, Chermann J C, Colliec-Jouault S, Sinquin C, Simon G, Cerantola S, Riadi H,
    Bourgougnon N. Antiviral Activities of sulfated polysaccharides isolated from Sphaerococcuscoronopifolius (Rhodophytha, Gigartinales) and Boergeseniella thuyoides (Rhodophyta, Ceramiales).Marine Drugs.2011;9(7):1187~1209.
    Bradford M M.1976. A rapid and sensitive method for the quantification of microgram quantities ofprotein utilizing the principle of protein-dye binding. Analytical Biochemistry,72(1):248~252.Brownlee M, Cerami A, Vlassara H.1988. Advanced products of non-enzymatic glycosylation and thephotogenesis of diabetic vascular disease. Diabetes Metabolism Reviews,4(5):437~451.
    Brownlee M, Vlassara H, Cerami A. Non-enzymatic glucosylation products on collagen covalently traplow-density lipoprotein. Diabetes,1985,34(9):938~941.
    Capek P, Hr balová V, vandováE, Ebringerová A, Sasinková V, Masarová J.2003. Characterization ofimmunomodulatory polysaccharides from Salvia officinalis L. Int J Biol Macromol,33:113~119.
    Capek P, Machova E, Turjan J.2009. Scavenging and antioxidant activities of immunomodulating
    polysaccharides isolated from Salvia officinalis L. Int J Biol Macromol,44:75~80.
    Chang S C, Hsu BY, Chen B H.2010. Structural characterization of polysaccharides from Zizyphus jujubaand evaluation of antioxidant activity. Int J Biol Macromol,47(4):445~453.
    Chen X, Bai X, Liu Y, Tian L, Zhou J, Zhou Q, Fang J, Chen J.2009. Anti-diabetic effects of water extractand crude polysaccharides from tuberous root of Liriope spicata var. prolifera in mice. J Ethnopharmacol,122(2):205~209.
    Chen X, Ye Y, Cheng H, Jiang Y, Wu Y.2005. Components and antioxidant activity of polysaccharideconjugate from green tea. Food Chem,90:17~21.
    Chen X Q, Ye Y, Cheng H, Jiang Y W, Wu Y L.2009. Thermal effects on the stability and antioxidantactivity of an acid polysaccharide conjugate derived from green tea. J Agric Food Chem,57(13):5795~5798.
    Chun H, Shin D H, Hong B S, Cho H Y, Yang H C.2001. Purification and biological activity of acidicpolysaccharide from leaves of Thymus vulgaris L. Biol Pharm Bull,24(8):941~946.
    Chung HY, Yoo MK, Kawagishi H.2009. Characteristics of water-soluble polysaccharide, showinginhibiting activity on α-Glucosidase, in Cordyceps militaris. Food Sci Biotech,18:667~671.
    Ciancia M, Quintana I, Cerezo A S.2010. Overview of anticoagulant activity of sulfated polysaccharidesfrom seaweeds in relation to their structures, focusing on those of green seaweeds. Current MedicinalChemistry,17:2503~2529.
    Deters A M, Schroder K R, Hensel A.2005. Kiwi Fruit (Actinidia chinensis L.) polysaccharides exertstimulating effects on cell proliferation via enhanced growth factor receptors, energy production, andcollagen synthesis of human keratinocytes, fibroblasts, and skin equivalents. J Cell Physiol,202:717–722.Dodgson K S, Price R G.1962. A Note on the determination of ester sulfate content of sulphatedpolysaccharides. Biochem J,84(1):106~110.
    Dong C X, Hayashi K, Lee J B, Hayashi T.2010. Characterization of Structures and Antiviral Effects ofPolysaccharides from Portulaca oleracea L. Chem Pharm Bull,58(4):507~510.Durcilene A Silvaa, Regina C M de Paulaa, Judith P A Feitosa, Ana C F de Brito, Jeanny S Maciel, HaroldoC B Paula.2004. Carboxymethylation of cashew tree exudate polysaccharide. Carbohydr Polym,58(2):163~171.
    Bralley E, Greenspan P, Hargrove J L, Hartle D K.2008. Inhibition of hyaluronidase activity by selectsorghum brans. J Med Food,11(2):307~312.
    Eyler R W, Klug E D, Diephuis Floyd.1947. Determination of degree of substitution of sodium carboxymethylcellulose. Analytical Chemistry,19(1):24~27.
    Finkel T, Holbrook N J.2000. Oxidants, oxidative stress and the biology of ageing. Nature,408(6809):239~247.
    Fraser J R, Laurent TC, Laurent U B.1997. Hyaluronan: its nature, distribution, functions and turnover. JIntern Med,1997,242(1):27~33.
    Furusawa M, Narita Y, Iwai K, Fukunaga, T, Nakagiri O.2011. Inhibitory Effect of a Hot Water Extract of
    Coffee "Silverskin" on Hyaluronidase. Biosci Biotechnol Biochem,75(6):1205~1207.
    Gao T, Ma S, Song J.2011. Antioxidant and immunological activities of water-soluble polysaccharidesfrom Aconitum kusnezoffii Reichb. Int J Biol Macromol,49:580~586.
    Gao Y, Gao H, Chan E, Tang W, Xu A, Yang H, Huang M, Lan J, Li X, Duan W, Xu C, Zhou S.2005.Antitumor activity and underlying mechanisms of ganopoly, the refined polysaccharides extracted fromGanoderma lucidum, in mice. Immunol Invest,34(2):171~98.
    Gao Y, Zhou S, Wen J, Huang M, Xu A.2002. Mechanism of the antiulcerogenic effect of Ganodermalucidum polysaccharides on indomethacin-induced lesions in the rat. Life Sci,72:731~745.
    Girish K S, Kemparaju K, Nagaraju S, Vishwanath B S.2009. Hyaluronidase inhibitors: a biological andtherapeutic perspective. Current Medicinal Chemistry,16(18):2261~2288.
    Girish KS, Kemparaju K.2005. Inhibition of Naja naja venom hyaluronidase by plant-derived bioactive
    components and polysaccharides. Biochemistry (Mos),70:948~52.Halliwell B.1997. Antioxidants and human disease: a general introduction. Nutr Rev,55: S44~49Hotta H, Hagiwara K, Tabata K, Ito W, Homma M.1993. Augmentation of protective immune responsesagainst Sendai virus infection by fungal polysaccharide schizophyllan. Int J Immunopharmacol,15(1):55~60.
    Zhu W, Chiu L C, Ooi V E, Chan P K S., Ang Jr P O.2004. Antiviral property and mode of action of asulphated polysaccharide from Sargassum patens against herpes simplex virus type2. Int J AntimicrobAgents,24:279~283.Hu X Q, Huang Y Y, Dong Q F.2011. Structure characterization and antioxidant Activity of a novel
    polysaccharide isolated from pulp tissues of Litchi chinensis. J Agric Food Chem,59:11548~11552.Inoue N, Yamano N, Sakata K, Nagao K, Hama Y, Yanagita T.2009. The sulfated polysaccharide
    porphyran reduces apolipoprotein B100secretion and lipid synthesis in HepG2cells. Biosci BiotechnolBiochem,73(2):447~449.
    Jagodzinski P P, Wiaderkiewicz R, Kurzawski G, Kloczewiak M, Nakashima H, Hyjek E, Yamamoto N,Uryu T, Kaneko Y, Posner M R.1994. Mechanism of the inhibitory effect of curdlan sulfate on HIV-1infection in vitro. Virology,1994,202:735~745.
    Jaques L B.1979. Heparin: An old drug with a new paradigm. Science,1979,206(4418):528~533Kardosová A, Machová E.2006. Antioxidant activity of medicinal plant polysaccharides. Fitoterapia.77(5):367~73.
    Katsube T, Yamasaki Y, Iwamoto M, Oka S.2003. Hyaluronidase inhibiting polysaccharide isolated andpurified from hot water extract of Sporophyll of Undaria pinnatifida. Food Sci Technol Res,9:25~29.
    Kiho T, Yamane A, Hui J, Usui S, Ukai S.1996. Hypoglycemic activity of a polysaccharide from thecultural mycelium of Cordyceps sinensis and its effect on glucose metabolism in mouse liver. Biol PharmBull,19:294~296.
    Kiho T, Usui S, Hirano K, Aizawa K, Inakuma T.2004. Tomato paste fraction inhibiting the formation ofadvanced glycation end-products. Biosci Biotechnol Biochem,68(1):200~205.
    Kim J K, Cho M L, Karnjanapratum S, Shin I S, You S G.2011. In vitro and in vivo immunomodulatoryactivity of sulfated polysaccharides from Enteromorpha prolifera. Int J Biol Macromol,49(5):1051~1058.
    King H, Aubert R E, Hemran W H.1998. Global burden of diabetes,1995-2025: Prevalenee, numericalestimates, and projections. Dibaetes Care,21(9):1414~1431.
    Kobayashi M, Matsushita H, Yoshida K, Tsukiyama RI, Sugimura T, Yamamoto K.2004. In vitro and invivo anti-allergic activity of soy sauce. Int J Mol Med,14:879~884
    Kwak Y S, Kyung J S, Kim J S, Cho J Y, Rhee M H.2010. Anti-hyperlipidemic effects of red ginsengacidic polysaccharide from Korean red ginseng. Biol Pharm Bull,33(3):468~472.
    Kweon M H, Park M K, Ra K S,1996. Screening of anticoagulant polysaccharides from edible plants.Agricultural Chemistry and Biotechnology,39:159~164.
    Kwon M J, Nam T J.2006. Porphyran induces apoptosis related signal pathway in AGS gastric cancer celllines. Life Sci,79:1956-1962.
    Lai C Y, Hung J T, Lin H H, Yu A L, Chen S H, Tsai Y C, Shao L E, Yang W B, Yu J.2010.Immunomodulatory and adjuvant activities of a polysaccharide extract of Ganoderma lucidum in vivo andin vitro. Vaccine,28(31):4945~4954.
    Laurent T C, Tengblad A, Thunberg L, H k M, and Lindahl U.1978. The molecular-weight-dependenceof the anti-coagulant activity of heparin. Biochem J,175(2):691–701.
    Lee J, Koo N, Min DB.2004. Reactive oxygen species, aging, and antioxidative nutraceuticals.Comprehensive Rev. Food Sci. Food Safety,3:21~33.
    Leiro J M, Castro R, Arranz J A, Lamas J.2007. Immunomodulating activities of acidic sulphatedpolysaccharides obtained from the seaweed Ulva rigida C. Agardh. Int Immunopharmacol,7(7):879~888.
    Li H, Lu X, Zhang S, Lu M, Liu H.2008. Anti-inflammatory activity of polysaccharide from Pholiotanameko. Biochemistry (Mosc),73:669~675.
    Li H, Zhang M, Ma G.2010. Hypolipidemic effect of the polysaccharide from Pholiota nameko. Nutrition,26(5):556~562.
    Li J, Liu Y, Fan L, Ai L.2011a. Antioxidant activities of polysaccharides from the fruiting bodies ofZizyphus jujuba cv. jinsixiaozao. Carbohydr Polym,84:390~394
    Li J, Shan L, Liu Y, Fan L, Ai L.2011b. Screening of a functional polysaccharide from Zizyphus Jujuba cv.Jinsixiaozao and its property. Int J Biol Macromol,49(3):255~259
    Li J W, Ding S D, Ding X L.2007. Optimization of the ultrasonically assisted extraction ofpolysaccharides from Zizyphus jujuba cv. jinsixiaozao. J Food Eng,80(1):176~183.
    Li J W, Fan L P, Ding S D.2011c. Isolation, purification and structure of a new water-solublepolysaccharide from Zizyphus jujuba cv. jinsixiaozao. Carbohydr Polym,83:477~482.
    Li L, Ding C C, Li F H.2011. Study on the antibacterial effects of two Dendrobium polysaccharides.Medicinal Plant,2(2):21~22
    Li L Y, Li L Q, Guo C H.2010. Evaluation of in vitro antioxidant and antibacterial activities of Laminariajaponica polysaccharides. J Med Plants Res,4:2194~2198
    Lins K O, Bezerra D P, Alves A P, Alencar N M, Lima M W, Torres V M, Farias W R, Pessoa C, de MoraesM O, Costa-Lotufo L V.2009. Antitumor properties of a sulfated polysaccharide from the red seaweed
    Champia feldmannii (Diaz-Pifferer). J Appl Toxicol,29(1):20~26.
    Luo Q, Cai Y, Yan J, Sun M, Corke H.2004. Hypoglycemic and hypolipidemic effects and antioxidantactivity of fruit extracts from Lycium barbarum. Life Sci,76:137~149.
    Madan, A K, Yu K, Dhurandhar N, Cullinane C, Pang Y, Beech D J.1999. Association of hyaluronidaseand breast adenocarcinoma invasiveness.Oncol Rep6:607~609.
    Martinichen-Herrero JC, Carbonero ER, Sassaki GL, Gorin PA, Iacomini M.2005. Anticoagulant andantithrombotic activities of a chemically sulfated galactoglucomannan obtained from the lichen Cladoniaibitipocae. Int J Biol Macromol,35(1-2):97~102.
    Masuda Y, Matsumoto A, Toida T, Oikawa T, Ito K, Nanba H.2009.Characterization and antitumor effectof a novel polysaccharide from Grifola frondosa. J Agric Food Chem,57(21):10143~10149.
    Mestechkina N M, Shcherbukhin V D.2010. Sulfated polysaccharides and their anticoagulant activity: Areview. Applied Biochem Microbiol,46:267~273
    Mitsuya H, Looney DJ, S KunoS, Ueno R, Wong-Staal F, Broder S.1988. Dextran sulfate suppression ofviruses in the HIV family: Inhibition of virion binding to CD4+cells. Science,240:646–649.
    Naqash SY, Nazeer RA.2011. Anticoagulant, antiherpetic and antibacterial activities of sulphatedpolysaccharide from Indian medicinal plant Tridax procumbens L.(Asteraceae). Appl Biochem Biotechnol,165(3-4):902~12.
    Niels G, Inken G, Susanne A.2009. Evaluation of seasonal variations of the structure andanti-inflammatory activity of sulfated polysaccharides extracted from the red alga Delesseria sanguinea(Hudson) Lamouroux (Ceramiales, Delesseriaceae). Biomacromolecules,10:1155~1162
    Ohno-Nakahara M, Honda K, Tanimoto K, Tanaka N, Doi T.2004. Induction of CD44and MMPexpression by hyaluronidase treatment of articular chondrocytes. J Biochem,135(5):567~575.Paiva A A, Castro A J, Nascimento M S, Will LS, Santos N D, Araújo RM, Xavier CA, Rocha F A, Leite E
    L.2011. Antioxidant and anti-inflammatory effect of polysaccharides from Lobophora variegata onzymosan-induced arthritis in rats. Int Immunopharmacol,11(9):1241~1250.
    Pierre C, Roland R, Trembley D.1978. P-Nitrophenol-α-glucopyramoside as substrate for measurement ofmaltase activity in human semen. J Clin Chem,24(2):208~211.
    Qi H, Liu X, Zhang J, Duan Y, Wang X, Zhang Q.2012. Synthesis and antihyperlipidemic activity ofacetylated derivative of ulvan from Ulva pertusa. Int J Biol Macromol,50:270~272.
    Qi H, Zhang Q, Zhao T, Hu R, Zhang K, Li Z2006. In vitro antioxidant activity of acetylated andbenzoylated derivatives of polysaccharide extracted from Ulva pertusa (Chlorophyta). Bioorg Med ChemLett,16(9):2441~2445.
    Qi H, Zhao T, Zhang Q, Li Z, Zhao Z, Xing R.2005. Antioxidant activity of different molecular weightsulfated polysaccharides from Ulva pertusa Kjellm (Chlorophyta). J Appl Phycol,17:527~534,Rabenstein, D L2002. Heparin and heparan sulfate: structure and function. Natural Product Reports,19:312~331Rocha de Souza M C, Marques C T, Guerra Dore C M, Ferreira da Silva F R, Oliveira Rocha H A, Leite E
    L.2007. Antioxidant activities of sulfated polysaccharides from brown and red seaweeds. J Appl Phycol,2007,19(2):153~160.
    Rout S, Banerjee R.2007. Free radical scavenging, anti-glycation and tyrosinase inhibition properties of apolysaccharide fraction isolated from the rind from Punica granatum. Bioresource Technol,98:3159~3163.
    Ruperez P, Ahrazem O, Leal, A.(2002). Potential antioxidant capacity of sulphated polysaccharides fromthe edible marine brown seaweed Fucus vesiculosus. J Agric Food Chem,50:840~845.
    Sawabe Y, Nakagomi K, Iwagami S, Suzuki S, Nakazawa H.1992. Inhibitory effects of pectic substanceson activated hyaluronidase and histamine release from mast cells. Biochim Biophys Acta,1137:274–278.
    Shanmugam M, Mody K H.2000. Heparinoid-active sulphated polysaccharides from marine algae aspotential blood anticoagulant agents. Current Science,79(12):1672~1683.
    Shi B J, Nie X H, Chen L Z, LiuY L, Tao W Y.2007. Anticancer activities of a chemically sulfatedpolysaccharide obtained from Grifola frondosa and its combination with5-Fluorouracil against humangastric carcinoma cells. Carbohydr Polym,68(4):687~692.
    Smirnoff N, Cumbes Q J.1989. Hydroxyl radical scavenging activity of compatible solutes. Phytochem,28:1057~1060.
    Song Y, Zhang Y, Zhou T, Zhang H, Hu X, Li Q.2012. A preliminary study of monosaccharidecomposition and alpha-glucosidase inhibitory effect of polysaccharides from pumpkin (Cucurbitamoschata) fruit. International J Food Sci Technol,47:357~361.
    Stern R, Asari A A, Sugahara KN.2006. Hyaluronan fragments: an information-rich system. Eur J CellBiol,85(8):699~715.
    Subramanian M, Chintalwar G J, Chattopadhyay S.2005. Antioxidant and radioprotective properties of anOcimum sanctum polysaccharide. Redox Report,10(5):257~264.
    Sugahara K N, Murai T, Nishinakamura H, Kawashima H, Saya H, Miyasaka M.2003. Hyaluronanoligosaccharides induce CD44cleavage and promote cell migration in CD44-expressing tumor cells. J BiolChem,278(34):32259~32265.
    Tao Y, Zhang L, Cheung PC.2006. Physicochemical properties and antitumor activities of water-solublenative and sulfated hyperbranched mushroom polysaccharides. Carbohydr Res,341(13):2261~9.Thetsrimuang C, Khammuang S, Chiablaem K, Srisomsap C, Sarnthima R.2011. Antioxidant propertiesand cytotoxicity of crude polysaccharides from Lentinus polychrous Lev. Food Chem,128:634~639.
    Toida T, Ogita Y, Suzuki A, Toyoda H, Imanari T.1999. Inhibition of hyaluronidase by fully O-sulfonatedglycosaminoglycans. Arch Biochem Biophys,370:233~241.
    Tundis R, Loizzo M R, Menichini F.2010. Natural products as α-amylase and α-glucosidase inhibitors andtheir hypoglycaemic potential in the treatment of diabetes: An update. Mini Rev Med Chem,10:315~331.Udabage L, Brownlee G R, Stern R, Brown T J.2004. Inhibition of hyaluronan degradation by dextran
    sulphate facilitates characterization of hyaluronan synthesis: an in vitro and in vivo study. Glycoconjug J,20:461~471.
    Udupa S L, Prabhakar A R, Tandon S.1989. α-Amylase inhibitors in foodstuffs. Food Chem,34(2):95~101
    Wakabayashi T, Hirokawa S, Yamauchi N, Kataoka T, Woo J T, Nagai K.1997. Immunomodulatingactivities of polysaccharide fractions from dried safflower petals. Cytotechnology,25(1-3):205~211.
    Wang B.2011. Chemical characterization and ameliorating effect of polysaccharide from Chinese jujubeon intestine oxidative injury by ischemia and reperfusion. Int J Biol Macromol,48(3):386~391.
    Wang C T, Lin Y T, Chiang B L, Lin YH, Hou SM.2006. High molecular weight hyaluronic aciddown-regulates the gene expression of osteoarthritis-associated cytokines and enzymes in fibroblast likesynoviocytes from patients with early osteoarthritis. Osteoarthritis Cartilage,14(12):1237~1247.
    Wang J, Hu Y, Wang D, Liu J, Zhang J, Abula S, Zhao B, Ruan S.2010. Sulfated modification can enhancethe immune-enhancing activity of Lycium barbarum polysaccharides. Cell Immunol,263(2):219~23.
    Wang J, Zhang L, Yu Y, Cheung P C.2009a. Enhancement of antitumor activities in sulfated andcarboxymethylated polysaccharides of Ganoderma lucidum. J Agric Food Chem,57(22):10565~72.
    Wang Y, Bian X, Park J, Ying L, Qian L, Xu P.2011. Physicochemical properties, in vitro antioxidantactivities and inhibitory potential against α-glucosidase of polysaccharides from Ampelopsis grossedentataleaves and stems. Molecules,16(9):7762~7772.
    Wang Y, Peng Y, Wei X, Yang Z, Xiao J, Jin Z.2009b. Sulfation of tea polysaccharides: synthesis,characterization and hypoglycemic activity. Int J Biol Macromol,46(2):270-4.
    Wang Y, Yang Z, Wei X.2010. Sugar compositions, α-glucosidase inhibitory and amylase inhibitoryactivities of polysaccharides from leaves and flowers of Camellia sinensis obtained by different extractionmethods. Int J Biol Macromol,47(4):534~539.
    Wang Y F, Zhang L, Li Y, Hou X, Zeng F.2004. Correlation of structure to antitumor activities of fivederivatives of a β-glucan from Poria cocos sclerotium. Carbohydr Res,339(15):2567~2574.
    Wang J, Zhang Q, Zhang Z,&Li Z.2008. Antioxidant activity of sulphated polysaccharide fractionsextracted from Laminaria japonica. Int J Biol Macromol,42:127~132.
    Witvrouw M, De Clercq E.1997. Sulfated polysaccharides extracted from sea algae as potential antiviraldrugs. Gen Pharmacol,29(4):497~511.
    Wolfrom M L, Han T M S. The sulfonation of chitosan. J Am Chem Soc,1959,81(7):1764~1766.
    Wu D M, Duan W Q, Liu Y, Cen Y.2010. Anti-inflammatory effect of the polysaccharides of goldenneedle mushroom in burned rats. Int J Biol Macromol,46(1):100~3.
    Xu J, Wang Y, Xu D S, Ruan K F, Feng Y, Wang S.2011. Hypoglycemic effects of MDG-1, apolysaccharide derived from Ophiopogon japonicas, in the ob/ob mouse model of type2diabetes mellitus.Int J Biol Macromol,49(4):657~662.
    Xu J,Liu W,Yao W, Pang D, Gao X.2009. Carboxymethylation of a polysaccharide extracted fromGanoderma lucidum enhances its antioxidant activities in vitro. Carbohydr Polym,78:227~234
    Yan J K, Li L, Wang Z M, Leung PH, Wang W Q, Wu J Y.2009. Acidic degradation and enhancedantioxidant activities of exopolysaccharides from Cordyceps sinensis mycelial culture. Food Chem,117:641~646.
    Yang B, Zhao M, Jiang Y.2008. Optimization of tyrosinase inhibition activity of ultrasonic-extractedpolysaccharides from longan fruit pericarp. Food Chem,110:294~300.
    Yang L, Zhao T, Wei H, Zhang M, Zou Y, Mao G, Wu X.2011. Carboxymethylation of polysaccharidesfrom Auricularia auricula and their antioxidant activities in vitro. Int J Biol Macromol,49(5):1124~1130.
    Yang X B, Gao X D, Han F, Tan R X.2005. Sulfation of a polysaccharide produced by a marinefilamentous fungus Phoma herbarum YS4108alters its antioxidant properties in vitro. Biochim BiophysActa,1725:120~127.
    Yao H, Chen Y, Li S.2009. Promotion proliferation effect of a polysaccharide from Aloe barbadensisMiller on human fibroblasts in vitro. Int J Biol Macromol,45:152~156.
    Ye H, Wang K, Zhou C, Liu J, Zeng X.2008. Purification, antitumor and antioxidant activities in vitro ofpolysaccharides from the brown seaweed Sargassum pallidum. Food Chem,111:428~432.
    Yim J H, Kim S J, Ahn S H, Lee C K, Rhie K T, Lee H K.2004. Antiviral effects of sulfatedexopolysaccharide from the marine microalga Gyrodinium impudicum strain KG03. Mar Biotechnol,6(1):17~25.
    Yoshida O, Nakashima H, Yoshida T, Kaneko Y, Yamamoto I, Matsuzaki K, Uryu T, Yamamoto N.1998.Sulfation of the immunomodulating polysaccharide lentinan: A noval strategy for antivirals to humanimmunodeficiency virus (HIV). Biochem Pharm,37(7):2887~2889.
    Yu Y T, Lu T J, Chiang M T, Chiang W.2005. Physicochemical properties of water-soluble polysaccharideenriched fractions of adlay and their hypolipidemic effect in hamsters. J Food Drug Analysis,13(4):361~367
    Yuan H, Zhang W, Li X, Lu X, Li N, Gao X, Song J.2005. Preparation and in vitro antioxidant activityof k-carrageenan oligosaccharides and their oversulfated, acetylated, and phosphorylated derivatives.Carbohydr Res,340:685~692.
    Zhang H, Ye L, Wang K.2010. Structural characterization and anti-inflammatory activity of twowater-soluble polysaccharides from Bellamya purificata. Cabohydr Polym,81:953~960.
    Zhang L, Li X, Xu X, Zeng F.2005. Correlation between antitumor activity, molecular weight, andconformation of lentinan. Carbohydr Res,340(8):1515~1521
    Zhang M, Cheung P C K, Zhang L, Chiu C M, Ooi V E C.2004. Carboxymethylated β-glucans frommushroom sclerotium of Pleurotus tuber-regium as novel water-soluble anti-tumor agent. CarbohydrPolym,57:319~325.
    Zhang Q, Li N, Zhou G, Lu X, Xu Z, Li Z.2003. In vivo antioxidant activity of polysaccharide fractionfrom Porphyra haitanesis (Rhodephyta) in aging mice. Pharmacol Res,48(2):151~155.
    Zhang Z, Wang X, Zhang J, Zhang J, Zhao M.2011. Potential antioxidant activities in vitro ofpolysaccharides extracted from ginger (Zingiber officinale). Carbohydr Polym,86(2):448~452
    Zhao L, Zhao G, Du M, Zhao Z, Xiao L, Hu X.2008b. Effect of selenium on increasing free radicalscavenging activities of polysaccharide extracts from a Se-enriched mushroom species of the genusGanoderma. Eur Food Res Technol,226:499–505
    Zhao ZH, Dai H, Wu XM, Chang HT, Gao XM, Liu MJ, Tu PF.2007. Characterization of a pecticpolysaccharide from the fruit of Ziziphus jujuba. Chemistry of Natural Compounds,43:374~376.
    Zhao ZH, Li J, Wu XM, Dai H, Gao XM, Liu MJ, Tu PF.2006. Structures and immunological activities oftwo pectic polysaccharides from the fruits of Ziziphus jujuba Mill. cv. jinsixiaozao Hort. Food ResearchInternational,39(8):917~923.
    Zhao ZH, Liu MJ, Tu PF.2008a. Characterization of water soluble polysaccharides from organs of ChineseJujube (Ziziphus jujuba Mill. cv. Dongzao). Eur Food Res Technol,226:985–989
    Zhauynbaeva K S, Malikova M K, Rakhimov D A, Khushbaktova Z A.2003. Water-solublepolysaccharides from Narcissus poeticus and their biological activity. Chemistry of NaturalCompounds,39:520~522
    Zhou C, Wang Y, Ma H, He R.2008. Effect of Ultrasonic Degradation on in vitro antioxidant activity ofpolysaccharides from Porphyra yezoensis (Rhodophyta). Food Sci Technol Int,14:479~486
    Zhou C, Yu X, Zhang Y, He R, Ma H.2012. Ultrasonic degradation, purification and analysis of structureand antioxidant activity of polysaccharide from Porphyra yezoensis Udea. Carbohydr Polym,87:2046~2051.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700