丹参、红花对黑色素瘤转移的干预及其作用环节探讨
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
肿瘤转移是肿瘤患者死亡的主要原因,活血化瘀是中医临床用于肿瘤的治则之一。目前对活血化瘀药临床用于治疗肿瘤存在着较大的争论,一种观点认为活血化瘀药可以抑制肿瘤转移,改善肿瘤患者血液高凝状态,防止肿瘤栓子形成,对脱离原发瘤并移行进入血液循环的肿瘤细胞有直接或间接抑杀作用;另一种观点则认为活血化瘀药可以促进肿瘤转移,认为该类药物使肿瘤细胞更易于运行至转移位。因此,研究活血化瘀药物对肿瘤转移的影响及作用机理,对临床运用活血化瘀类中药防治肿瘤及肿瘤转移有现实的意义。本研究主要选取丹参、红花等活血化瘀代表药物,以尿激酶、肝素等抗凝药物作为对照,分析它们对肿瘤转移的影响及作用机理。
     研究主要由以下几部分组成:
     第一部分观察活血化瘀药丹参、红花对小鼠黑色素瘤细胞肺转移的影响。选用C57小鼠,于后肢足垫皮下注射黑色素瘤细胞,造成自发性转移模型;于尾静脉注射黑色素瘤细胞,造成实验性转移模型,观测小鼠肺结节数及肺重量。研究结果显示:对自发性肿瘤转移模型,丹参(指所研究的剂量下,以下同)促进肿瘤的肺转移;对实验性肿瘤转移模型,未观察到结节数的变化,但肺重量增加;对实验性及自发性的转移模型,不论是结节数还是肺重量,红花均无明显的影响,尿激酶对自发性及实验性的肿瘤转移都有促进的转移作用,对实验性肺转移的肺重量没有影响。对自发性及实验性的肿瘤转移模型,肝素钠抑制结节数,对转移模型肺的重量也有减轻作用。发现活血化瘀药对两种转移模型的影响有所不同,提示活血化瘀药丹参、红花影响肿瘤转移的步骤不同。
     第二部分观察活血化瘀药丹参、红花对黑色素瘤细胞增殖的影响,为下步的研究提供研究剂量依据。采用MTT法研究活血化瘀药对肿瘤细胞增殖能力,肿瘤增殖是肿瘤转移的必要条件,当肿瘤细胞生长到一定的大小时,肿瘤细胞会因缺血缺氧等因素的刺激而形成血管,同时也会改变肿瘤细胞表面的分子特点,从而促进肿瘤细胞的转移。研究结果提示:尿激酶、肝素钠对黑色素瘤细胞的增殖影响较小,而丹参、红花则对肿瘤细胞增殖有一定的抑制作用。
     第三部分:观察活血化瘀药丹参、红花对肿瘤细胞间及肿瘤细胞与基质间粘附能力的影响。同质型粘附主要由肿瘤细胞表面的粘附分子E-cadherin参与,而异质型粘附则主要由integrin和免疫球蛋白参与。采用琼脂糖阻断细胞与培养板间的粘附,研究肿瘤细胞间的粘附;采用Matrigel作为肿瘤基质的配体,研究肿瘤细胞与基质间的粘附,同时用RT-PCR法研究药物对肿瘤细胞E-cadherin表达的影响。研究结果提示:红花对肿瘤细胞间的粘附有抑制作用,并且可以抑制E-cadherin的表达。肝素钠及尿激酶对同质型粘附及E-cadherin的表达均无影响。丹参对肿瘤细胞间的粘附无影响,但对E-cadherin的表达却有增强作用。肿瘤细胞与基质间的粘附和药物的加入时间有一定的关系,当药物与细胞同时加入时抑制作用较强,而当肿瘤细胞和基质已经粘附时,加入药物则影响较小,红花及丹参对肿瘤细胞与基质间的粘附有较强的抑制作用。
     第四部分:观察活血化瘀药丹参、红花对肿瘤细胞运动能力的影响。肿瘤细胞的运动能力是影响肿瘤转移的又一个重要因素。利用胶体金可以形成小颗粒,铺于载玻片上,观察肿瘤细胞的运动轨迹;划痕实验是将细胞以较高密度的种植于载玻片上,在细胞间造成等宽的划痕,观察肿瘤细胞整体的运动形式;胶原原位运动侵袭实验是将肿瘤细胞种植于胶原上,在一定时间内观察肿瘤细胞侵袭初期伸出伪足的能力。胶体金吞噬实验表明尿激酶、丹参可以增加肿瘤细胞运动能力,使其运动的面积增加,红花和肝素钠没有影响。划痕实验表明尿激酶、丹参有促进其向中间运动的能力,肝素钠有抑制作用,红花没有影响。对胶原原位运动侵袭的实验表明丹参、尿激酶促进肿瘤细胞在Ⅰ型胶原上伸出伪足,使肿瘤细胞的运动能力增加,促进其向胶原下侵袭,肝素对肿瘤细胞的抑制其伸伪足的作用,红花对肿瘤细胞的伪足没影响。
     第五部分:体外方法观察活血化瘀药丹参、红花对肿瘤细胞侵袭基质能力的影响。肿瘤细胞侵袭基质的能力是考察肿瘤转移的一个重要的方面,本实验是将基质胶(Matrigel)涂于膜性支持物上,肿瘤细胞种置于上室,观察肿瘤细胞穿过基质膜的作用。研究结果表明:尿激酶、丹参可以促进黑色瘤细胞对Matrigel的侵袭能力,而肝素对黑色素瘤细胞的侵袭能力有抑制作用,红花没有影响。
     第六部分:观察活血化瘀药丹参、红花对肿瘤细胞分泌金属蛋白酶活性的影响。采用电泳技术及金属蛋白酶可以酶解明胶的特点,对分泌性的MMP-2/MMP-9活性进行考察。研究结果表明:尿激酶对肿瘤细胞分泌的MMP-2有增强作用,对MMP-9的活性没有影响。肝素对MMP-2、MMP-9均有抑制作用,而红花及丹参则对MMP-2和MMP-9的活性都无影响。
     第七部分:观察活血化瘀药丹参、红花对金属蛋白酶及其抑制剂表达的影响。运用RT-PCR的技术研究活血化瘀药物对它们表达的影响,反映药物对肿瘤转移的影响。研究结果表明:尿激酶能增加MMP-2的表达,对MMP-9的表达没有影响,抑制TIMP-1的表达,对TIMP-2的表达没有影响;丹参则对MMP-9、TIMP-1、TIMP-2的表达有增强作用,对MMP-9的表达没有影响;红花对MMP-9、TIMP-2的表达有抑制作用,对MMP-2、TIMP-1的表达没有影响;肝素能抑制MMP-2的表达,对TIMP-1、TIMP-2的表达也有增强作用,但对MMP-9的表达没有影响。将MMP-2及MMP-9的表达相加,与TIMP-1与TIMP-2之和相比,则可以得到尿激酶、丹参表达的MMP较TIMP多,而肝素则减少MMP与TIMP表达的比值,红花对比值没有影响。
     第八部分:讨论与结论
The high mortality rates associated with cancer are caused by the metastatic spread of tumor cells from the site of their origin. The studies often focus on metastasis of tumor cells. Metastasis is a sequential process, contingent on tumour cells breaking off from the primary tumour, travelling through the bloodstream, and stopping at a distant site. In carcinomas, the influences of the microenvironment are mediated, in large part, by bidirectional interactions (adhesion, survival, proteolysis, migration, immune escape mechanisms lymph-/angiogenesis, and homing on target organs) between epithelial tumor cells and neighboring stromal cells, such as fibroblasts as well as endothelial and immune cells. At the core of the metastatic process lie the changing adhesive preferences of the cancer cells that dictate their reciprocal interactions with the ECM and neighboring stromal cells. At the molecular level, adhesion and deadhesion as well as cytoskeletal remodeling are not only a prerequisite for cellular motility, but are also linked to proliferation and survival (antiapoptotic) pathways through integrins. Integrin engagement activates a battery of downstream molecules crucial for motile function and survival.
     One of the therapeutic principles is to promote blood circulation to remove blood stasis (PCRS). At present, conflicting ideas are held in the application of this therapy in clinical use for treating tumor. One idea goes that the drugs for invigorating blood circulation and eliminating stasis (DIBCES) can restrain metastasis, improving the hypercoagulabale state (HCS) and preventing the formation of tumor embolus. Also, it can directly or indirectly restrain or kill the tumor cells deviating from the primary tumor and enter blood circulation; while there is another idea that this drug can promote metastasis and make tumor cells more liable to transmit to the loci. Therefore, conducting research on the effects and mechanism of action of DIBCES on metastasis is of practical significance to use this kind of PCRS to prevent and treat tumor and its metastasis. This study focuses on the typical drugs such as Danshen (DS), Honghua (HH) and takes the anticoagulants like urokinase and heparin as the control drugs in order to analyze their effects and mechanism of action on tumor metastasis.
     This study falls into the following parts:
     PartⅠAn observation on the effects of PCRS like DS and HH on the cell lung metastasis of mouse melanoma. C57 mice were selected and hypodermically injected melanoma cells into the foot pad of the posterior limb, which led to spontaneous metastasis model; while injected in vena caudalis can lead to experimental metastasis model. The observation was made on the Pulmonary nodus and the lung weight, and the findings show that as to the spontaneous metastasis model, the use of DS (the dosage used in research, the same can be said of the following) can promote the lung metastasis of tumor; While as to the experimental metastasis model, no changes happened in number of the nodus but the increased weight were detected; As to the both metastasis models, HH exerts no apparent effects on the number of nodus or the lung weight. Urokinase can enhance the metastasis in either model, while has no effect on the lung weight in the experimental model. The use of heparin sodium is able to restrain the number of nodus and lead to the lung weight loss in either model. The discovery of the varied effects of DIBCES on the two metastasis models indicates the difference in the procedure of this kind of drugs on tumor metastasis.
     PartⅡAn observation was made on the effect of Chinese DIBCES on the cell multiplication of melanoma to provide the evidence of the dosage for further research. The research was made by means of MTT on the activity of DIBCES in tumor cell multiplication. Tumor proliferation is the prerequisite of metastasis. Growing to a certain size, the tumor cells may form blood vessels for lack of blood or oxygen and alter the molecule feature of the tumor cells surface simultaneously to promote the metastasis of tumor cells accordingly. The findings suggest that urokinase and heparin sodium have slight effect on the proliferation of melanoma cells, while DS and HH have certain depressant effect on tumor cells.
     PartⅢThe extracellular domain of E-cadherin interacts in a homophilic manner with E-cadherin molecules on the surface of neighboring cells. Loss or reduction of E-cadherin expression correlates with enhanced aggressiveness and dedifferentiation in most carcinomas. Recent studies highlight the role of other members of the cadherin family in tumor cell invasion and metastasis. An observation was made on the effect of Chinese DIBCES on the adherence ability between tumor cells and matrix. Tumor metastasis begins with adherence, which includes homogenous adherence (the adherence between tumor cells) and heterogonous adherence (the adherence between tumor cells and matrix. The decrease of homogenous adherence will promote metastasis, while the decline of heterogonous adherence will restrain metastasis. The homogenous adherence mainly involves the E-cadherin on the surface of tumor cells, while the heterogonous adherence mainly involves integrin and immunoglobulin. The adherence between Sepharose blocking cells and culture board was adopted to study the adherence between the tumor cells, and Matrigel was taken as the ligand of tumor matrix to study the adherence between tumor cells and matrix. Meanwhile, the RT-PCR approach was employed to study the impact of drugs on the E-cadherin expression of tumor cells The findings suggest that HH can restrain the adherence between tumor cells and heparin sodium and urokinase exerts no effect on the humongous adherence and E-cadherin expression. DS poses no impact on the adherence between tumor cells while has enhancement property on E-cadherin expression. There is a certain connection between the adherence between tumor cells and matrix and the time when the drugs are added. The imultaneous addition of drugs and cells will exert a stronger depressant effect, while the drugs will pose a minor effect when the tumor cells and matrix have adhered. DS and HH have strong depressant effect on the adherence between tumor cells and matrix, that is, they have the power to restrain tumor metastasis.
     PartⅣCollective cell movement represents an effcient dissemination strategy in epithelial and mesenchymal cancers. Single cell motility suggests an effcient cellular and molecular plasticity in tumor cell migration strategies. The transition from proteolytic mesenchymal toward nonproteolytic 'amoeboid' movement highlights a supramolecular plasticity mechanism in cell migration and further represents a putative escape mechanism in tumor cell dissemination after abrogation of pericellular proteolysis. An observation was made on the effect of DIBCES on the locomotory capacity of tumor cells, which is another important factor affecting tumor metastasis. Extracorporeal kinesis experiment demonstrates that the movement of tumor cells has direct correlation with the capacity of metastasis. There are two kinds of movement patterns for tumor cells: stationary motility and translocative motility. Gold colloid, which can form microaggregate, can be spread on glass slide to observe the movement track of tumor cells. Scratch test, a test in which cells are implanted on glass slide in high density, aequilatus scratches are made between the cells to observe the overall movement pattern of tumor cells. In collogen static exercise invasion experiment, tumor cells are implanted on collogen to observe the capacity of extruding spurious at the initial stage of tumor cells invasion within a certain period of time. The above mentioned experiments are conducted to study the movement capacity of tumor cells from different perspectives. The gold colloid phagocytosis test shows that urokinase, DS can promote the movement capacity of tumor cells and enlarge the motion area, while HH and proved with no effect. The scratch test reveals that urokinase, and DS have the power to enhance its movement towards the center, heparin sodium has depressant effect while HH with no effect. The collogen static exercise invasion experiment demonstrates that DS and urokinase enhance tumor cells protrude spurious on Collagen typeⅠ, strengthening the movement capacity of tumor cells and promoting its invasion downwards the collagen; heparin sodium can restrain the tumor cells from protruding spurious, while HH shows no effect on the spurious of tumor cells.
     PartⅤAn extracorporeal approach was adopted to observe the effect of on the invasion capacity of tumor cells into matrix, which plays an important part in evaluation of tumor metastasis. In this experiment, Matrigel was applied on Membranate plank and the tumor cells were implanted in the upper chamber to observe the tumor cells permeating the matrix membrane. The findings show that urokinase and DS can promote the invasive ability of melanoma cells into the Matrigel, while heparin sodium restrains this ability and HH shows no effects.
     PallⅥThe principal classes of enzymes that degrade the ECM and cell associated proteins are the matrix metalloproteinases (MMPs), a family of membrane-anchored and-secreted proteinases and tissue serine proteinases, including urokinase plasminogen activator, thrombin, and plasmin. Degradation and remodeling of the ECM, including the basement membrane, by proteolytic enzymes are essential steps in the process of cancer invasion, intra- and extravasation, and colonization at distant sites. Metalloproteases are thus important in many aspects of invasion and metastasis, ranging from cell proliferation and remodeling of the ECM to angiogenesis and cell migration. An observation was made on the effect of DIBCES on the activity of metalloprotease excreted by tumor cells. The metalloprotease excreted by tumor cells (MMP-2/MMP-9) and the activity of Membranate metalloprotease on its surface is vital for tumor cells to breakthrough the barrier of matrix. To investigate the activity of secretory MMP-2/MMP-9 with electrophoretic technique and the characteristics of the enzymolysis effect of metalloprotease on gelatinum. The findings indicates that urokinase can enhance the MMP-2 excreted by tumor cells and has no effect on the activity of MMP-9; Heparin sodium can restrain MMP-2 and MMP-9, while DS and HH pose no effect on the activity of MMP-2 and MMP-9.
     PartⅦMost of these processes require a delicate balance between the functions of MMPs and tissue inhibitors of metalloproteases (TIMPs). TIMPs are a family of secreted proteins that selectively, but reversibly. During the invasive events, TIMPs are expressed primarily by the cancer cells and are thought to serve as a regulatory mechanism for fine tuning the activity of stromal MMPs, so that the cancer cells can have an active role in determining where and when they invade. An observation was made on the effect of DIBCES on metalloprotease and its suppressor expression. Metalloprotease expression has direct correlation with tumor metastasis while has inverse correlation with its suppressor (TIMP-1, TIMP-2) expression. The activity of metalloprotease can be restrained by suppressor. The technique of RT-PCR was employed to study the effect of DIBCES on their expressions and reveal the impact of drugs on tumor metastasis. The findings show that urokinase can promote the expression of MMP-2 and has no effect on the expression of MMP-9. It can also restrain the expression of TIMP-1, while has no effect on the expression ofTIMP-2; DS can enhance the expressions of MMP-9、TIMP-1、TIMP-2, while has no effect on TIMP-2. HH can restrain the expressions of MMP-9、TIMP-2 and has no effect on MMP-2、TIMP-1; Heparin can restrain the expression of MMP-2 and enhance the expressions of TIMP-1、TIMP-2, while has no effect on MMP-9. The comparison between the total expressions of MMP-2 and MMP-9 and that of TIMP-1 and TIMP-2 shows that urokinase, DS express more MMP than TIMP, while heparin decreases the expression ratio of MMP and TIMP, and HH poses no effect on the ratio.
     PartⅧDiscussion and conclusion
引文
(1) John C, Jeffrey ES. Intravital imagining of cell movement in tumors. Nature Rev. Cancer. 2003; 3(4): 921-930.
    (2) Anne JR et al. Cell migration: integration signals from front to back. SCI. 2003; 302(7): 1704-1709.
    (3) Chamber AF, Groom AC. Metastasis: dissemination and growth of cancer cells in metastatic sites. Nature Rev. Cancer. 2002; 2(9): 563-572.
    (4) Liotta LA, Kohn EC. The microenvironment of tumor-host interface. Nature. 2001; 411(9): 375-379.
    (5) Chishma T. cancer invasion and micrometastasis visualized in live tissue by green fluorescent protein expression. Canner Res. 1997; 57(8): 2042-2047.
    (6) AL-Mehdi AB. Intravascular origin of metastasis from the proliferation of endothelium-attached tumor cells: a new model for metastasis. Nature Med. 2001; 6(9): 100-102
    (7) Kantor JO, Mccormick B. Inhibition of cell motility after NM23 transfection of human and murine tumor cells. Cancer Res. 1993; 53(6): 1971-1977
    (8) Martin I, Shastri VP, Padera RF. Material of a biochemical microenvironment built invitro. J Biomed Mater Res. 2001; 55(2): 229-235
    (9) Bruno V, Daniel V. In vitro models of vasculogenesis and angiogenesis. Lab Invest. 2001; 81(4): 439-442
    (10) Pettersson A. Heterogeneity of the angiogenic respose induced in different normal adult tissues by vascular permeability factor/vascular endothelial growth factor. Lab. Invest. 2000; 80(6): 99-103
    (11) Leu A J, Berk DA. Absence of functional lymphatics within a murine sarcoma: a molecular and functional evaluation. Cancer Res. 2000; 60(10): 4324-4329
    (12) Hashizume H. Openings between defective endothelial cells explain tumor vessel leakiness. Am. J. pathol. 2000; 156(8): 1363-1368
    (13) Buschmann I. The pathophysiology of the collateral circulation(arteriogenesis). J Pathol. 2000: 190(11): 338-342
    (14) Sloan EK, Anderson RL. Genes involved in breast cancer metastasis to bone. Cell. Mol. Life Sci. 2002; 59(9): 1491-1493
    (15) Ausprunk DH, Folkman J. Migration and proliferation of endothelial cells in preformed and newly formed blood vessels during tumor angiogenesis. Microvasc Res. 1977; 15(8): 53-65
    (16) Hoffman RM. Visualization of GFP-expressing tumors and metastasis in vivo. Bio Techniques. 2001; 30(10): 1016-1021
    (17) 韩锐.抗癌药物研究与实验技术,第一版,北京:北京医科大学中国协和医科大学联合出版社,1997,368-369.
    (18) Dano K, Romer J, Nielsen B. Cancer invasion and tissue remodeling-cooperation of protease system and cell type. APMIS. 1999; 107(1): 120-127
    (19) Moskatelo D, Benjak A, Laketa V, et al. Cytotoxic effects of diazenes on tumor cells in vitro. Chemotherapy, 2002; 48(1): 361-366
    (20) Shu Bing, Zhou Chong-jian, Ma Ying-hui. Research progress on pharmacological activities of the available compositions in Chinese. medicinal herb Ligusticum Chuanxiong. Chinese Pharmacological Bulletin(中国药理学通报). 2006; 22(9): 1043-1047
    (21) Xie Xia, Hao LI-hong, Gao Qing-bo. Reversal of multidrug resistance and its mechanism by tetramethylpyrazine. Chin Cancer Prev Treat(中国肿瘤防治杂志). 2006; 13(18): 1368-1370
    (22) Mei Ying, Shi Yu-jun, Zuo Guo-qing. Study on ligustrazine in reversing multidrug resistance of HepG2/ADM cell in vitro. China Journal of Chinese Materia Medica. 2004; 29(10): 970-973
    (23) Wang Wen-wu, Dai Xi-hu. Experimental study of effects of tetramethylpyrazine on Lewis lung carcinoma in mice.J Clin Pharmacol Ther(中国药物治疗学杂志) 2005; 10(4): 421-423
    (24) Han Ying, Yang Chang-Chun. Inhibitory effects of activating blood circulation and eliminating Stasis Medicines on Hepat℃ ellular Carcinoma HepG2 Cells and molecular mechanism. Pharm J Chin PLA. 2006; 22(6); 401-404
    (25) Yu Shu-lan, Wang Xiu-ping. Anticancer effects of Tanshinon and its mechanism. J. Chinese Cancer(癌症). 2003; 22(12): 1363-1366
    (26) Xia Rong-Long, Chen Xiao-Ping. Effects of Danshen in jection on hepatcellular apoptasis in SD rat models with malignant biliary obstruction.J Fouah Mil Med Univ(第四军医大学学报). 2006; 27(19): 1802-1803
    (27) Yu Qing-sheng, Wang Han-ming. Effect of intraperitoneal chemotherapy with combined administration of radix salviae miltiorrhizae and Carboplatin on apoptosis of gastric tumor cell. Modern Journal ofIntegrated Traditional Chinese and Western Medicine(现代中西医结合杂志). 2006; 15(20): 2760-2763
    (28) Zhang Qian, Niu Xin, Yah Yuan. Research on the Mechanism of Hydroxysaffior Yellow A in Inhibiting Angiogenesis. Journal of Beijing University of Traditional Chinese Medicine(北京中医药大学学报). 2004; 27(3): 25-29
    (29) Liu Jian-hua, Su Xiao-mei. Honghua injection and microwave therapy on patients of vein inflammation after chemotherapy. Modern Clinical Nursing(现代临床护理). 2005; 4(4): 46-47
    (30) Premkumar K, Abraham, Suresh K, et al. Inhibition of genotoxicity by saffron (in mice. Drug Chem Toxicol, 2001; 24(4): 421-428
    (31) Nair SC, Kurumboor SK, Hasegawa JH. Saffron chemoprevention in biology and medicine. Cancer Biotherapy. 1995; 10(4): 257-259
    (32) Molnar J, Szabo D, Pusztai R, et al. Membrane assciated antitumor effects of crcine-, ginsenoside- and cannabinoid derivates. Anticancer Res. 2000; 20(2A): 861-865
    (33) Eodger L, Bick MD. Cancer-associated thrombosis. N Engl J Med. 2003; 349(2): 1109-1191.
    (1) John C, Jeffrey ES. Intravital imagining of cell movement in tumors. Nature Rev. Cancer. 2003; 3(4): 921-930.
    (2) Poste G, Fidler IJ. The pathogenesis of cancer metastasis. Nature. 1980; 283(6): 139-145
    (3) Giavazzi R. Metastatic models in the Nude mose in oncology research. Boca Raton. 1991; 117-132
    (4) Fidler IJ. Selection of successive tumor lines for metastasis. Nature New Biol. 1973; 242(6); 148-149
    (5) Talmadge JE, Fidler IJ. Cancer metastasis is selective or random depending on the parent tumor population. Nature. 1982; 297(9): 593-594
    (6) Hart IR. Selection and characterization of an invasive variant of the B16 melanoma. Am. J. Pathol. 1979; 97(10): 587-600
    (7) Stackpole CW. Distinct lung-colonizing and lung-metastasizing cell populations in B16 mouse melanoma. Nature. 1981; 289(10): 798-800
    (8) Chirivi R, Garofalo A, Crimmin MJ. Inhibition of the metastatic spread and growth of B16BL6 murine melanoma by synthetic matrix metalloproteinase inhibitor. Int. J. Cancer. 1994; 58(7): 460-469
    (9) Sloan EK, Anderson RL. Genes involved in breast cancer metastasis to bone. Cell. Mol. Life Sci. 2002; 59(9): 1491-1493
    (10)Hirayama R, Hirokawa K, Makinodan T. Change in the metastatic mode of B16 malignant melanoma in C57BL/6 mice with ageing and sex IARC Scientific Publications. 1985; 58: 85-96
    
    (11) Martin I, Shastri VP, Padera RF. Material of a biochemical microenvironment built invitro. J Biomed Mater Res. 2001; 55(2): 229-235
    
    (12) Hagmar B, Norrby K. influence of cultivation, trypsinization and aggregateion on the transplantability of melanoma B16 cells. Int. J. Cancer. 1973; 11(8): 663-675
    (1) Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assay. Immo Meth. 1983; 65: 55-57
    (2) Bruno S, Tenca C, Saverino D, et al. Apopotosis of squamous cells at different stages of carcinogensis following 4-HPR treatment. Carcinogenesis. 2002; 23(3): 447-456
    (3) Kimbro KS, Simons JW. Hypoxia-inducible factor-1 in human breast and prostate cancer. Endocrine-Related Cancer. 2006; 13(1): 739-749
    (4) Adriana A, Michael B. The tumour microenvironment as a target for chemoprevention. Nature Revs Cancer. 2007; 67(10): 1038-1048
    (5) Wang Wen-wu, Dai Xi-hu. Experimental study of effects of tetrarnethylpyrazine on Lewis lung carcinoma in mice. J Clin Pharmacol Yher(中国药物治疗学杂志) 2005; 10(4): 421-423
    (6) Kurschat P, Mauch C. Mechanisms of metastasis. Clinical and Experimental Dermatology. 2000; 25(8): 482-489
    (1) Kurschat P, Mauch C. Mechanisms of metastasis. Clinical and Experimental Dermatology. 2000; 25(8): 482-489
    (2) Ireton RC, Davis MA, van Hengel J, et al, A novel role for p120 catenin in E-cadherin function. J Cell Biol. 2002; 159: 465-476
    (3) Roczniak-Ferguson A, Reynolds AB. Regulation of p 120-catenin nucleocytoplasmic shuttling activity. J Cell Sci. 2003; 116: 4201-4212
    (4) Kokenyesi R, Murray K P, Benshushan A, et al. Invasion of interstitial matrix by a novel cell lime from primary peritoneal caranosarloma and by established ovarian carcinoma cell lines: role of Cell-matrix adhesion molecules proteinases and E-cadherin expression. Gynaecol Oncol, 2003; 89(1): 60-72
    (5) Rakha EA, Abd EI, Pinder SE, et al. E-cadherin expression in invasive non-lobular carcinoma of the breast and its prognostic significance,Histopathology, 2005; 46(6): 685-693
    (6) Liu YN, Lee WW, Wang CY, et al. Regulatory mechanisms controlling human E-cadherin gene expressionl Oncogene. 2005; 24(56): 8277-8290
    (7) Annie O. E-cadherin in gastric cancer. World J Gastroenterol. 2006; 12(2): 199-203
    (8) Zheng ZH, Sun XJ, Zhou HT, et al, Analysis of metastasis suppressing function of E-cadherin in gastric cancer cells by RNAi, World J Gastroenterol, 2005; 11(13): 2000-2003
    (9) Uchikado Y, Natsugoe S, Okumura H, eta. Slug Expression in the E-cadherin preserved tumors is related to prognosis in patients with esophageal squamous cell carcinoma. Clin Cancer Res. 2005; 11(3): 1174-1180
    (10) Salon C, Lantuejoul S, Eymin B, et al. The E-cadherin beta-catenin complex and its implication in lung cancer progression and prognosis. Fut Oncolo 2005; 1(5): 649-660
    (11) Wu W, Walker AM. Human chorionic gonadotropin beta (HCGbeta) down-regulates E-cadherin and promotes human prostate carcinoma cell migration and invasion. Cancer. 2006; 106(1): 68-78
    (12) Foran E, McWilliam P, Kelleher D, et al. The leukocyte protein L-plastin induces proliferation, invasion and loss of E-cadherin expression in colon cancer cells. Int J Cancer. 2006; 118(8): 2098-2104
    
    (13) Kim JC, Rob SA, Kim HC, et al. Coexpression of carcinoembryonic antigen and E-cadherin in colorectal adenocarcinoma with liver metastasis. J Gastrointest Surg. 2003;7(7): 931-938)
    
    (14) Frreira P, Oliveira MJ, Beraldi E, et al. Loss of functional E-cadherin renders cells more resistant to the apoptotic agent taxol in vitro. Exp Cell Res. 2005;310(1): 99-104
    
    (15) Pujuguent P, Del Maestro L. E-cadherin-depent adherens junction assembly through Rac activation. Mol Bio Cell. 2003;14(15): 2181-2191
    
    (16) Bruce Alberts, Alexander Johnson, et al. Molecular biological of the cell(Fouth). 945,1113(2002)
    
    (17) Jin H, Varner J. Integrins: Roles in cancer development and as treatment targets. Br J Cancer. 2004; 90:561-565
    
    (18) Hynes RO. Integrins: versatility, modulation, and signaling in cell adhesion. Cell. 1992; 69(1): 11-25
    
    (19) Bertotti A, Comoglio PM, Trusolimo L, et al. Beta4 integrin is a transforming molecule that unleashes Met tyrosine kinase tumorigenesis. Cancer Res. 2005;65(23): 10674-10679
    
    (20) MatterML, RuoslahtiE. A signaling pathway from the alpha5betal and alpha (v) betal_3 integrins that elevates Bcl_2 transcription. J Biol Chem. 2001 ;276: 27757-27763
    
    (21) Park CC, Zhang H, Pallavicm M, et al. Betal integrin inhibitory antibody induces apoptosis of breast cancer cells, inhibits growth, and distinguishes malignant from normal phenotype in three dimensional cultures and in vivo. Cancer Res. 2006;66(3): 1526-1535
    
    (22) Marelli MM, Moreri RM, Procacci P, et al. Insulin-like growth factor-I promotes migration in human androgen-independent prostate cancer cells via the alphavbeta3 integrin and PI3-K/Akt signaling. IntJ Oncol. 2006;28(3): 723-730
    
    (23) Mi Z, Guo H, Wai PY, et al. Integrin linked kinase regulates osteopontin-dependent MMP-2 and uPA expression to convey metastatic function in murine mammary epithelial cancer cells. Carcinogenesis. 2006;12(2): 879-887
    
    (24) Dieta B, Laurien U, Reijneveld, et al. Constitutive integrin activation on tumor cells contributes to progression of leptomengeal metastasis. Neuro Onco.2006;16(3): 127-134
    
    (25) Sawai H, Okada Y, Funahashi H, et al. Interleukin-1 alpha enhances the aggressive behavior of pancreatic cancer cells by regulating the alpha6betal-integrin and urokinase plasminogen activator receptor expression. Cell Biol. 2006; 20(2): 177-185
    (1) Flug M, Kupf-Maier P. the basement membrane and its involvement in carcinoma cell invation. ActaAnatomica. 1995; 152(1): 69-84
    (2) Duffy MJ. The biochemistry of metastasis. Adv. Clin. Chem. 1996; 32(8): 135-160
    (3) Price JT, Bonovich MT, Kohn EC. The biochemistry of cancer dissemination. Crit. Rev. Biochem. Mol. Biol. 1997; 32(11): 175-253
    (4) Volk T, Geiger B, Raz A. Motility and adhesive propertyes of high and low metastasis neoplasmtic cells. Cancer Res. 1984: 44(4): 811-824
    (5) Hujanen ES, Terranova VP. Migation of tumor cells to organ-derived chem. oattractants. Cancer Res. 1985: 45(8): 3517-3521
    (6) 高进,章静波.肿瘤学基础与研究方法.人民卫生出版社(1999);350-356
    (7) Susan A, Brooks S. Metastasis research protocols. 2001:355-357 Clifford M. Collagen Gel Assay For Angiogenesis Angiogenesis Protcols. New Jersey. 2001:148,150,158,159
    (8) Albrecht-Buehler G. The phagokinetic tracks of 3T3 cells. Cell. 1977; 11 (7): 359-404
    (9) Stoker M, Gherardi E. Regulation of cell movement: the motogernic cytokines. Biohys Acta. 1991; 1072(14): 81-102
    (10) 高进,章静波.癌的侵袭与转移基础与临床.科学出版社.2002;8-14
    (11) Simon L, Goodman H, Vollmer P, et al. Control of cell locomotion: perturbation with an antibody directed against specific glycolproteins. Cell. 1985; 41 (8): 1029-1038
    (12) Mccarthy JB, Furcht LT. Laminin and fibronectin promote the heptotatic migrateon of B16 mouse melanoma cells in vitro. J Cell Biol. 1984; 98(12): 1474-1480
    (13) Albini A, Lwamoto Y, Kleinman HK. A rapid in vitro assay for quantitating the invasive potential od tumor cells. Cancer Res. 1987; 47(9): 3239-3245
    (14) Erdel M, Speiss E, Trifz G, et al. Cell interaction and motility in human lung tumor cell lines HS-24 and Sb-3 under the influence of extracelluar matrix commonents and protease inhibitors. Anticancer Res. 1992; 12(6): 349-360
    (1) Liotta LA, Lee CW, Morakis DJ. A new method for preparing large surfaces of intact human basement membrane for tumor invation studies. Cancer Lett. 1980; 11 (5): 141-152
    (2) Liotta LA, Yryggvason K, Garbisa, et al. metastasis potential correlates with enzymetic degradeation of basement membrane colleengen. Nature. 1980; 283(9): 67-68
    (3) Price JT, Bonovich MT, Kohn EC. The biochemistry of dissemination. Crit Rev Biochem Mol Bio. 1997; 32(8): 175-253
    (4) Volk T, Geiger B, Raz A. Motility and adhesive propertyes of high and low metastasis meoplastic cells. Cancer Res. 1984; 44(4): 811-824
    (1) Liotta LA, Steeg PS, Stetler-Stevenson WG. Cancer metastasis and angiogenesis: an imbanlance of positive and negative regulateon. Cell. 1991; 64(2): 327-336
    (2) Nagase H. Activation mechanicsms of matrix metalloproteinases. Biol. Chem. 1997; 378(3):151-160
    (3) Murphy G. Matrix metalloproteinases and their inhibitors. Acta Orthop Scand Suppl. 1995;66:55-60
    
    (4) Birkedal-Hansen H, Moore WG, Bodden JA, et al. Matrix metalloproteinases. Crit Rew Oral Biol. 1993; 4: 197-250
    
    (5) Bissell MJ, Kenny PA, Radisky DC. Microenvironmental regulators of tissue structure and function also regulate tumor induction and progression: the role of extracellular matrix and its degrading enzymes. Cold Spring Harb Symp Quant Biol. 2005; 70: 343-356
    
    (6) Egeblad M and Werb Z. New functions for the matrix metalloproteinases in cancer progression. Nat. Rev. Cancer. 2002; 2(3): 161-174
    
    (7) Murphy G, Willenbrock F. Tissue inhibitors of matrix metalloendopeptidases. Methods Enzymol. 1995; 248(2): 496-510
    
    (8) Elzbita S, Mariola S. Proteolytic-antiproteolytic balance and its regulation in carcinogensis. World J Gastroenterol 2005; 11(9): 1251-1266
    
    (9) Stetler-Stecenson WG. Progelatinase a activation during tumor cell ination. Invas Metastas. 1994; 14(8): 259-268
    
    (10)Himelstein BP, Canete-Soler R, Bernhard EJ, et al. Metalloproteinases in tumor progression: the cotribution of MMP-9. Invas Metastas. 1994; 14(8):246-258
    
    (11) Woessnen JF. Quantification of matrix metalloproteinases in tissue samples. Methods Enzymol. 1995; 248(2):510-528
    
    (12) Chang C, Werb Z. The many faces of metalloproteases: cell growth, invasion, angiogenesis and metastasis. The many faces of metalloproteases: cell growth, invasion, angiogenesis and metastasis. Trends Cell. Biol. 2001; 11(11): 37-43
    (1) Egeblad M, Werb Z. New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer. 2002; 2(8):161-174
    (2) Zucker S, Pei D, Cao J, et al. Membrane type-matrix metalloproteinases(MT-MMP). Curr Top Dev Biol 2003; 54(6): 1-74
    (3) Sato H, Takino T, Okada Y, et al. A matrix metalloproteinase expressed on the surface of invasive tumour cells. Nature. 1994; 370: 61-65
    
    (4) Uekita T, Itoh Y, Yana 1, et al. Cytoplasmic tail-dependent internalization of membrane-type 1 matrix metalloproteinase is important for its invasion-promoting activity. J Cell Biol. 2001; 155(9): 1345-1356.
    
    (5) Nagase H. Woessner JF. Matrix metalloproteinases. J. Biol. Chem. 1999; 274(11): 21491-21494
    
    (6) Kahai VM, Saarialho KU. Matrix metalloproteinases and their inhibitors in tumour growth and invasion. Ann Med. 1999; 31(4): 34-45
    
    (7) Bergers G, Brekken R, McMahon G, et al. Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis. Nature Cell Biol. 2002; 2(2): 737-744
    
    (8) Baker AH, Edwards DR, Murphy G. Metalloproteinase inhibitors: biological actions and therapeutic opportunities. J Cell Sci. 2002; 115(10): 3719-3727
    
    (9) Leco KJ, Khokha R, Pavloff N, et al. Tissue inhibitor of metalloproteinases-3 (TIMP-3) is an extracellular matrixassociated protein with a distinctive pattern of expression in mouse cells and tissues. J Biol Chem. 1994; 269(12): 9352-9360
    
    (10) Will H, Atkinson SJ, Butler GS, et al. The soluble catalytic domain of membrane type 1 matrix metalloproteinase cleaves the propeptide of progelatinase A and initiates autoproteolytic activation: regulation by TIMP-2 and TIMP-3. J Biol Chem. 1996; 271(6):17119-17123
    
    (11) Brown PD. Matrix metalloproteinase inhibitors in the treatment of cancer. Med. Oncol. 1997; 14(8): 1-10
    
    (12) Nelson AR, Fingleton B, Rothenberg ML, et al. Matrix metalloproteinases: Biologic activity and clinical implications. J Clin Oncol. 2000; 18(8): 1135-1149
    (1) 齐元昌,钱伯文.肿瘤血瘀证及活血化瘀治疗的现代研究进展.中医杂志.1993;34(6):370
    (2) 张玉五.丹参对恶淋巴瘤患者高血浆纤维蛋白原的影响.中西医结合杂志.1988:8(10):607-611
    (3) 韩俊庆,陈延条,满运艳等.复春片合并放射治疗鼻咽癌临床研究.中国中西医结合杂志.1995:15(12):710-712
    (4) 李学汤,王永泉,傅乃武.几种活血化瘀药物对小鼠肝癌细胞形成肺转移影响的初步实验观察.中医杂志.1980;21(8):75-77
    (5) 傅乃武.丹参对实验肿瘤生长和转移的影响及其作用原理的初步探讨.中华肿瘤杂志.1981;3(3):165-168
    (6) 丁罡,宋明志,于尔辛.丹参、赤芍对大鼠Walker256癌肝转移影响机制的研究.中国癌症 杂志.2001;11(4):364-368
    (7) 黄孔威,傅乃武.赤芍对实验肿瘤生长和转移的影响及药理作用的研究.中华肿瘤杂志.1983:5(1):24-27
    (8) 胡艳平,刘健,王庆端等.川芎嗪和维拉帕米纠正阿霉素对小鼠艾氏腹水癌的抗药性.药学学报.1993;28(1):75-78
    (9) Linli, Liu Lu-ming. The effect of syndrome on rumor's hepatic metastasis.. Chinese archivesof traditionalChinese medicine(中华中医药学刊).2007;25(1):75-78
    (1) Greenlee RT, Hill-Harmon MB, Murray T. Cancer statistics. CA Cancer J. Clin. 2001; 51(2): 144-154
    
    (2) Wyckoff JB, Jones JG, Condeelis JS. A critical step in metastasis: in vivo analysis of intravasation at the primary tumor. Cancer Res. 2000; 60(9): 2504-2511
    
    (3) Mundy GR. Metastasis to bone: causes, consequences and therapeutic opportunities. Nat. Rev. Cancer. 2002; 2(8): 584 - 593
    
    (4) Phadke PA, Mercer RR, Harms JF, et al. Kinetics of metastatic breast cancer cell trafficking in bone. Clin Cancer Res. 2006; 12(5): 1431-1440
    
    (5) Phadke PA, Mercer RR, Harms JF. Kinetics of metastatic breast cancer cell trafficking in bone. Clin Cancer Res. 2006; 12(5): 1431-1440)
    
    (6) Cook AC, Chambers AF, Turley EA. Osteopontin induction of hyaluronan synthase-2 expression promotes breast cancer malignancy. J Biol Chem. 2006; 281(34): 24381-24389
    
    (7) Paget S. The distribution of the secondary growths in cancer of the breast. Lancet 1889; 1571-1573
    
    (8) Chambers AF. Groom AC. Dissemination and growth of cancer cells in metastatic sites. Nature rew. 2002; 2(8): 563-571
    
    (9) Weiss L. metastasis of cancer: a conceptual history from antiquity to the 1990's. Cancer Metastasis Rev. 2000; 19(3-4): 193-383
    
    (10) Fidler IJ .The pathogensis of cancer metastasis: the 'seed and soil' hypothesis revisited. Nature Cancer rev. 2002; 3(1): 5.3-57
    
    (11) Ann F.Chamber, Alan C.Groom. Dissemination and growth of cancer cells in metastatic sites. Nature Cancer rev. 2002; 2(8): 563-571
    
    (12) Fidler IJ. Metastasis: quantitative analysis of distribution and fate of tumour emboli labeled with 125I-5-iodo-2'-deoxyuridine. J. Natl Cancer Inst. 1970; 45(4): 773-782
    
    (13) Fidler IJ. Cancer biology is the foundation for therapy. Cancer Biol Ther. 2005; 4(9): 1036-1039
    
    (14) Chambers AF, Groom AC MacDonald IC. Dissemination and growth of cancer cells in metastatic sites. Nat. Rew.cancer. 2002; 2(8): 563-572
    
    (15) Chambers AF, Naumov GN, Varghese HJ. Critical steps in hematogenous metastasis: an overview. Surg. Oncol.Clin.N.Am. 2001; 10(2): 243-255
    
    (16) Al-Mehdi AB, Tozawa K, Fisher AB. Intravascular origin of metastasis from the proliferation of endothelium-attached tumor cells: a new model for metastasis. Nat. Med. 2000; 6(1): 100-102
    
    (17) Wong CW, Song C, Grimes MM. Intravascular location of breast cancer cells after spontaneous metastasis to the lung. Am. J. Pathol. 2002; 161(3): 749-753
    
    (18) Folberg R, Hendrix MJ, Maniotis AJ. Vasculogenic mimicry and tumor angiogenesis. Am. J. Pathol. 2000; 156(2): 361-381
    
    (19) Maniotis AJ, Floberg R, Hess A. Vascular channel formation by human melanoma cells in vivo and in vitro: vasculogenic mimicry. Am. J. Pathol. 1999; 155(3): 739-752
    
    (20) Sood AK, Fletcher MS, Coffin JE. Functional role of matrix metalloproteinases in ovarian tumor cell plasticity. Am J Obstet Gynecol. 2004; 190(4): 899-909
    
    (21) Sood AK, Seftor EA, Fletcher MS. Molecular determinants of ovarian cancer plasticity. Am. J. Pathol. 2001; 158(4): 1279-1288
    
    (22) Muller A, Homey B, Soto H, et al. Involvement of chemokines receptors in breast cancer metastasis. Nature. 2001; 410(6824): 50-56
    
    (23) Homey B, Muller A, Zlotnik A. Chemokines: agents for the immunotherapy of cancer? Nature Rev. Immunol. 2002; 2(3): 175-184
    
    (24) Moore MA. The role of chemoattraction in cancer metastases. Bioassays. 2001; 23(3): 674-676
    
    (25) Murphy PM. Chemokines and the molecular basis of cancer metastasis. N. Engl. J. Med. 2001; 345(3): 833-835
    
    (26) Nakajima M, Monkawa K. Fabra A. et, al. Influence of organ environment on extracellular matrix degradative activity and metastasis of human colon carcinoma cells. J. Natl Cancer Inst. 1990; 82(24): 1890-1898
    
    (27) Kuo TH, Kubota T, Watanabe M. Liver colonization competence governs colon cancer metastasis. Proc. Natl Acad. Sci. USA. 1995; 92(26): 12085-12089
    
    (28) Fidler IJ. Critical factors in the biology of human cancer metastasis: twenty-eighth G.H.A. Clowes memorial award lecture. Cancer Res. 1990; 50(19): 6130-6138
    
    (29) Kakonen SM, Mundy GR. Mechanisms of osteolytic bone metastases in breast carcinoma. Cancer. 2003; 97(3): 834-839
    
    (30) Fidler IJ. Understanding bone metastases: the key to the effective treatment of prostate cancer. Clin Adv Hematol Oncol. 2003; 1(5): 278-279
    
    (31) Egeblad M, Littlepage LE, Werb Z. The fibroblastic coconspirator in cancer rogression. Cold Spring Harb Symp Quant Biol. 2005; 70: 383-388
    
    (32) Littlepage LE, Egeblad M, Werb Z. Coevolution of cancer and stromal cellular responses. Cancer Cell. 2005;7(6):499-500
    
    (33) Woodhouse EC, Chuaqui RF and Liotta LA. General mechanisms of metastasis. Cancer. 1997; 80(8): 1529-1537
    (34) Liotta LA and Kohn EC. Cancer's deadly signature.Nat. Genet. 2003, 33(1); 10-11
    
    (35) Thomas B, Meenhard H. Axis of evil: molecular mechanism of cancer metastasis. Oncogene. 2003; 22(3):6524-6536
    
    (36) Hsu MY, Meier F and Herlyn M. Melanoma development and progression: a conspiracy between tumor and host. Differentiation. 2002; 70(9): 522-536
    
    (37) Bissell MJ and Radisky D. Putting tumours in context. Nat. Rev. Cancer. 2001; 1(1): 46-54.
    
    (38) Fidler IJ, Kim SJ, Langley RR.. The role of the organ microenvironment in the biology and therapy of cancer metastasis. J Cell Biochem. 2006; 19(12): 1078-1089
    
    (39) Fidler IJ. The organ microenvironment and cancer metastasis. Differentiation. 2002; 70(9-10): 498-505
    
    (40) Fidler IJ, Wilmanns C, Staroselsky A. et al. Modulation of tumor cell response to chemotherapy by the organ environment. Cancer Metastasis Rev. 1994; 13(2): 209-222
    
    (41) Townson JL, Chambers AF. Dormancy of solitary metastatic cells. Cell Cycle. 2006; 5(16): 1744-1750
    
    (42) Chambers AF, Groom AC, MacDonald IC. Dissemination and growth of cancer cells in metastatic sites. Nat Rev Cancer. 2002; 2(8): 563-572
    
    (43) Hahnfeldt P, Panigrahy D, Folkman J. Tumor development under angiogenic signaling: a dynamical theory of tumor growth, treatment response, and postvascular dormancy. Cancer Res. 1999; 59(2): 4770-4775
    
    (44) Naumov GN, MacDonald IC, Weinmeister PM. Persistence of solitary mammary carcinoma cells in a secondary site: a possible contributor to dormancy. Cancer Res. 2002; 62(7): 2162-2168
    
    (45) Naumov GN, Akslen LA, Folkman J. Role of angiogenesis in human tumor dormancy: animal models of the angiogenic switch. Cell Cycle. 2006 ; 5(16):1779-87
    
    (46) Mignatti P, Rifkin DB. Biology and biochemistry of proteinases in tumor invation. Physiol Rev. 1993; 73(1): 161-195
    
    (47) Bissell MJ, Radisky D. Putting tumours in context. Nat. Rev. Cancer. 2001; 1(1): 46-54
    
    (48) Egeblad M, Werb Z. New functions for the matrix metalloproteinases in cancer progression. Nat. Rev. Cancer. 2002; 2(3): 161-174
    
    (49) Ortega N, Werb Z. New functional roles for non-collagenous domains of basement membrane collagens. New functional roles for non-collagenous domains of basement membrane collagens. J. Cell Sci. 2002; 115(22): 4201-4214
    
    (50) Bissell MJ, Kenny PA, Radisky DC. Microenvironmental regulators of tissue structure and function also regulate tumor induction and progression: the role of extracellular matrix and its degrading enzymes. Cold Spring Harb Symp Quant Biol. 2005; 70: 343-356
    
    (51) Egeblad M and Werb Z. New functions for the matrix metalloproteinases in cancer progression. Nat. Rev. Cancer. 2002; 2(3): 161-174
    
    (52) Elzbita S, Mariola S. Proteolytic-antiproteolytic balance and its regulation in carcinogensis. World J Gastroenterol 2005; 11(9): 1251-1266
    
    (53) Wandel E, Grasshoff A, Mittag M, Haustein UF. Fibroblasts surrounding melanoma express elevated levels of matrix metalloproteinase-1 (MMP-1) and intercellular adhesion molecule-1 (ICAM-1) in vitro. Exp. Dermatol. 2000; 9(1): 34 - 41
    
    (54) Chang C, Werb Z. The many faces of metalloproteases: cell growth, invasion, angiogenesis and metastasis. Trends Cell. Biol. 2001; 11(11):37 - 43
    
    (55) Sun J, Hemler ME. Regulation of MMP-1 and MMP-2 production through CD147 extracellular matrix metalloproteinase inducer interactions. Cancer Res. 2001; 61(5), 2276 - 2281
    
    (56) Egeblad M, Werb Z. New functions for the matrix metalloproteinases in cancer progression. Nat. Rev. Cancer. 2002; 2(3), 161 - 174
    
    (57) Chang C, Werb Z. The many faces of metalloproteases: cell growth, invasion, angiogenesis and metastasis. The many faces of metalloproteases: cell growth, invasion, angiogenesis and metastasis. Trends Cell. Biol. 2001; 11(11): 37-43
    
    (58) Kongdapka SB, Fridman R. Epidermal growth factor and amphiregulin up-regulate matrix metalloproteinases-9 in human breast cancer cells. Int J cancer 1997; 70(4):722-772
    
    (59) Joaquin A. Matrix metaloproteases and tumor invation. N Engl Med. 2005; 352(49): 2020-2021
    
    (60) Blobel CP. ADAMs: key components in EGFR signalling and development. Nat Rev Mol Cell Biol.2005; 6(1):32-43.
    
    (61) Kheradmand F, Werb Z. Shedding light on sheddases: role in growth and development. Bioessays. 2002; 24(1): 8-12
    
    (62) Overall CM, Blobel CP. In search of partners: linking extracellular proteases to substrates. Nat Rev Mol Cell Biol. 2007; 8(3): 245-257
    
    (63) Becherer JD, Blobel CP. Biochemical properties and functions of membrane-anchored metalloprotease-disintegrin proteins (ADAMs). Curr Top Dev Biol. 2003; 54: 101-123
    
    (64) Blobel CP. Functional and biochemical characterization of ADAMs and their predicted role in protein ectodomain shedding. Inflamm. Res. 2002; 51(2): 83-84
    
    (65) Henriet V, Blavier L, Declerck YA. Tissue inhibitors of metalloproteinases in invasion and proliferation. APMIS. 1999; 107(1): 111-119
    
    (66) Kruger A, Samchez OH, Martin DC. Host TIMP overexpression confers resistance to experimental brain metastasis of a fibrosarcoma cell line. Oncogene 1998: 16(18); 2419-2423
    
    (67) Dano K, Romer J, Nielsen B. Cancer invasion and tissue remodeling-cooperation of protease system and cell type. APMIS. 1999, 107(l),120-127
    
    (68) Almholt K, Lund LR, Rygaard J, Nielsen BS, Dano K. Reduced metastasis of transgenic mammary cancer in urokinase-deficient mice. Int.J.Cancer. 2005 ;113(4):525-32
    
    (69) Elenbaas B, Weinberg RA. Heterotypic signaling between epithelial tumor cells and fibroblasts in carcinoma formation. Exp. Cell Res. 2001; 264(1): 169-184
    
    (70) Duffy MJ. Urokinase-type plasminogen activator: a potent marker of metastatic potential in human cancers. Biochem. Soc. Trans. 2002; 30(2): 207-210
    
    (71) Laufs S, Schumacher J, Allgayer H. Urokinase-receptor (u-PAR): an essential player in multiple games of cancer: a review on its role in tumor progression, invasion, metastasis, proliferation/dormancy, clinical outcome and minimal residual disease. Cell Cycle. 2006; 5(16): 1760-1771
    
    (72) Nielsen BS, Sehested M, Timshel S, Urokinase plasminogen activator is localized in stromal cells in ductal breast cancer Lab. Invest. 2001; 81(11): 1485-1501
    
    (73) Pyke C, Kristensen P, Ralfkiaer E. Urokinase-type plasminogen activator is expressed in stromal cells and its receptor in cancer cells at invasive foci in human colon adenocarcinomas. Am. J. Pathol. 1991; 138(5): 1059-1067
    
    (74) Andreasen PA, Kjoller L, Christensen L, Duffy MJ. Plasminogen activator inhibitor-1 represses integrin- and vitronectin-mediated cell migration independently of its function as an inhibitor of plasminogen activation. Int. J. Cancer, 1997; 72(1): 1-22
    
    (75) Duffy MJ. The urokinase plasminogen activator system: role in malignancy. Curr. Pharm Des. 2004; 10(1):39-49
    
    (76) Salvi A, Arici B, Alghisi A. RNA interference against urokinase in hepatocellular carcinoma xenografts in nude mice. Tumour Biol. 2007; 28(1): 16-26
    
    (77) Iozzo RV. Heparan sulfate proteoglycans: intricate molecules with intriguing functions. J. Clin. Invest. 2001; 108(7): 165-167
    
    (78) Bernfeld M, Gotte M, Park PW, Reizes O. Functions of cell surface heparan sulfate proteoglycans. Annu. Rev. Biochem. 1999; 68(1): 729-777
    
    (79) Vlodavsky I, Goldshmidt O, Zcharia E. Mammalian heparanase: involvement in cancer metastasis, angiogenesis and normal development. Semin. Cancer Biol. 2002; 12(2): 121-129
    
    (80) Friedmann Y, Vlodavsky I, Aingorn H. Expression of heparanase in normal, dysplastic, and neoplastic human colonic mucosa and stroma. Evidence for its role in colonic tumorigenesis. Am. J. Pathol.2000; 157(4): 1167-1175
    
    (81) McKenzie E, Tyson K, Stamps A. Cloning and expression profiling of Hpa, a novel mammalian heparanase family member. Biochem. Biophys. Res. Commun. 2000; 276(3): 1170-1177
    
    (82) Parish CR, Freeman C, Hulett MD. Heparanase: a key enzyme involved in cell invasion. Biochim.Biophys. Acta. 2001; 1471 (3): 99-108
    
    (83) Uno F, Fujiwara T, Takata Y. Antisense-mediated suppression of human heparanase gene expression inhibits pleural dissemination of human cancer cells. Cancer Res. 2001; 61(21): 7855-7860
    
    (84) Nadir Y, Brenner B, Zetser A, Heparanase induces tissue factor expression in vascular endothelial and cancer cells. Thromb Haemost. 2006; 4(11): 2443-2451
    
    (85) Fidler IJ. Antivascular therapy of cancer metastasis. J Surg Oncol. 2006; 94(3): 178-80
    
    (86) Chambers AF. Naumov GN, Varghese HJ. critical steps in hematogenous metastasis: an overview. Surg.Oncol.Cli. Am. 2001; 10(2): 243-255
    
    (87) Fidler IJ. Critical determinants of metastasis. Semin Cancer Biol. 2002; 12(2): 89-96
    
    (88) Townson JL, Naumov GN, Chambers AF. The role of apoptosis in tumor progression and metastasis. Curr Mol Med. 2003; 3(7): 631-642
    
    (89) Mimeault M, Batra SK. Functions of tumorigenic and migrating cancer progenitor cells in cancer progression and metastasis and their therapeutic implications. Cancer Metastasis Rev. 2007; 46(3): 267-273
    
    (90) Johnson JP. Cell adhesion molecules in the development and progression of malignant melanoma. Cancer Metastas. Rev. 1999; 18(3): 345-357
    
    (91) Cavallaro U, Christofori G. Cell adhesion in tumor invasion and metastasis: loss of the glue is not enough. Biochim. Biophys.Acta. 2001; 1552(1): 39-45
    
    (92) Welch DR., Steeg PS, Rinker-Schaeffer CW. Molecular biology of breast cancer metastasis: Genetic regulation of human breast carcinoma metastasis. Breast Cancer Res. 2000; 2(6): 408-416
    
    (93) Rinker-Schaeffer CW, Welch DR, Sokoloff M. Defining the biologic role of genes that regulate prostate cancer metastasis. Curr. Opin. Urol. 2000; 10(5): 397-401
    
    (94) Hedley BD, Allan AL, Chambers AF. Tumor dormancy and the role of metastasis suppressor genes in regulating ectopic growth. Future Oncol. 2006;2(5):627-641
    (1) Ireton RC, Davis MA, van Hengel J, et al, A novel role for p120 catenin in E-cadherin function. J Cell Biol. 2002; 159:465-476
    (2) Roczniak-Ferguson A, Reynolds AB. Regulation of p120-catenin nucleocytoplasmic shuttling activity. J Cell Sci. 2003; 116:4201-4212
    (3) Bienz M, Clevers H. Linking colorectal cancer to Wnt signaling. Cell 2000; 103:311-320
    (4) Benzev A, Shtutman M, Zhurinsky J. The integration of cell adhesion with gene expression: the role of beta-catenin. Exp Cell Res. 2000; 261(1): 75-82.
    (5) Bruce Alberts, Alexander Johnson, et al. Molecular biological of the cell(Fouth). 945,1113(2002)
    (6) Hynes RO. Integrins: Bidirectional, allosteric signaling machines. Cell, 2002;110:673-687
    (7) Cheng M, Geng JG. P-selectin mediates adhesion of leukocytes, platelets, and cancer cells in inflammation, thrombosis, and cancer growth and metastasis. Arch Immunol Ther Exp. 2006;24(3): 324-330
    (8) Bruce Alberts, Alexander Johnson, et al. Molecular biological of the cell(Fouth). 877,1028(2002)
    (9) Kokenyesi R, Murray K P, Benshushan A, et al. Invasion of interstitial matrix by a novel cell lime from primary peritoneal caranosarloma and by established ovarian carcinoma cell lines: role of cell-matrix adhesion molecules proteinases and E-cadherin expression. Gynaecol Oncol, 2003;89(1): 60-72
    
    (10) Rakha EA, Abd El, Pinder SE, et al. E-cadherin expression in invasive non-lobular carcinoma of the breast and its prognostic significance,Histopathology, 2005;46(6): 685-693
    
    (11) Liu YN, Lee WW,Wang CY,et al. Regulatory mechanisms controlling human E-cadherin gene expression. Oncogene. 2005;24(56): 8277-8290
    
    (12) Yaldizal M, Hakverdi Au, Bayhan G, et al. Expression of E-cadherin in squamous cell carcinomas of the cervix with correlations to clinicopathological feature. Eur J Gyaecol Oncol. 2005;26(l): 95-98)
    
    (13) Annie O. E-cadherin in gastric cancer. World J Gastroenterol. 2006;12(2): 199-203
    
    (14) Zheng ZH, Sun XJ,Zhou HT, et al, Analysis of metastasis suppressing function of E-cadherin in gastric cancer cells by RNAi, World J Gastroenterol, 2005;11(13): 2000-2003
    
    (15) Uchikado Y, Natsugoe S, Okumura H, et a. Slug Expression in the E-cadherin preserved tumors is related to prognosis in patients with esophageal squamous cell carcinoma. Clin Cancer Res. 2005;11(3): 1174-1180
    
    (16) Salon C, Lantuejoul S, Eymin B, et al. The E-cadherin beta-catenin complex and its implication in lung cancer progression and prognosis. Fut Oncol. 2005;l(5): 649-660
    
    (17) Wu W, Walker AM. Human chorionic gonadotropin beta (HCGbeta) down-regulates E-cadherin and promotes human prostate carcinoma cell migration and invasion. Cancer. 2006;106(1): 68-78.
    
    (18) Foran E, Mc William P, Kelleher D, et al. The leukocyte protein L-plastin induces proliferation, invasion and loss of E-cadherin expression in colon cancer cells. Int J Cancer. 2006;l 18(8): 2098-2104
    
    (19) Kim JC, Rob SA, Kim HC, et al. Coexpression of carcinoembryonic antigen and E-cadherin in colorectal adenocarcinoma with liver metastasis. J Gastrointest Surg. 2003 ;7(7): 931-938
    
    (20) Frreira P, Oliveira MJ, Beraldi E, et al. Loss of functional E-cadherin renders cells more resistant to the apoptotic agent taxol in vitro. Exp Cell Res. 2005;310(1): 99-104
    
    (21) Bae SH, Jung ES, Park YM, et al. Expression patterns of E-cadherin and beta-catenin according to clinicopathological characteristics of hepatocellular carcinoma. Taehan Kan Hakhoe Chi. 2002;8(3):297-303
    
    (22) Takamura M, Ichida T, Matsuda Y, et al. Reduced expression of liver-intestine cadherin is associated with progression and lymph node metastasis of human colorectal carcinoma. Cancer Lett. 2004;212(2): 253-259
    
    (23) Pujuguent P, Del Maestro L. E-cadherin-depent adherens junction assembly through Rac activation. Mol Bio Cell. 2003; 14(15): 2181-2191
    
    (24) Jin H, Varner J. Integrins: Roles in cancer development and as treatment targets. Br J Cancer. 2004;90: 561-565
    
    (25) Dieta B, Laurien U, Reijneveld, et al. Constitutive integrin activation on tumor cells contributes to progression of leptomengeal metastasis. Neuro Onco.2006;16(3): 127-134
    
    (26) Sawai H, Okada Y, Funahashi H, et al. lnterleukin-1 alpha enhances the aggressive behavior of pancreatic cancer cells by regulating the alpha6betal-integrin and urokinase plasminogen activator receptor expression. Cell Biol. 2006;20(2): 177-185
    
    (27) Cannistra SA, Ottensmeier C, Niloff J, et al. Expression and function of betal and alpha v beta3 integrins in ovarian cance. Gynaecol Oncol. 1995;58: 216-225
    
    (28) Davidson B, Goldberg I, Reich R, et al. AlphaV- and betal-integrin subunits are commonly expressed in malignant effusions from ovarian carcinoma patients. Gynaecol Oncol. 2003;90:248-257
    
    (29) Ahmed N, Riley C, Rice GE, et al. α β_6 integrin marker for the malignant potential of epithelial ovarian cancer. J Histochem Cytochem. 2002;50(10): 1371-1379
    
    (30) Thomas NJ, Nystromu ML. Alphavbeta6 integrin in wound healing and cancer of the oral cavity. J Oral Pathol Med. 2006;35(1): 1-10
    
    (31) Bates RC. The α β_6 integrin as a novel molecular target for colorectal cancer. Fut Oncol. 2005;11(6): 821-828
    
    (32) Enns A, Gassmann P, Scbluter K, et al. Integrins can directly mediate metastatic tumor cell adhesion within the liver sinusoids. J Gastrointest Surg. 2004;8(8): 1049-1060
    
    (33) Bertotti A, Comoglio PM, Trusolimo L, et al. Beta4 integrin is a transforming molecule that unleashes Met tyrosine kinase tumorigenesis. Cancer Res. 2005;65(23): 10674-10679
    
    (34) MatterML, RuoslahtiE. A signaling pathway from the alpha5betal and alpha (v) betal3 integrins that elevates Bcl2 transcription. J Biol Chem. 2001 ;276: 27757-27763
    
    (35) Park CC, Zhang H, Pallavicm M, et al. Betal integrin inhibitory antibody induces apoptosis of breast cancer cells, inhibits growth, and distinguishes malignant from normal phenotype in three dimensional cultures and in vivo. Cancer Res. 2006;66(3): 1526-1535
    
    (36) Marelli MM, Moreri RM, Procacci P, et al. Insulin-like growth factor-I promotes migration in human androgen-independent prostate cancer cells via the alphavbeta3 integrin and PI3-K/Akt signaling. Int J Oncol. 2006;28(3): 723-730
    
    (37) Mi Z, Guo H, Wai PY, et al. Integrin linked kinase regulates osteopontin-dependent MMP-2 and uPA expression to convey metastatic function in murine mammary epithelial cancer cells. Carcinogenesis. 2006; 12(2): 879-887
    
    (38) Raso E, Tovari J, Ladanyi A, et al. Ligand-mimetic anti-alphaIIb beta3 antibody PAC-1 inhibits tyrosine signaling, proliferation and lung colonization of melanoma cells. Pathol Oncol Res. 2005; 11 (4): 218-223
    
    (39) Hanloy WD, Burdick MM, Konstantopoulos K, et al. CD44 on LS174T colon carcinoma cells possesses E-selectin ligand activity. Cancer Res. 2005;65(13): 5812-5817
    
    (40) Wei M,Gao Y, Tian M, et al. Selectively desulfated heparin inhibits P-selectin-mediated adhesion of human melanoma cells. Cancer Lett. 2005;299(l): 123-126
    
    (41) Laubli H, Stevenson JL, Vsrki A, et al. L-selectin facilitation of metastasis involves temporal induction of Fut7-dependent ligands at sites of tumor cell arrest. Cancer Res. 2006;66(3): 1536-1542
    
    (42) Eichbanm MH, de Rossi TM, Kawl S. Serum levels of soluble E-selectin are associated with the clinical course of metastatic disease in patients with liver metastases from breast cancer. Oncol Res. 2004;14(12): 603-610)
    
    (43) Alexiou D, Karayiannakis AJ, Syrigos Kn, et al. Serum levels of E-selectin, ICAM-1 and VCAM-1 in colorectal cancer patients: correlations with clinicopathological features, patient survival and tumour surgery. Eur J Cancer. 2001 ;37(18): 2392-2397
    
    (44) Hanloy WD, Burdick MM, Konstantopoulos K, et al. CD44 on LS174T colon carcinoma cells possesses E-selectin ligand activity. Cancer Res. 2005;65(13): 5812-5817
    
    (45) Dimittoff CJ, Descheny L, Trujillo N, et al. Identification of leukocyte E-selectin ligands, P-selectin glycoprotein ligand-1 and E-selectin ligand-1, on human metastatic prostate tumor cells. Cancer Res. 2005;65(13): 5750-5760
    
    (46) Sipkins DA, Wei X, Wu JW, et al. In vivo imaging of specialized bone marrow endothelial microdomains for tumour engraftment. Nature. 2005;435(7044): 969-973
    
    (47) Yang JM, O'neill P, Jin W, et al. Extracellular matrix metalloproteinase inducer (CD147) confers resistance of breast cancer cells to Anoikis through inhibition of bim. J Bio Chem. 2006;281(14): 9719-9720
    
    (48) Choi SH, Takahashi K, Eto H, et al. CD44s expression in human colon carcinomas influences growth of liver metastases. Int J Cancer. 2000;85(4): 523-526
    
    (49) Stallmach A, Wittig BM, Kremp K, et al. Downregulation of CD44v6 in colorectal carcinomas is associated with hypermethylation of the CD44 promoter region. Exp Mol Pathol. 2003;74(3): 262-266
    
    (50) Stokes GN, Shelton JB, Zahn CM, et al. Association of CD44 isoform immunohistochemical expression with myometrial and vascular invasion in endometrioid endometrial carcinoma. Gynecol Oncol. 2002;84(1): 58-61

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700