我国典型低温区土壤有机碳变化及土壤呼吸特征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
气候寒冷地带的低温条件使土壤易于积累有机碳,从而具有较高的土壤有机碳密度;另一方面,低温地带的气候变暖幅度要明显大于温暖的地区。因此,本论文选择我国典型低温区进行土壤碳库变化和土壤呼吸敏感性的研究。采用全国多目标区域地球化学调查数据对土壤碳库储量进行了估算,结合历史数据分析了土壤碳库的时空变化,并从自然和人为两方面分析了其变化原因。在实验室进行了土壤呼吸实验,对低温区土壤呼吸特征和温度敏感性特征进行了探索,以更好地认识低温地区土壤碳库在气候变暖的条件下如何响应于温度的变化。此外,还采用3种实验方法进行了土壤有机碳不同组分的划分。主要的研究结果如下:
     第一,松嫩平原北部表层土壤总体上为碳源,其释放碳的平均值为1479 t/km2,20年间土壤潜在碳排放总量为0.20 Gt,与化石燃料排放量0.21 Gt相当;其中由气温上升、土地利用和水土流失造成的土壤碳库排放值分别为0.11 Gt、0.09 Gt和0.19 Mt。在现有耕作和土地利用方式下,松嫩平原固碳潜力为负值。
     第二,吉林中西部地区同样为碳源,有机碳以0.199 tC ha-1·a-1的年变化速率由土壤排放进入大气中。在影响因素中,LUCC带来的是土壤碳的固存,吉林中西部碳库变化受温度变化并不大,但与降水存在明显的相关性,这能大致解释土壤有机碳密度在空间分布上西北低、东南高,由西北向东南逐渐增大的趋势。
     第三,不同土地利用类型土壤呼吸强度对温度升高存在着显著的正反馈,其变化趋势是随着温度升高而呈指数或乘幂式上升,但温度敏感性系数Q10随温度的升高而减小。东北地区黑土样品试验表明,相同温度下不同土地利用的土壤呼吸强度以林地最高,农田中水田高于旱田,草地介于水田和旱田之间。
     第四,青藏与漠河地区冻土对温度上升反馈敏感,土壤呼吸强度随温度上升呈指数或乘幂式上升,而且在低温下的温度敏感性系数更高。采用分两库和三库的模型方法模拟土壤碳库动态变化,活性碳含量分别为0.117~0.342 g/kg和0.158~0.795 g/kg,占有机碳总量的比例分别为0.17%~2.89%和0.52%~8.75%。
     第五,通过密度分选、酸水解和氯仿熏蒸方法,对土壤有机碳进行物理、化学和微生物意义上的划分。同样的土样,酸水解测得的易氧化碳占土壤比重最高,其次是密度分选测得的轻组有机碳,氯仿熏蒸测得的微生物量碳最低。
The low temperature condition in cold zones makes the soil accumulate organic carbon easily, and thus the density of soil organic carbon is relatively high; on the other hand, the warming extent in the regions with low temperature is obviously greater than that in warm regions. So, the change of soil carbon pool and the sensitivity of soil respiration were studied in several typical regions with low temperature in China. Using the National Multi-purpose Regional Geochemical Survey data, soil carbon reserves were estimated; the temporal and spatial variation of soil carbon pool were investigated combining with the historical data, and natural and artificial reasons for the change were analyzed. Soil respiration experiment were done in the laboratory, and the characteristics of soil respiration and its the temperature sensitivity in low-temperature regions were explored, so as to better understand the respond of soil organic carbon pool in low-temperature regions to the temperature change under global warming. In addition, different components of soil organic carbon were divided by three experimental methods. The main results are as follows:
     First, surface soil in the north area of the Songnen Plain was the carbon source from the whole aspect, with an average carbon-release ratio of 1479 t/km2, and the potential amount of soil carbon emission was 0.20 Gt in 20 years, which was equivalent to that of fossil fuel combustion 0.21 Gt; resulting from climate warming, land use and soil erosion, the values of soil organic carbon emission were 0.11 Gt, 0.09 Gt and 0.19 Mt, respectively. Under the existing mode of farming and land use, the potential of carbon sequestration in the Songnen Plain is negative.
     Second, the central and western area of Jilin was also the carbon source, and with a annual change rate of 0.199 tC ha-1·a-1, organic carbon was released from the soil into the atmosphere. Among the affecting factors, LUCC brought soil carbon sequestration; the change of carbon pool in the central and western area of Jilin was not obviously affected by temperature change, but it had a significant correlation with precipitation variation, which can largely explain that the SOC density is Northwest low, southeast high in spatial distribution, and gradually increases from northwest to southeast in trend.
     Third, soil respiration of different land use types showed significant positive feedback to temperature increase, which increases exponentially or in power-type as the temperature increase, while temperature sensitivity coefficient Q10 decreases with increasing temperature. The experiment of black soil in the Northeast area showed that at the same temperature, of different land use types, soil respiration in forest was highest, that in paddy field was higher than that in dry farmland, and that in grassland was between that in paddy field and that in dry farmland.
     Fourth, the feedback of permafrost samples in the Qinghai-Tibet Plateau and in the region of Mohe was sensitive to temperature increase; soil respiration increased exponentially or in power-type with the temperature, and temperature sensitivity coefficient was higher at low temperature. Using the model fitting methods of two pools and three pools, dynamic variation of soil carbon pool were fitted, and the result was that the contents of active carbon were 0.117~0.342 g/kg and 0.158~0.795 g/kg, respectively, and the proportion of active carbon to total amount of carbon pool were 0.17%~2.89% and 0.52%~8.75%, respectively.
     Fifth, by density separation, acid hydrolysis and chloroform fumigation, soil organic carbon was divided in the physical, chemical and microbiological sense, respectively. As to the same soil samples, the proportion of easily oxidized carbon measured by acid hydrolysis to soil dry weight was the highest, followed by that of light fraction carbon from density separation, and that of microbial biomass C measured by chloroform fumigation was the lowest.
引文
阿里穆斯,段飞舟.黑龙江饲草资源退化及其成因分析[J].安徽农业科学, 2009, 37(16): 7441~7442, 7476.
    曹丽花,赵世伟.土壤有机碳库的影响因素及调控措施研究进展[J].西北农林科技大学学报(自然科学版), 2007, 35(3): 177~182,187.
    陈泮勤.地球系统碳循环[M].北京:科学出版社, 2004: 12~13.
    陈全胜,李凌浩,韩兴国,等.典型温带草原群落土壤呼吸温度敏感性与土壤水分的关系[J]. 生态学报, 2004, 24(4): 831~836.
    陈全胜.内蒙古锡林河流域草原群落土壤呼吸的时空变异及其影响因子研究:[博士论文].北京:中国科学院植物研究所, 2002.
    陈小梅,刘菊秀,邓琦,等.降水变率对森林土壤有机碳组分与分布格局的影响[J].应用生态学报, 2010, 21(5): 1210~1216.
    陈佐忠,汪诗平.中国典型草原生态系统[M].北京:科学出版社, 2000, 70~78.
    崔海山,张柏,于磊,等.中国黑土资源分布格局与动态分析[J].资源科学, 2003, 25(3): 64~68.
    范宇,刘世全,张世熔,等.西藏地区土壤表层和全剖面背景有机碳库及其空间分布[J]. 生态学报, 2006, 26(9): 2834~2846.
    方精云,郭兆迪.寻找失去的陆地碳汇[J].自然杂志, 2006, 29(1): 1~6.
    方精云,王娓.作为地下过程的土壤呼吸:我们理解了多少?[J]植物生态学报, 2007, 31(3): 345~347.
    高鲁鹏,梁文举,姜勇,等.土壤有机质模型的比较的分析[J].应用生态学报, 2003, 14(10): 1804~1808.
    黄耀,孙文娟.近20年来中国大陆农田表土有机碳含量的变化趋势[J].科学通报, 2006, 51: 750~762.
    吉林省土壤肥料总站.吉林土壤[M].北京:中国农业出版社, 1998, 246.
    焦剑.东北地区土壤侵蚀空间变化特征研究[J].水土保持研究, 2010, 17(3): 1~6, 63~64.
    李发鹏,李景玉,徐宗学.东北黑土区土壤退化及水土流失研究现状[J].水土保持研究, 2006, 13(3): 50~54.
    李凌浩,陈佐忠.草地群落的土壤呼吸[J].生态学杂志, 1998, 17(4): 45~51.
    李娜,王根绪,高永恒,等.青藏高原生态系统土壤有机碳研究进展[J].土壤. 2009, 41(4): 512~519.
    李甜甜,季宏兵,孙媛媛,等.我国土壤有机碳储量及影响因素研究进展[J].首都师范大学学报(自然科学版), 2007, 28(1): 93~97.
    李玉宁,王关玉,李伟.土壤呼吸作用和全球碳循环[J].地学前缘(中文版), 2002, 9(2): 351~357.
    刘国华,傅伯杰,方精云.中国森林碳动态及其对全球碳平衡的贡献[J].生态学报, 2000, 20(5): 733~740.
    刘纪远,于贵瑞,王绍强,等.陆地生态系统碳循环及其机理研究的地球信息科学方法初探[J].地理研究, 2003, 22(4): 397~405.
    刘绍辉,方精云.土壤呼吸的影响因素及全球尺度下温度的影响[J].生态学报, 1997, 17(5): 469~476.
    潘根兴,曹建华,周运超.土壤碳及其在地球表层系统碳循环中的意义[J].第四纪研究, 2000, 20(4): 325~334.
    潘根兴,李恋卿,张旭辉,等.中国土壤有机碳库量与农业土壤碳固定动态的若干问题[J]. 地球科学进展, 2003, 18(4): 609~618.
    潘根兴,李恋卿,张旭辉.土壤有机碳库与全球变化研究的若干前沿问题——兼开展中国水稻土有机碳固定研究的建议[J].南京农业大学学报, 2002, 25(3): 100~109.
    潘根兴,赵其国,蔡祖聪.《京都议定书》生效后我国耕地土壤碳循环研究若干问题[J].中国基础科学, 2005, (2): 12~18.
    潘根兴,赵其国.我国农田土壤碳库演变研究:全球变化和国家粮食安全[J].地球科学进展, 2005, 20(4): 384~393.
    潘根兴.中国土壤有机碳和无机碳库量研究[J].科技通报, 1999, 15(5): 330~332.
    潘根兴.中国土壤有机碳库及其演变与应对气候变化[J].气候变化研究进展.气候变化研究进展, 2008, 4(5): 282~289.
    邱建军,王立刚,唐华俊,等.东北三省耕地土壤有机碳储量变化的模拟研究[J].中国农业科学, 2004, 37(8): 1166~1171.
    全国农业区划委员会.土地利用现状调查技术规程.北京:测绘出版社, 1984. 2~8.
    全国土壤普查办公室.中国土种志(第二卷)[M].北京:中国农业出版社, 1994.42~421,660~683.
    沈永平,梁红.全球冰川消融加剧使人类环境面临威胁[J].冰川冻土, 2001, 23(2): 208~211.
    施雅风,黄茂桓,姚檀栋,等.中国冰川与环境[M].北京:科学出版社, 2000, 1~400.
    石庆武.吉林省经济地理[M].北京:新华出版社, 1990, 178~181.
    史学军,陈锦盈,潘剑君,等.几种不同类型土壤有机碳库容大小及周转研究[J].水土保持学报, 2008, 22(6): 123~127.
    孙维侠,史学正,于东升,等.基于1:100万土壤空间数据库的有机碳储量估算研究——以中国东北三省为例[J].地理科学, 2004, 24(5): 568~572.
    王剑,徐美,曾和平.土壤侵蚀研究进展[J].沧州师范专科学校学报. 2010, 26(1): 108~111.
    王凯雄,姚铭,许利君.全球变化研究热点—碳循环[J].浙江大学学报(农业与生命科学版), 2001, 27(5): 473~478.
    王宪伟,李秀珍,吕久俊,等.温度对大兴安岭北坡多年冻土湿地泥炭有机碳矿化的影响[J]. 第四纪研究, 2010, 30(3): 591~597.
    王小兵,吴元元,邓玲.东北黑土区黑土退化防治与保护研究[J].资源与产业, 2008, 10(3): 81~83.
    王小国,朱波,王艳强,等.不同土地利用方式下土壤呼吸及其温度敏感性[J].生态学报, 2007, 27(5): 1960~1968.
    温明章.草地资源开发在我国生态农业中的地位及前景[J].农业环境与发展, 1996, 13(2): 14~18.
    吴庆标,王效科,欧阳志云.活性有机碳含量在凋落物分解过程中的作用[J].生态环境, 2006, 15(6): 1295~1299.
    奚小环,杨忠芳,廖启林,等.中国典型地区土壤碳储量研究[J].第四纪研究, 2010, 30(3): 573~583.
    奚小环,杨忠芳,夏学齐,等.基于多目标区域地球化学调查的中国土壤碳储量计算方法研究[J].地学前缘, 2009, 16(1): 1~12.
    徐小锋,田汉勤,万师强.气候变暖对陆地生态系统碳循环的影响[J].植物生态学报, 2007, 31(2): 175~188.
    许泉,芮雯奕,何航,等.不同利用方式下中国农田土壤有机碳密度特征及区域差异[J].中国农业科学, 2006, 39(12):2505~2510.
    许信旺,潘根兴,曹志红,等.安徽省土壤有机碳空间差异及影响因素[J].地理研究, 2007, 26(6): 1077~1086.
    杨钙仁,张文菊,童成立,等.温度对湿地沉积物有机碳矿化的影响[J].生态学报, 2005, 25(2): 243~248.
    杨丽霞.利用森林生态系统碳循环综合模型模拟土壤有机碳动态变化.南京:南京农业大学. [硕士学位论文], 2004.
    杨艳,李秋梅,张显双.吉林省土壤侵蚀现状及防治措施[J].研究与探索. 2010, 11: 54~55.
    杨玉盛,谢锦升,盛浩,等.中亚热带山区土地利用变化对土壤有机碳储量和质量的影响[J].地理学报, 2007, 62(11): 1123~1131.
    叶笃正,符淙斌,董文杰.全球变化科学进展与未来趋势[J].地球科学进展, 2002, 17(4): 467~469.
    袁芳,赵小敏,乐丽红,等.江西省表层土壤有机碳库储量估算与空间分布特征[J].生态环境, 2008, 17(1): 268~272.
    张志强,孙成权.全球变化研究十年新进展[J].科学通报, 1999, 44(5): 464~477.
    赵峰.吉林省中部土地利用/覆被变化对水资源环境影响研究.吉林:吉林大学. [博士学位论文], 2005.
    中国标准化研究院.中国土壤分类与代码GB/T 17296-2000.北京:中国标准出版社, 2000. 15~21, 27~35.
    周涛,史培军,罗巾英,等.基于遥感与碳循环过程模型估算土壤有机碳储量[J].遥感学报, 2007, 11(1): 127~136.
    周玉梅,韩世杰,郑俊强,等. CO2浓度升高对森林土壤微生物呼吸与根(际)呼吸的影响[J]. 植物生态学报, 2007, 31(3): 386~393.
    周运超,潘根兴,李恋卿,等.太湖地区3种水稻土不同温度培养中有机碳库变化及其对升温的响应[J].环境科学, 2003, 24(1): 46~51.
    朱连奇,朱小立,李秀霞.土壤有机碳研究进展[J].河南大学学报(自然科学版), 2006, 36(3): 72~75.
    Andrén O, Paustian K. Barley straw decomposition in the field - a comparison of models[J]. Ecology, 1987, 68: 1190~1200.
    Armentano T V. Menges E S. Patterns of change in the carbon balance of organic soil wetlands ofthe temperate zone[J]. Journal of Ecology, 1986, 74: 755~774.
    Atjay G L, Ketner P, Duvigneaud P. Terrestrial primary production and phytomass[J]. In: Bolin B, Degens E T, Kempe S, Ketner P(eds). The Global Carbon Cycle. Chichester: John Wiley & Sons, 1979, 129~181.
    Badia D V, Alcaniz J M. Basal and specific microbial respiration in semiarid agricultural soils: Organic amendment and irrigation management effects[J]. Geomicrobiology Journal, 1993, 11(3): 261~274.
    Bartlett K B, Harriss R C. Review and assessment of methane flux from wetlands[J]. Chemosphere, 1993, 26(4): 261~320.
    Brix H, Sorrell B K, Lorenzen B. Are phragmites dominated wetlands a net source or net sink of greenhouse gases?[J] Aquatic Botany, 2001, 69: 313~324.
    Douce R, Neuburger M. The uniqueness of plant mitochondria[J]. Annual Review of Plant Physiology and Plant Molecular Biology, 1989, 40: 371~414.
    Duxbery J M, Mosier A R. Status and issures concerning agricultural emissions of greenhouse gases[J]. In: Kaiser H M, Drennen T(eds). Agriculture Dimensions of Global Climate Change. St. Lucie Press, 1993, 229~258.
    Edwards C A, Reichle D E, Crossley D A J. The role of soil invertebrates in turnover of organic matter and nutrients[J]. In: Reichle DE ed. Analysis of Temperate Forest Ecosystems [M]. New York: Springer-Verlag, 1970, 12~172.
    Elberling B, Brandt K K. Uncoupling of microbial CO2 production and release in frozen soil and its implications for field studies of arctic C cycling[J]. Soil Biology & Biochemistry, 2003, 35(2): 263~272.
    Eswaran H E, Van Den Berg E V, Reich P. Organic carbon in soils of the world[J]. Soil Science Society of America Journal, 1993, 57: 192~194.
    Fang J Y, Tang Y H, Son Y. Why are East Asian ecosystems important for carbon cycle research[J]. Science China Life Sciences, 2010, 53: 753~756.
    Forster A, Schouten S, Moriya K, et al. Tropical warming and intermittent cooling during the Cenomanian/Turonian oceanic anoxic event 2: Sea surface temperature records from the equatorial Atlantic[J]. Paleoceanography, 2007, 12~19.
    Franzen L G C. The Earth Afford to lose the Wetlands in the Battle Against the IncreasingGreenhouse Effect International Peat Society Proceedings of International Peat Congress[M]. Uppsala, 1992, 1~18.
    Giardina C P, Ryan M. Evidence that decomposition rates of organic carbon in mineral soil do not vary with temperature[J]. Nature, 200l, 404(20): 858~861.
    Hogberg P, Nordgren A, Buchman N, Taylor A F S, et al. Large-scale forest girdling shows that current photosynthesis drives soil respiration[J]. Nature, 2001, 411: 789~792.
    Houghton R A. The contemporary carbon cycle[J]. Treatise on Geochemistry, 2003, 8: 473~513.
    IPCC (Intergovernmental Panel on Climate Change). Climate Change 1997: the Science of Climate Change[M]. London, Cambridge University Press, 1997.
    IPCC (Intergovernmental Panel on Climate Change). Climate Change 2007[M]. Geneva, 2007.
    Janssens I A, Freibauer A, Ciais P, et al. Europe’s terrestrial biosphere absorbs 7 %~12 % of European anthropogenic CO2 emissions[J] . Science, 2003, 300 (5625): 1538~1542.
    Jenkinson D S, Rayner J H. The turnover of soil organic matter in some of the Rothamsted classical experiments[J]. Soil Science, 1977, 123(5): 298~305.
    Kirschbaum M F. The temperature dependence of soil organic matter decomposition, and the effect of global warming on soil organic C storage[J]. Soil Biology & Biochemistry, 1995, 27: 753~760.
    Kirschbaum U F M. Will changes in soil organic carbon act as a positive or negative feedback on global warming[J]. Biogeochemistry, 2000, 48: 21~51.
    Kowalenko C G, Ivarson K C, Cameron D R. Effect of moisture content, temperature and nitrogen fertilization on carbon dioxide evolution from field soils[J]. Soil Biology and Biochemistry, 1978, 10: 417~423.
    Kucera C, Kirkham D. Soil respiration studies in tall grass prairie in Missouri[J]. Ecology, 1971, 52: 912~915.
    Lafleur P M, McCaughey J H, Joiner D W, et al. Seasonal trends in energy, water, and carbon dioxide fluxes at a northern boreal wetland[J]. J Gephys Res, 1997, 102: 29009~29020.
    Lal R. Global potential of soil carbon sequestration to mitigate the greenhouse effect[J]. Crit Reviews Plant Sci, 2003, 22(2): 151~184.
    Lal R. Soil carbon dynamics in cropland and rangeland[J]. Environ Pollution, 2002, 116(3): 353~362.
    Liao Qilin, Zhang Xuhui, Li Zhipeng et al. Increase in soil organic carbon stock over the last two decades in China’s Jiangsu Province. Global Change Biology[J], 2009, 15: 861~875.
    Liski J, Ilveniemi H, Makela A, et al. CO2 emissions from soil in response to climatic warming are overestimated-The decomposition of old soil organic matter is tolerant to temperature[J]. Ambio, 1999, 28: 171~174.
    Luo Y Q, Wan S Q, Hui D F, et al. Acclimatization of soil respiration to warming in a tall grass prairie[J]. Nature, 2001, 413, 622~625.
    Luo Y Q, Zhou X H. Soil respiration and the environment[M]. Beijing: High Education Press, 2006.
    MacDonald N W, Randlett D L, Donald Z R. Soil Warming and Carbon Loss from a Lake States Spodosol[J].Soil Science Society of America Journal, 1999, 63: 211~218.
    Mann L K. Changes in soil carbon storage after cultivation[J]. Soil respiration, 1986, 142: 279~288.
    Melillo J M, Steudler P A, Aber J D, et al. Soil warming and carbon-cycle feedbacks to the climate system[J]. Science, 2002, 298: 2173~2176.
    Mikan C J, Schimel J P, Doyle A P. Temperuture controls of microbial respiration in arctic tundra soils above and below freezing[J]. Soil Biology and Biochemistry, 2002, 34, 1785~1795.
    Mitsch W J, Gosselink J G. Wetlands[M]. 2nd ed. New York: Van Nostrand Reinhold. 1993.
    Oechel W C, Hastings S J, Vourlitis C, et al. Recent change of arctic tundra ecosystems from a net carbon sink to a source[J]. Nature, 1993, 361: 520~523.
    Oechel W C, Vourlitis G L, Hastings S J, et al. Change in arctic CO2 flux over two decades: effects of climate change at Barrow, Alaska[J]. Ecological Applications, 1995, 5: 846~855.
    Pacala S W, Hurtt G C, Baker D, et al. Consistent land- and atmosphere- based U.S. carbon sink estimates[J]. Science, 2001, 292(5525): 2316~2320.
    Pekka V, Kristiina K, Mikko T, et al. Temperature sensitivity of soil organic matter decomposition in southern and northern areas of the boreal forest zone[J]. Soil Biology & Biochemistry, 2008, 40: 1758~1764.
    Raich J W, Nadelhoffer K J. Belowground carbon allocation in forest ecosystems: global trends[J]. Ecology, 1989, 70: 1346~1354.
    Raich J W, Potter C S. Globe patterns of carbon dioxide emissions from soils[J]. GlobalBiogeochemical Cycles, 1995, 9: 23~36.
    Raich J W, Schlesinger W H. The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate[J]. Tellus, 1992, 44B: 81~99.
    Reichstein M, Bednorz F, Broll G, et al. Temperature dependence of carbon mineralization: Conclusions from a long-term incubation of subalpine soil samples[J]. Soil Biology & Biochemistry, 2000, 32: 947~958.
    Rozanov B.G. Human impacts on evolution of soils during various ecological conditions of the world[J]. Trans 14th Intern Congr Soil Sci Plenary papers. Contents and Author Index. 1990, 53~62.
    Rustad L E, Fernandez I J. Experimental soil warming effects on CO2 and CH4 flux from a low elevation spruce-fir frost soil in Maine, USA[J]. Global Change Biology, 1998, 4: 597~605.
    Sanford G, Smith S J. Nitrogen mineralization potential of soils[J]. Soil Science Society of America Proceedings, 1972, 36: 465~472.
    Schimel D S, House J I, Hibbard K A, et al. Recent patterns and mechanisms of carbon exchange by terrestrial ecosystems[J]. Nature, 2001, 414: 169~172.
    Schlesinger W H. Changes in soil carbon storage and associated properties with disturbance and recovery[J]. In: Trabalka J R, Reichle D E(eds). The Changing Carbon Cycle: A Alobal Analysis. New York: Springer-Verlag, 1986, 194~220.
    Singh J S, Gupta S R. Plant decomposition and soil respiration in terrestrial ecosystems[J]. Botanical Review, 1977, 43: 449~528.
    Sitaula B K, Bakken L R, Abrahamsen G. N-Fertilization and soil acidfication effects on N2O and CO2 emission from temperate pine forest soil[J]. Soil Biology and Biochemistry, 1995, 27(11): 1401~1408.
    Svensson A S, Johansson F I, Moller I M, et al. Cold stress decreases the capacity for respiratory NADH oxidation in potato leaves[J]. FEBS letters, 2002, 517:79~82.
    Takahashi A, Hiyama T, Takahashi H A, et al. Analytical estimation of the vertical distribution of CO2 production within soil: application to a Japanese temperate forest[J]. Agriculture and Forest Meteorology, 2004, 126(3~4): 223~235.
    Tans P, Fun G I P, Takahashi T. Observational constraints on the global atmospheric CO2 budget[J]. Science, 1990, 247 (4949): 1431~1438.
    Tjoelker M, Oleksyn J, Reich P. Modelling respiration of vegetation: evidence for a general temperature-dependent Q10[J]. Global Change Biology, 2001, 7(2): 223~230.
    Wiant H V. Has the contribution of litter decay to forest soil respiration been overestimated?[J] Journal of Forest, 1967, 65: 408~409.
    Witkamp M. Rates of carbon dioxide evolution from forest floor[J]. Ecology, 1966, 47(3): 492.
    Xia X Q, Yang Z F, Liao Y, et al. Temporal variation of the soil carbon stock and its controlling factors over the last decades in the southern Song-Nen Plain, Heilongjiang Province[J]. Earth Science Frontiers(English Version), 2010, 1(1): 125~132.
    Yang L X, Pan G X, Yuan S F. Predicting dynamics of soil organic carbon mineralization with a double exponential model in different forest belts of China[J]. Journal of Forestry Research, 2006, 17(1): 39~43.
    Yu G R, Li X R, Wang Q F, et al. Carbon storage and its spatial pattern of terrestrial ecosystem in China[J]. Journal of Resources and Ecology, 2010, 1(2): 97~109.
    Yuan D X. Progress in the study on karst processes and carbon cycle[A]. Science and Technical Documents Publishing House, 1998, 2702~2706(in Chinese).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700