中国沙棘人工林衰退的水分生理生态机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中国沙棘(Hippophae rhamnoides subsp, sinensis)是我国北方干旱、半干旱地区优良的多用途树种,克隆习性又赋予它“独木成林”和“永生的潜力”,在生态环境建设和林业产业发展中具有极其重要的作用。然而,其人工林近年来出现了大片衰退甚至死亡现象,原因在于连续干旱且随着林分的生长使土壤水分形成了负平衡所致。目前,关于衰退现象和病虫危害的报道较多,而衰退机制的研究极为零散。为此,本项目以不同立地类型样地及田间不同灌水强度形成土壤水分梯度,分析种群数量、种群结构、繁殖能力、生物量及其分配、光合速率以及活性氧自由基、丙二醛与土壤含水量(灌水强度)的关系,期望从生态、生理(生化)层次探讨干旱胁迫对种群衰退(衰老)的作用机制,丰富克隆植物及森林衰退的研究内容,并为其造林设计、森林经营及种群恢复提供依据。通过研究,得到了以下主要结果。
     (1)在毛乌素沙地和黄土高原,干旱胁迫是导致中国沙棘人工林衰退的主导因子。在毛乌素沙地,地处下湿地天然林的寿命可达50a以上,且此时还能通过林窗更新、林缘扩散继续维持种群的稳定性;而地处迎风坡的人工林,在8a时年龄结构已经成为衰退型。虽说天然林的土壤水分、有机质及氮含量均显著高于人工林,但逐步回归只有土壤含水量被选入方程,且决定系数高达85%以上。田间试验结果进一步表明,中国沙棘生长和繁殖能力最大时的灌水量为900mm-1050mm,相当于试区降水量的3.0倍-3.5倍。在黄土高原,土壤含水量按照北坡、西坡、峁顶、东坡、南坡的顺序依次下降,种群稳定性及种群增长率也按此顺序降低。林龄8a时,北坡和西坡尚处于增长阶段,峁顶和东坡种群处于稳定阶段,而南坡种群已经成为衰退型。因此,在降水不足的情况下,种群的演替方向取决于林地土壤含水量。
     (2)与天然林相比,中国沙棘人工林不仅土壤水分及养分含量、生产力、物种多样性低,而且种群繁殖能力下降、分株寿命缩短。其中,干旱胁迫造成繁殖和生长能力下降是种群衰退的根本原因,即种群因为不能自我更新而衰退。在不同立地条件下,由于土壤含水量差异导致繁殖和生长能力改变,从而影响种群的稳定性和分株寿命。在毛乌素沙地,下湿地天然林的繁殖能力、生长能力、分株寿命及种群稳定性均明显高于迎风坡人工林。且以人工林繁殖能力、生长能力及种群稳定性而言,丘间地高于迎风坡、洼地高于平地。田间试验结果进一步表明,当灌水强度为900mm~1050mm(相当于试区降水量的3.0倍~3.5倍)时种群的繁殖能力和生长能力达到最高值。在黄土高原,种群的繁殖能力、生长能力与土壤含水量呈正相关关系。因此在降水不足的情况下,如果造林地土壤含水量不能满足中国沙棘生长和繁殖的需要,干旱胁迫必将导致种群早衰。
     (3)在不同的水分条件下,中国沙棘通过生物量投资与分配调节在生长(存活)与繁殖之间做出权衡,从而维持克隆的持久性与种群的稳定性。其中,种群生长和繁殖能力与种群及其构件的生物量投资、树干及克隆器官的生物量分配比例呈正相关关系,与枝条、垂直根生物量分配比例呈负相关关系;而种群及其构件生物量投资、树干及克隆器官生物量分配与灌水强度呈凸形抛物线关系,枝条及垂直根生物量分配与灌水强度呈凹形抛物线关系。因此,在水分适宜的情况下,中国沙棘加大对种群及其构件生物量的投资、加大对树干及克隆器官的生物量分配,种群生长和繁殖能力得到充分发挥;在干旱缺水的情况下,种群将更多的生物量分配于垂直根系的发育,以获取更多的土壤水分和养分资源促进现有植株的存活或生长,这样势必降低种群的生长和繁殖能力。
     (4)灌水通过改变植物组织含水量影响光合生理特征及水分生理特征,光合生理特征及水分生理特征的改变影响种群生物量投资及分配格局,种群通过生物量投资及分配格局调节形成与水分资源供应水平相适应的行为特征,尤其是通过生长(存活)与繁殖之间的权衡维持克隆的持久性及种群的稳定性。在高水分条件下,组织含水量提高,光合速率上升、丙二醛及超氧自由基含量下降,种群对树干及克隆器官的生物量投资和分配加大,生长和繁殖能力得到充分展示。因此,种群以个体高大、分布密集为特征,有利于克隆持久性和种群稳定性的维持。在低水分条件下,叶片及根系含水量降低,光合速率下降、丙二醛及超氧自由基含量上升,种群对枝条及根系的生物量投资和分配加大、对树干及克隆的生物量投资和分配减小,生长和繁殖能力受到抑制。因此,种群以个体矮小、分布稀疏为特征,有利于提高分株的存活与生长概率,但克隆持久性和种群稳定性将受到影响。
As excellent Multiple Purpose Tree in arid semi-arid areas, and with powerful feature of cloning, Hippophae rhamnoides L. subsp. Sinensis has been playing a significant role in the ecological environment building and forestry industry development. However, some plantations have suffered a large-scale declination even death in recent years due to a negative balance of soil moisture caused by the continuous drought and the forest growth. There are many reports about decline phenomenon and pests but few about water mechanisms of decline. After experiments on different site types and with different soil moisture conditions thanks to different irrigation intensities, this paper tries to analyze the relationships between soil moisture and population density, population structure, clone breed ability, biomass allocation, photosynthesis, Malondialdehyde and reactive oxygen species, to reveal the water physio-ecology mechanism of decline plantation in drought stress in the perspective of ecology and physiology (biochemistry). It could enrich the study of clone plant and forest decline and provide basis for plantation design, forest management and recovery of species. And the main results and conclusions are introduced as below.
     (1) Drought press is proved the leading cause of the decline of planted Hippophae rhamnoides L. subsp. Sinensis on Mu Us Sandland and Loess Plateau, on Mu Us Sandland, the natural forest on lower site can live more than 50 years and maintain population increase or stability by gap regeneration and edge dispersal, while those on windward slope decline at 8a. Though natural forests possess more soil moisture, organic matter and nitrogen than plantation, it is the soil moisture that has been selected as a factor of the stepwise regression equation and has the determination coefficient of 85%. The field trials further show that Hippophae rhamnoides L. subsp. Sinensis grows faster and has better fertility when was irrigated by water of 900mm-1050mm,3.0-3.5 times more than the normal rainfall. On the Loess Plateau, the soil moisture decreases as well as the population stability and growth rate on northern slope, western slope, the top, eastern slope and southern slope in turn. The stability and growth rate of population decrease in turn. The forests of 8a keep growing on northern and western slope and maintain stable on the top area and on the eastern slope while those on the southern slope have show decline. Therefore, under the circumstance of lack of enough rainfall, it is the soil moisture on the forested area that decides the trend of community succession.
     (2) Compared with natural forest, Hippophae rhamnoides L. subsp. Sinensis possesses less soil moisture, nutrient content, productivity, biodiversity and lower fertility and shorter life expectance of ramet. Drought press leading to the decline of reproductive ability and growth is the fundamental cause of the population decline by interrupting the process of self restoration. The vary of soil moisture in different sites leads to the change of fertility and growing ability, and thus affects the population stability and life expectance of ramet. In Mu Us Sandland, natural forest shows advantages in reproductive ability, productivity, life expectance and population stability if compared with plantation. But the plantation forests on sand-dune performs better than those on the winward slope, on depression better than on the flatland in terms of reproductive ability, productivity and population stability. The field trials further show that Hippophae rhamnoides L. subsp. Sinensis grows faster and has better fertility when was irrigated by water of 900mm~1050mm,3.0-3.5 times more than the normal rainfall. On the Loess Plateau, the reproduction and production of the population are positively related with the soil moisture. So under the circumstance of lacking rainfall, drought press will lead to population decline if the soil moisture in forested area fails to meet the requirement of growth and reproduction of Hippophae rhamnoides L. subsp. Sinensis.
     (3) Under different water conditions Hippophae rhamnoides L. subsp. Sinensis must balance the survival against reproduction through biomass allocation and adjustment to maintain the persistence of clone and stability of population. The population growth and reproduction ability correlate positively with the biomass investment of the population and modular, biomass allocation rates among tree trunk and organ of cloning, while correlate negatively with biomass allocation rates between branch and vertical roots. The biomass investment of the population and stem, biomass allocation rates among tree trunk and organ of cloning have an inverted U-shaped relationship with the irrigation amount, while the biomass allocation rates between branch and vertical roots show a U-shape relationship with the latter. Therefore, with proper water condition, Hippophae rhamnoides L. subsp. Sinensis would performance better in population growth and reproductive ability if it invests more biomass in population and its stem and allocates more to the tree trunk and organ of cloning. Under the circumstance of drought and lack of water, the population would allocate more biomass to the growth of vertical roots to obtain more water and nutrient to maintain the survival and keep growing, which would surely decrease the population growth and fertility.
     (4) Through changing the water conditions of plant tissues, the irrigation would affect the photo-physiological and water physiology characteristics, of which changes would influence the population biomass investment and allocation status. The population then relatively forms certain behaviors to adapt to the water supply, which is to maintain the persistence of cloning and population stability by balancing between survival and reproduction. Under high moisture conditions, the increasing of soil moisture in plant tissues would lead to a rise in photosynthetic rate and decrease in MAD and reactive oxygen species radicals, the population invest and allocate more biomass to the organs of cloning, which the whole process will benefit the productivity and reproduction. Therefore, population with higher plant height and intensive distribution would be good for the persistence of cloning and population stability. In contrast, low moisture conditions would depress the productivity and fertility. It is concluded that the population with short plants and scattered distribution would help the survival and growing rates but negatively affect the persistence of cloning and population stability.
引文
[1]A·д·布克什特诺夫等著.沙棘[M].张哲民等译.杨陵:陕西省沙棘开发利用科研中心,1987.
    [2]包永平,王景余,孙德学.沙棘平茬复壮更新技术研究[J].防护林科技,2000,(4):20.
    [3]毕慈芬,徐双民,李桂芬.砒砂岩地区沟道沙棘植物“柔性坝”原型拦沙研究[J].沙棘,2003,(1):12-18.
    [4]蔡飞,于明坚,张勇,宋永昌.武夷山常绿阔叶林中优势种群种间竞争的研究[J].浙江大学学报(农业与生命科学版),1997,(1):30-33.
    [5]曹光球,林思祖,王爱萍,彭亦如.马尾松根化感物质的生物活性评价与物质鉴定[J].应用与环境生物学习报,2005,11(6):686-689.
    [6]陈爱玲,陈青山,蔡丽萍.杉木拟赤杨混交林土壤肥力的研究[J].土壤与环境,2000,9(4):284-286.
    [7]陈楚莹,王开平,张家武,等.杉木火力楠混交林生态系统中营养元素的积累、分配和循环的研究[J].生态学杂志,1988,7(4):7-13.
    [8]陈楚莹,张家武,周崇莲,等.改善杉木人工林的林地质量和提高生产力的研究[J].应用生态学报,1990,1(2):97-106.
    [9]陈军,戴俊英.干旱对不同耐性玉米品种光合作用及产量的影响[J].作物学报,1992,(5):232-236.
    [10]陈立松,刘星辉.水分胁迫对荔枝叶片活性氧代谢的影响[J].园艺学报,1998,25(3):241-246.
    [11]陈龙池,廖利平,汪思龙,等.酚类物质对杉木幼苗~(15)N养分吸收、分配的影响[J].植物生态学报,2002a,26(5):525-532.
    [12]陈龙池,廖利平,汪思龙,等.外源毒素对林地土壤养分的影响[J].生态学杂志,2002b,21(1):19-22.
    [13]陈龙池,汪思龙.杉木根系分泌物化感作用研究[J].生态学报,2003,23(2):394-398.
    [14]陈龙池,王思龙,陈楚莹.杉木人工林衰退机理探讨[J].应用生态学报,2004,15(10):1953-1957.
    [15]陈乃全,尹建道,王义延.落叶松人工林重茬更新效果研究[C].见:中国林学会造林专业委员会编.造林学论文集.北京:中国林业出版社,1990,105-113.
    [16]陈善福,舒庆尧.植物耐干旱胁迫的生物学机理及其基因工程研究进展[J].植物学通报,1999,16(5):555-580.
    [17]陈献勇,廖镜思.水分胁迫对果梅光合色素和光合作用的影响[J].福建农业大学学报,2000,29(1):35-39.
    [18]陈云明,刘国彬,侯喜录.黄土丘陵半干旱地区人工沙棘林水土保持和土壤水分效益分析[J].应用生态学报,2002,13(11):1389-1393.
    [19]陈云明,刘国彬,徐柄成.我国沙棘水土保持功能研究进展与展望[J].中国水土保持科学,2004,2(2):88-92.
    [20]陈孝达.沙棘主要病虫害及防治40问[J].沙棘,2007,20(2):33-45.
    [21]陈星.复方沙棘茶的加工工艺及营养保健成分分析[J].沙棘,1995,8(4):29-31.
    [22]陈学林,廉永善.沙棘属植物的分布格局及其成因[J].沙棘,1996,9(2):15-21.
    [23]陈之欢.水分胁迫对两种旱生花卉生理生化的影响[J].中国农业简报,2002,4(18):20-23.
    [24]程积民,万惠娥,雍绍萍.黄土丘陵区沙棘灌木林地土壤水分动态研究[J].西北植物学报2003,23(8):1352-1356.
    [25]崔国发.人工林地力衰退机理及其防止对策[J].世界林业研究,1996,(5):61-69.
    [26]代光辉,李根前,李甜江,等.水分条件对中国沙棘生长及种群稳定性的影响[J].西北林学院学 报,2011,26(2):1-8.
    [27]定边县农业区划委员会.陕西省定边县农业资源调查和农业区划报告汇编[C].榆林,1986.
    [28]邓仕坚,张家武,陈楚莹,等.不同树种混交林及其纯林对土壤理化性质影响的研究[J].应用生态学报,1994,5(2):126-132.
    [29]董鸣.异质性生境中的植物克隆生长:风险分摊[J].植物生态学报,1996,20(6):543-548.
    [30]杜玲,曹光球,林思祖,等.杉木根际土壤提取物对杉木种子发芽的化感效应[J].西北植物学报,2003,23(2):323-327.
    [31]段云瑞,贺加武.建设沙棘资源、秀美靖边山川[J].沙棘,2000,13(3):38-40.
    [32]冯宗炜,陈楚莹,李昌华,等.湖南会同杉木人工林生长发育与环境的相互关系[J].南京林业大学学报(自然科学版),1982,(3):19-36.
    [33]冯宗炜,陈楚莹,张家武,等.一种高生产力和生态协调的亚热带针阔混交林[J].植物生态学与地植物学学报,1988,12(3):165-180.
    [34]高志义,张玉胜.沙棘根系特性的观察与研究[J].北京林业大学学报,1989,11(4):53-59.
    [35]郭维明,张广波.刺五加的种子萌发与自毒初探[C].广州种子发育生理会论文,1983.
    [36]郭忠升,邵明安.半干旱区人工林草地土壤旱化与土壤水分植被承载力[J].生态学报,2003,23(8):1640-1647.
    [37]韩崇选,辛晓辉,张放,等.黄土高原主要造林树种对鼢鼠危害的抗性研究[J].西北林学院学报,2009,24(1):116-121.
    [38]贺斌,李根前,徐德兵,等.沙棘克隆生长及其生态学意义[J].西北林学院学报,2006,21(3):54-59.
    [39]贺斌,李根前,高海银,等.不同土壤水分条件下中国沙棘克隆生长的对比研究[J].云南大学学报(自然科学版),2007a,29(1):101-107.
    [40]贺斌,李根前.木本克隆植物中国沙棘种群数量与结构对土壤水分的响应[J].西北农林科技大学学报,2007b,35(3):183-187.
    [41]何光训.连栽杉木林地土壤肥力退化的症结[J].浙江林学院学报,2002,19(1):100-103.
    [42]侯丽丽.干旱胁迫下沙棘抗旱生理生化指标变化规律研究[C].内蒙:内蒙古大学,2007.
    [43]胡景江,顾振瑜,文建雷,等.水分胁迫对元宝枫膜脂过氧化作用的影响[J].西北林学院学报.1999,14(2):7-11.
    [44]胡建忠.“三北”地区沙棘属植物的区域化种植开发探讨Ⅰ:沙棘属植物的分布及种植开发的区域化要求[J].水土保持研究,2006,13(1):4-7.
    [45]胡建忠,王愿昌,张鉴.影响沙棘生长主要生态因子的灰色优势分析[J].中国水土保持,1995,(4):28-32.
    [46]胡建忠.沙棘平茬后年生长节律及再生能力的研究[J].沙棘,1991,(4):25-32.
    [47]福建林学院杉木研究所.炼山对杉木人工林生态系统影响的研究[J].见:人工林地力衰退研究[M].北京:中国科技出版社,1992.
    [48]黄铨.中国沙棘的地理变异[J].沙棘,2003,1(16):8-13.
    [49]黄瑞复.云南松的种群遗传与进化[J].云南大学学报(自然科学版),1993,(1):51-64.
    [50]黄建昌,肖艳,周厚.高渗透胁迫对番木瓜若干生理性状的影响[J].广西植物,2004,24(1):73-76.
    [51]惠兴学,张连翔,孔繁轼.建平县沙棘林大面积死亡成因调查分析及对策[J].防护林科技,2002,(2):53-55.
    [52]姜丽丽,连秀芬,樊明寿.细胞程序性死亡在植物适应逆境中的意义[J].生命科 学,2005,17(3):267-270.
    [53]姜树茂.辽西干旱地区沙棘薪炭林的开发研究[J].沙棘,1988,11(4):27-34.
    [54]蒋明义,杨文英,徐江,等.渗透胁迫下水稻幼苗中叶绿素降解的活性氧损伤作用[J].植物学报,1994,36(4):289-295.
    [55]金争平,李永海,温秀凤,等.干旱对中国沙棘生态林果实产量的影响[J].国际沙棘研究与开发,2006,4(2):31-36.
    [56]金争平,温秀凤,顾玉凯.不同种质沙棘在干旱条件下营养生长适应性的研究[J].国际沙棘研究与开发,2008,6(1):3-8.
    [57]景宏伟,李跃才,丁宁.中国沙棘种群在沙漠高速公路中的生态适应性研究[J].公路,2007,(8):199-202.
    [58]李斌,顾万春.松属植物遗传多样性研究进展[J].遗传,2003,25(6):740-748.
    [59]李博.生态学[M].北京:高等教育出版社,2002.
    [60]李德全,邹琦,程炳嵩.植物在水分胁迫下的渗透调节作用[M].济南:山东科技出版社,1994.
    [61]李坤,都桂芳,张秀荣.浅议沙棘属植物的起源与演化[J].沙棘,1994,(3):5-7.
    [62]李根前,黄宝龙,唐德瑞.毛乌素沙地中国沙棘无性系生长调节[J].应用生态报,2001,12(5):682-686.
    [63]李根前,黄宝龙,唐德瑞,等.毛乌素沙地中国沙棘无性系生长格局与生物量分配[J].西北农林科技大学学报,2001,29(2):51-55.
    [64]李根前,赵一庆,唐德瑞.毛乌素沙地中国沙棘生长过程与水热条件的关系[J].西北林学院学报,1999,14(1):10-15.
    [65]李根前,黄宝龙,唐德瑞.毛乌素沙地中国沙棘无性系种群林缘扩散规律[J].南京林业大学学报,2001,25(2):9-13.
    [66]李根前,赵粉侠,李秀寨.毛乌素沙地中国沙棘种群数量动态研究[J].林业科学,2004,40(1):180-184.
    [67]李根前,唐德瑞.毛乌素沙地中国沙棘平茬更新的萌蘖生长与再生能力[J].沙棘,2000,13(4):9-1.
    [68]李合生.现代植物生理学[M].北京:高等教育出版社,2003.
    [69]李红丽,智颖飙,雷光春,等.不同水位梯度下克隆植物大米草的生长繁殖特性和生物量分配格局[J].生态学报,2009,29(7):3525-3531.
    [70]李丽霞,梁宗锁,韩蕊莲.土壤干旱对沙棘苗木生长及水分利用的影响[J].西北植物学报,2002,22(2):296-302.
    [71]李甜江,李根前,徐德兵,等.中国沙棘克隆生长对水分梯度的响应[J].生态学报,2010,30(24):6952-6960.
    [72]李树彬,党福江.建平县沙棘林大面积死亡原因调查分析[J].水土保持科技情报,2001,(6):4-6.
    [73]李秀寨,李根前,韦宇.中国沙棘大面积死亡原因的探讨[J].沙棘,2005,18(1):24-28.
    [74]廖利平,陈楚莹,张家武,等.杉木、火力楠纯林及混交林细根周转的研究[J].应用生态学报,1995,6(1):7-10.
    [75]廖利平,高洪,于小军.等.人工混交林中杉木、桤木和刺楸细根养分迁移的初步研究[J].应用生态学报,2000,11(2):161-164.
    [76]廉永善.沙棘属的新发现[J].植物分类学报,1988,26(3):235-237.
    [77]廉永善.沙棘属植物的系统分类[J].沙棘,1996,19(1):15-24.
    [78]廉永善,陈学林.沙棘的生态地理分布及其植物地理学意义[J].植物分类学报,1992,30(4):349-355.
    [79]梁宗锁,王俊峰.简述沙棘抗寒性及其耗水特性研究现状[J].沙棘,1997,10(3):28-31.
    [80]梁宗锁,李敏,王俊峰.沙棘抗旱生理机制研究进展[J].沙棘,1998,11(3):8-13.
    [81]刘天慰,曾昭盼.山西沙棘植物资源调查初报[c].沙棘研究文集,山西省生物研究所.1987.
    [82]刘振山.沙棘林的复壮与更新[J].生物学通报,2001,36(2):45.
    [83]刘金江.黑龙江省沙棘主要病虫草害及综合防治[J].沙棘,2005,(4):15-16.
    [84]刘瑞香.不同土壤水分条件对中国沙棘和俄罗斯沙棘的光合和蒸腾作用的影响[J].水土保持通报,2006,1(16):1-5.
    [85]刘庆,钟章成.斑苦竹无性系生长与水分供应及其适应对策的研究[J].植物生态学报,1996,20(3):245-254.
    [86]刘爽,高玉葆,陈世苹,等.科尔沁沙地白草、赖草无性系生长及适应对策的初步研究[J].中国沙漠,1999,19(S):76-78.
    [87]刘郁林,彭素琴.不同种金银花幼苗对水分胁迫的生理反应[J].赣南师范学院学报,2006,(6):86.
    [88]刘增文,高国雄,吕月玲,等.不同立地下沙棘种群生物量的比较与预估[J].南京林业大学学报,2007,31(1):37-41.
    [89]林开敏,俞新妥.杉木人工林衰退与可持续经营[J].中国生态农业学报,2001,9(4):39-42.
    [90]林平,叶正环,朱昌乐,等.柳杉连栽林地土壤肥力特征[J].浙江林学院学报,1994,11(2):138-142.
    [91]林思祖,杜玲,曹光球.化感作用在林业中的研究进展及应用前景[J].福建林学院学报,2002,22(2):184-188.
    [92]林思祖,黄世国,曹光球,等.杉木自毒作用的研究[J].应用生态学报,1999,10(6):661-664.
    [93]林武星,洪伟,郁善,等.森林植物他感作用研究进展[J].中国生态农业学报,2005,13(2):43-46.
    [94]林依倔,好艳玲.植物衰老的生理特征[J].畜牧与饲料科学,2009,30(5):8-10.
    [95]吕学林.沙棘在中国西部生态环境建设中的作用[J].沙棘,2003,16(1):3-7.
    [96]吕荣森.四川的沙棘资源研究[J].沙棘,1988,11(1):10-14.
    [97]骆有庆,路常宽,许志春.暴发性新害虫沙棘木蠹蛾的控制技术[J].国际沙棘研究与开发,2003,1(1):31-33.
    [98]骆有庆,宗世祥,许志春,等.沙棘木蠹蛾综合控制技术研究[J].林业科学,2007,43(11):146-150.
    [99]马德彪.梨园蚧为害沙棘林调查与防治对策[J].沙棘,2004,17(1):25.
    [100]马祥庆,范少辉,刘爱琴,等.不同栽植代数杉木人工林土壤肥力的比较研究[J].林业科学研究,2000,13(6):577-582.
    [101]马祥庆,黄宝龙.人工林地力衰退研究综述[J].南京林业大学学报,1997,21(2):77-82.
    [102]马祥庆,刘爱琴,黄宝龙.杉木人工林自毒作用研究[J].南京林业大学学报,2000,24(1):12-16.
    [103]马越强,廖利平,杨越军,等.香草醛对杉木幼苗生长的影响[J].应用生态学报,1998,9(1):128-132.
    [104]马志强,晃索爱.沙棘资源的开发利用[J].陕西林业科技,2004,(1):70-72.
    [105]明安刚.连栽桉树人工林群落结构复杂性和土壤养分变化的研究[D].广西大学,2008.
    [106]彭少麟,邵华.化感作用的研究意义及发展前景[J].应用生态学报,2001,12(5):780-786.
    [107]蒲光兰,袁大刚,胡学华,等.杏树抗旱性研究[J].西北林学院学报,2005,20(3):40-43.
    [108]邱全胜.渗透胁迫对小麦根质膜脂质物理状态的影响[J].植物学报,1999,41(3):161-165.
    [109]阮成江,谢庆良.土壤水分对沙棘成活率及抗逆生理特性的影响[J].应用环境生物学报,2002,8(4):341-345.
    [110]任安芝,高玉葆,梁宇,等.白草和赖草无性系生长对干旱胁迫的反应[J].中国沙漠,1999,19(S1):31-34.
    [111]任丽花,王义祥,翁伯琦,等.土壤水分胁迫对圆叶决明含水量和光合特性的影响[J].厦门大学学报,2005,44(S):28-31.
    [112]邵麟惠,于应文,张德罡.灌木抗旱机理研究[J].草业科学,2007,24(3):22-27.
    [113]沈国舫,杨敏生,韩明波.京西山区油松人工林的适生立地条件及生长预测[J].林业科学,1985,21(1):10-17.
    [114]沈照仁.人工造林与持续经营[J].世界林业研究,1994,(4):8-13.
    [115]盛炜彤.人工林地力衰退研究[M].北京:中国科学技术出版社,1992.
    [116]师晨娟,刘勇,张林玉.苗木抗旱生理及抗旱调控技术[J].世界林业研究,2006,19(3):33-37.
    [117]施立明.遗传多样性及其保护[J].生物科学信息,1990,(2):158-164.
    [118]史玲芳.不同类型区沙棘群落分布特征及直径生长与环境条件的关系初探[J].沙棘,1996,9(4):7-11.
    [119]世界资源研究所.中国科学院生物多样性委员会译.全球生物多样性策略[M].北京,1992.
    [120]宋凤斌,戴俊英.水分胁迫对玉米活性氧清除酶类活性的影响[J].吉林农业大学学报,1995,17(3):9-15.
    [121]孙多.残留物管理育林法对杉木人工林物种多样性的恢复作用[J].南京林业大学学报(自然科学版),1996,(1):31-34.
    [122]孙长忠,黄宝龙,陈海滨,等.黄土高原人工植被与其水分环境相互作用关系[J].北京林业大学学报,1998,20(3):7-14.
    [123]陶大立,勒月华,杜英君.红松苗越冬伤害原因三假说检验[J].林业科学,1988,(2):22-29.
    [124]唐承财,钟全林,王健.林木抗旱生理研究进展[J].世界林业研究,2008,21(1):20-26.
    [125]田润民,唐蒙昌.沙棘木蠹蛾生物学特性的初步研究[J].内蒙古林业科技,1997,1(1):36-38.
    [126]同金侠,窦春蕊,陈孝达,等.陕西沙棘主要害虫及危害特点[J].国际沙棘研究与开发,2006,6(2):50-52.
    [127]土小宁,安宝刚,许涛,等.沙棘开发利用的前景[J].陕西林业科技,2004,(2):1-4.
    [128]王爱国,罗广华.羟自由基启动下的脱氧核糖降解及其产物的TBA反应[J].生物化学与生物物理进展,1993,20:150-152.
    [129]王春艳.柳蝙蛾生物学特性观察及防治对策[J].中国农村小康科技,2008,(10):41-43.
    [130]王福林,潘铭.黄土丘陵区沙棘造林抗旱指标初探[J].沙棘,1998,11(2):7-9.
    [131]王国梁,刘国彬,周生路.黄土高原土壤干层研究述评[J].水土保持学报,2003,17(6):156-159.
    [132]王晗生.植被作用下土壤干化的反馈机制及相关问题讨论[J].地力科学进展,2007,26(6):33-39.
    [133]王海洋,陈家宽,周进.水位梯度对湿地植物生长、繁殖和生物量分配的影响[J1.植物生态学报,1999,23(3):269-274.
    [134]王洪新,胡志昂.植物的繁育系统、遗传结构和遗传多样性保护[J].生物多样性,1996,4(1):92-96.
    [135]王建国,杨林章,单艳红.模糊数学在土壤质量评价中的应用研究[J].土壤学报,2001,2(3):176-183.
    [136]王俊峰,张永江,赵旭波.论沙棘治理砒砂岩的突出贡献[J].沙棘,2002,15(2):36-38.
    [137]王琳,冯建菊,蒋学玮.沙棘植物资源的综合利用[J].北方园艺,2002,(6):24-25.
    [138]王青宁,王晗生,周景斌.植被作用下的土壤干化及其发生机制探讨[J].干旱地区农业研究,2004,22(4):163-167.
    [139]汪思龙,廖利平,马越强.杉木火力楠混交林养分归还与生产力[J].应用生态学报,1997,8(4):347-352.
    [140]王维升,王宇飞,彭其民,等.建平县沙棘木蠹蛾生物学特性[J].国际沙棘研究与开发,2005,3(3):40-43.
    [141]王昱生.关于无性系植物种群整合作用研究的现状及应用前景[J].生态学杂志,1994,13(2):57-60.
    [142]王昱生,李景信.羊草种群无性系生长格局的研究[J].植物生态学与地植物学学报,1992,16(3):234-242.
    [143]王友荣.陕西沙棘资源与开发利用[M].陕西:陕西科学技术出版社,1988.
    [144]王宇飞,李华,杨海秀,等.危害沙棘的黄带多带天牛生物学特性观察[J].国际沙棘研究与开发,2008,6(4):23-25.
    [145]王宇飞,徐彩芬,姚乃臣,等.危害沙棘的灰斑古毒蛾生物学特性及防治观察[J].国际沙棘研究与开发,2009,7(1):38-39.
    [146]王愿昌,胡建忠.不同地理种源沙棘苗期抗逆性试验研究[J].中国水土保持,1995,(2):19-22.
    [147]王占孟.沙棘改良土壤、保持水土、改善生态环境的效应[J].沙棘,1994,7(3):14-18.
    [148]魏宇昆.黄土高原不同立地条件下人工沙棘林水分生理生态适应性研究[D],2002.
    [149]吴钦孝,赵鸿雁.沙棘林的水土保持功能及其在治理和开发黄土高原中的作用[J].沙棘,2002,15(1):29-32.
    [150]项文化,田大伦.不同年龄阶段马尾松人工林养分循环的研究[J].植物生态学报,2002,26(1):89-95.
    [151]徐德兵,赵粉侠,李根前等.中国沙棘克隆生长格局对不同水分梯度的响应[J].东北林业大学学报,2008,36(9):31-32.
    [152]徐坤,郑国生.水分胁迫对生姜光合作用及保护酶活性的影响[J].园艺学报,2000,27(1):47-51.
    [153]徐铭渔,孙小宣,董文新.沙棘的医药研究和开发[J].沙棘,1994,7(1):32-39.
    [154]徐永旭,张有生,童成金,等.青海省的沙棘资源[J].沙棘.1993,6(2):1-9.
    [155]胥辉,刘小菊,程洪文.思茅松林分土壤养分衰退的研究[J].西南林学院学报,2006,26(3):16-19.
    [156]闫占文.吴起县沙棘主要病虫害及其防治技术[J].国际沙棘研究与开发,2006,4(3):25-25.
    [157]杨承栋.杉木人工林地力衰退的原因机制及其防治措施[J].世界林业研究,1997,10(4):34-39.
    [158]杨承栋,张小泉,焦如珍,等.杉木连栽土壤组成、结构、性质变化及其对林木生长的影响[J].林业科学,1996,32(2):175-181.
    [159]杨戈,李银芳,古丽努尔,等.盆栽条件下水分对植物组织建成的影响[J].干旱区研究,1994,11(4):24-28.
    [160]杨琴军,陈光富,刘秀群,等.湖北星斗山台湾杉居群的遗传多样性研究[J].广西植物,2009,29(4):450-454.
    [161]杨琴军,徐辉,严志国,等.湖北省原生台湾杉资源及其保护[J].广西植物,2006,26(5):551-556.
    [162]杨维西.试论我国北方地区人工植被的土壤干化问题[J].林业科学,1996,32(1):78-84.
    [163]杨玉盛,何宗明,陈光水,等.杉木多代连栽后土壤肥力变化[J].土壤与环境,2001,10(1):33-38.
    [164]杨玉盛,邱仁辉,俞新妥,等.杉木连栽土壤微生物及生化特性的研究[J].生物多样性,1999,7(1):1-7.
    [165]姚茂和,盛炜彤,熊有强.林下植被对杉木林地力的影响研究[J].林业科学,1991,27(6):644-147.
    [166]姚允聪,王有年,周向东.土壤干旱与柿树叶片膜脂及脂质过氧化的关系[J].林业科学,1993,29(6):485-491.
    [167]叶冰莹,陈由强,朱锦懋,等.水分胁迫对三种木麻黄小枝活性氧伤害的研究[J].福建师范大学学报(自然科学版),2000,16(1):76-79.
    [168]叶镜中,邵锦峰,王佳馨.炼山对土壤理化性质的影响[J].南京林业大学学报,1990,14(4):1-7.
    [169]伊祚栋,赵宝珠,等.甘肃省的沙棘资源及其开发利用[J].沙棘,1988,(3):11-16.
    [170]殷成云,曾汉青.沙棘林病虫鼠害种类及其防治方法[J].现代农业科技,2008,(20):129-131.
    [171]榆林地区农业计划委员会编.陕西省榆林地区农业区划[M].榆林,1987.
    [172]俞新妥.杉木连栽林地土壤生化特性及土壤肥力的研究[J].福建林学院学报,1989,(3):263-271.
    [173]愈新妥.杉木人工林地力衰退和养分循环研究进展[J].福建林学院学报,1992,12(3):264-274.
    [174]余文涌,吴秉礼,于倬德.中国沙棘属植物资源概况[J].沙棘,1989,(3):1-5.
    [175]余雪标,陈秋波,王尚明,等.人工林地力衰退研究与防治对策[J].热带作物学报,1998,(3):81-88.
    [176]余雪标,李维国.我国热区土地退化问题及持续发展对策[J].海南大学学报(自然科学版),1997,15(3):223-227.
    [177]俞元春,邓西海,盛炜彤,等.杉木连栽对土壤物理性质的影响[J].南京林业大学学报,2000,24(6):36-40.
    [178]于耐芬.沙棘特性与栽培[M].呼和浩特:内蒙古人民出版社,1992.
    [179]于同泉,秦岭,陈静,等.水分胁迫对板栗幼苗抗氧化酶及丙二醛的影响[J].北京农学院学报,1996,11(1):48-52.
    [180]于倬德,敖复,廉永善.中国沙棘属植物的起源、分类、群落和分布[J].沙棘,1993,6(1):19-24.
    [181]肇承琴,张玉福,陈国芝.建平县百万亩沙棘林的兴衰与思考[J].国际沙棘研究与开发,2007,(2):41-44.
    [182]张宝琛,何素霞.斑唇马先蒿提取物生化相克作用的初步研究[J].生态学报,1984,1(3):13-19.
    [183]张海娜,谷俊涛,郭程瑾,等.植物衰老的分子生物学基础[J].草业学报,2009,18(1):163-170.
    [184]张军,靳文斌.寒地沙棘干缩病流行的构成与避害[J].沙棘,2002,15(2):16-18.
    [185]张连翔,惠兴学,黄立华,等.建平县沙棘林大面积死亡原因及其治理对策[J].沙棘,2002,15(3):28-31.
    [186]张木清,陈如凯,余松烈.水分胁迫下蔗叶多胶代谢变化及其同抗旱性的关系[J],植物生理学报.1996,22(3):327-332.
    [187]张其水,俞新妥.杉木连栽林地营造混交林后土壤生化特性及土壤肥力研究[J].福建林学院学报,1990,10(3):197-205.
    [188]张希彪,上官周平.黄土丘陵区油松人工林与天然林养分分布和生物循环比较[J].生态学报,2006,26(2):373-382.
    [189]张小全,侯振宏.森林退化、森林管理、植被破坏和恢复的定义与碳计量问题[J].林业科学,2003,39(4):140-144.
    [190]张先仪.整地方式对水土保持及杉木幼林生长的影响[J].林业科学,1986,22(3):225-232.
    [191]张学勇,杨允菲,邵奎龙,等.辽东半岛不同生境结缕草无性系种群构件生物量结构[J].草业科学,2006,23(4):78-81.
    [192]张耀,李甜江,李根前.中国沙棘生长调节与种群稳定维持[J].国际沙棘研究与开发,2007,(1):27-31.
    [193]张忠华,胡刚,梁士楚,等.桂林岩溶石山阴香种群的年龄结构[J].生态学杂志,2007,26(2):159-164.
    [194]翟中和.细胞生物学[M].北京:高等教育出版社,1998.
    [195]中国林学会森林生态学会.人工林地力衰退研究[M].北京:科学技术出版社,1992.
    [196]周章义.内蒙古鄂尔多斯市东部老龄沙棘死亡原因及对策[J].沙棘,2002,15(2):7-11.
    [197]周章义,尹伟伦,梁华军.沙棘抗沙棘木蠹蛾的立地条件极其机理[J].北京林业大学学报,2007,29(5):50-56.
    [198]宗世祥,贾峰勇,骆有庆,等.沙棘木蠹蛾危害特性与种群数量的时空动态的研究[J].北京林业大学学报,2005a,27(1):70-74.
    [199]宗世祥,姚国龙,骆有庆,等.沙棘主要蛀干害虫种群生态位[J].生态学报,2005b,25(12):3265-3270.
    [200]宗世祥,骆有庆,许志春,等.沙棘主要蛀干害虫危害特性及种群动态变化[J].中国森林病虫,2006a,25(1):7-10.
    [201]宗世祥,骆有庆,路常宽,等.沙棘木蠹蛾生物学特性的观察[J].林业科学,2006b,42(1):102-107.
    [202]宗世祥.沙棘木蠹蛾生物学特性的研究[D].北京林业大学,2006.
    [203]祝心如.植物化学生态研究促进生态农业建设[J].生态学杂志,1993,12(4):36-40.
    [204]朱教君,曾德慧,康宏樟.沙地樟子松人工林衰退机制[M].北京:中国林业出版社,2005.
    [205]朱教君,李凤芹.森林退化/衰退的理论与实践[J].应用生态学报,2007,18(7):1601-1609.
    [206]朱岷,张义智,焦阳,等.沙棘白眉天蛾的防治技术研究[J].林业实用技术,2008,(6):28-29.
    [207]朱守谦.贵州部分森林群落物种多样性初步研究[J].植物生长量与地植物学学报,1987,(4):48-57.
    [208]朱宇林,温远光,曹福亮,等.短周期尾巨桉连栽林分生产力的研究[J].江西农业大学学报,2006,(1):94-98.
    [209]朱志诚·陕北黄土高原灌木林的类型及其动态特性[J].陕西林业科技,1992,(1):36-42.
    [210]Abrahamson W G. On the comparative allocation of biomass, energy and nutrients in plant[J]. Ecology,1982,63(4):982-991.
    [211]Alpert P, Stuefer J F. Division of labor in clonal plants. In:de Kroon H, van Groenendal J M. The ecology and evolution of clonal plants[M]. Leiden:Banhuys Publishers,1997.
    [212]An M, Zeng R S, Johnson IR, et al. Modelling aeration effects on plant residue allelopathy[J]. Allelopathy Journal,2003,11(2):195-200.
    [213]Andrews M, Raven J A, Sprent J I. Environmental effects on dry matter partitioning between shoot and root of crop plants:relations with growth and shoot protein concentra-tion[J]. Annals of Applied Biology,2001,138:57-68.
    [214]Becker M. Silver fir decline in the Vosges mountains (France):Role of climate and silviculture[J]. Water, Air and Soil Pollution,1989, (48):77-86.
    [215]Bharat, Narender K. Occurrence of powdery mildew on Seabuckthorn in Himachal Pradesh [J]. Indian Forester,2006,132(4):4.
    [216]Borowitzka L J. In L G. Palrg and D. Aspinall(Eds).The physiology and Biochemistry of Drought Resistance in plants[M]. Sydney:Academic Press,1981.
    [217]Bray E A. Molecular responses to water deficit[J]. Plant Physiology,1993,103:1035-1040.
    [218]Carco T, Keylly C K. On the adaptive value of physiological integration in clonal plants[J]. Ecology,1991,72:81-93.
    [219]Chu-Chou Myra. Effects of root residues on growth of Pinus radiata seedlings and a mycorrhizal fungus[J]. Ann Appl Biol,1978,90:407-416.
    [220]Cook R E.A sexual reproduction:A further consideration[J]. American Naturalist,1979,113: 769-772.
    [221]Cregg B M, Zhang J W. Physioloty and morphology of Pinus sylvestris from diverse sources under cyclic drought stress[J]. Forest Ecology and Management,2000,154:131-139.
    [222]Kroon H. Habitat exploration through morphological plasticity in two chalk grassland perennials[J]. Oikos,1990,59:39-49.
    [223]Kroon H. Resource allocation pattern as a function of clonal morphology:a general model applied to foraging clonal plant[J]. Journal of Ecology,1991,79:519-530.
    [224]Delph L F. Sex-differential resource allocation patterns in the Subdioecious shrubIiebe subalpina[J]. Ecology,1990,71(4):1342-1351.
    [225]DiOrio A P, Callas R, Schaefer R J. Forty-eight year decline and fragmentation of aspen (Populus tremuloides) in the South Warner Mountains of Califomia[J]. Forest Ecology and Management, 2005,206(1):307-313.
    [226]Dong JG, Olson D, silverstone A,Yang SF. Sequence of a cDNA coding for a 1-aminocyclo propan-1-carboxylate oxidate homolog from apple fruit[J]. Plant physiol,1982,98:1530-1531.
    [227]Dong Ming. Morphological plasticity of the clonal herb in response to spatial shading[J]. New phytologist,1993,124(2):291-230.
    [2287]Drew M C. Oxygen deficiency and root metabolism:injury and acclimation under hypoxia and anoxia[J]. Annu Rev Plant Physiol Plant Mol Biol,1997,48:223-250.
    [229]Evans J. Long-term productivity of forest plantation status in 1990[C].IUFRE,19th world congress.
    [230]Farrell P W. Maintenace of productivity radiate pine monocultures on sandy soils in southeast[J]. Australia Forest site andproductivity.1986,10:127-136.
    [231]Fitter A H. Functional Significance of Root Morphology and Root System Architecture[A]. Ecological Interaction Soil:Plants, mi-crobes and animals[C]. Oxford:Blackwell Scientific Press,1985.
    [232]Gambrell R P, Delaune R D, Patrick W H. Redox processes in soils following oxygen depletion[J]. In:Jackson M D, Davies D D, Laambers H (eds). Plant Life under oxygen Deprivation:Ecology, Physiolgy and Biochemstry[M]. The Hague:SPB Academic,1991.
    [233]Crawford R M M, Braendle R. Oxygen deprivation in a changing environment[J]. Journal Exp Botany,1996,47:145-160.
    [234]Grime J P, Campbell B D, Mackey J M L. Root Plasticity, Nitrogen Capture and Competitive Plant root growth:an ecological perspective[C]. Oxford:Blackwell Scientific Press,1991.
    [235]Hamrick J L, M J W Godt. Allozyme diversity in plant species. In:A D H Brown, M. T.Clegg, A. L. Kahler and B. S. Weir (eds.), Plant population genetics, breeding, and genetic resources[M]. Sinauer Associates Inc. Sunderland, Massachusetts,1989,43-63.
    [236]Harbone J B. Biochemical interaction between higher plants. Introduction to Ecological Biochemical[M]. Academic Press,1982.
    [237]Harper J L. The concept of population in modular organism. Theoretical ecology:Principles and Applications(R M May ed)[M]. Oxford:Blackwell,1981.
    [238]Huang B, Johnson J W, Nesmith S. Growth, physiological and anatomical responses of two wheat genotypes to waterlogging and nutrient supply[J]. Journal Exp Botany,1994,45:193-202.
    [239]Huang Z Q, Liao L P, Wang S L. Allelopathy of phenolics from decomposing stump-roots in replant Chinese fir woodland[J]. Journal Chemical Ecology,2000,26(9):2211-2219.
    [240]Huang Z Q, Terry H, Wang S L. Autotoxicity of Chinese fir on seed germination and seedling growth[J]. Allelopathy Journal,2002,9(2):187-193.
    [241]Huston M A, Smith T M. Plant succession:life history and competition[J]. American Naturalist, 1987,130(2):168-198.
    [242]Hutchings M J, de kroon H. Foraging in plants:the role of morphological plasticity in resource acquisition[J]. Advances in Ecological Research,1994,25:159-238.
    [243]Hutchings M J. Weight-density relationships in ramet populations of clonal perennial herbs with special reference to the-3/2 power law[J]. Journal of Ecology,1979,67:21-33.
    [244]Hu Y L, Wang S L, Zeng D H. Effect of single and mixed Chinese fir leaf litters on soil chemical and microbial properties and enzyme activities[J]. Plant and Soil,2006,282(2):379-386.
    [245]Innes J L. Forest Health:Its Assessment and Status[M]. Wallingford:CAB International,1993.
    [246]Jackson M B, Waters I, Setter T. Injury to rice plants caused by complete submergence:a contribution by ethylene[J]. Journal Exp Botany,1987,38:1826-1838.
    [247]John C Cushman, Hans Bohnert. Genomic approches to plant stress tolerance[J]. Plant Biology, 2000,3:117-124.
    [248]Jokela E J, Dougherty P M, Martin T A. Production dynamics of intensively managed loblolly pine stands in the southern United States:A synthesis of seven long-term experiments[J]. Forest Ecology and Management,2004,192:117-130.
    [249]Kazuo Tsugane, Kyoko Kobayashi. A recssive arabidopsis Mutant that grows Photoautotrophically under Salt stress shows enhanced active oxygen detoxification[J]. The Plant Cell,1999,11:1195-1206.
    [250]Kohyama T. Ecology of "Shimagare" dieback and regeneration in subalpine Abies forests of Japan[J]. Geochemical Journal,1988, (17):201-208.
    [251]Levitt J. Responses of plants to environmental stress[M]. New York:Academic Press,1972.
    [252]Lovett Doust L. Population dynamics and specialization in a clonal perennial(Rannunculus repens) I:the dynamics of ramets in contrasting habitats[J]. Journal of Ecology,1981,69: 743-755.
    [253]Luo X G, Dong M. Plasticity of clonal architecture in response to soil nutrients in the stoloniferous herb Duchesnea indicaFocke. Acta Ecologica Sinica,2001,21(12):1957-1963.
    [254]Mailette L. Plasticity of modular reiteration in potentilla anserine[J]. Journal of Ecology,1992,80: 231-239.
    [255]Manion P D. Tree Disease Concepts[M].Pretice Hall, Englewood cliffs.1991.
    [256]McKersie B D, Bowley S R, Harjanto et al. Water-deficit tolerance and field performance of transgenic alfalfa over expressing superoxide dismutrase[J]. Plant Physiol,1996,111:1171-1177.
    [257]Mehey M C. Active oxygen species in plant defense against pathogens[J]. Plant Physiol,1994, 105:467-472.
    [258]Micheal T. Antioxidative defence and photoprotection in pine needles under field conditions[J]. Physiol Plant,1998,104:760-764.
    [259]Milan M A. An Arabidopsis thaliana Liposygenase gene can be induced by pathogens, abscisic acid and methl jasmonate[J]. Plant Physiol,1993,101:441-450.
    [260]Millar C. I., W. J. Libby. Strategies for conserving clinal, ecotypic, and disjunct population diversity in widespread species. In Falk, D. A., K. E. Holsinger(eds.). Genetics and Conservation of Rare Plants[M]. New York:Oxford University Press,1991,149-170.
    [261]Morgan JM. Osmoregulation and water stress in higher plants[J]. Ann.Rev.Plant physiol,1984,35: 299-319.
    [262]Ogden J. Forest dynamics and stand-level dieback in New Zealand's Nothofagus forest[J]. Geochemical Journal,1998, (17):225-230.
    [263]Olsson M. Alterations in lipid composition, lipid peroxidation and anti-oxidative protection during senescence in drought stressed plants and non-drought stressed plants of Pisum sativum[J]. Plant Physiology and Biochemistry Paris,1995,33 (5):547-553
    [264]Pan J J, Price J S. Fitness and evolution in clonal plants:the impact of clonal growth[J]. Evolutionary Ecology,2002,15:583-600.
    [265]Pennel R I, Lamb C. Programmed cell death in plants[J]. The Plant Cell,1997,9:1157-1168.
    [266]Pitelka L F. A pplication of the-3/2 power law to clonal herbs[J]. American Naturalist,1984,123: 442-449.
    [267]Pitelka L F. Population biology of Clintonia borealis. Ⅰ.Ramet and patch dynamics[J]. Journal of Ecology,1985,73:169-183.
    [268]Poorter H, Nagel O. The role of biomass allocation in the growth response of plants to different levels of light, CO2, nutrients and water:a quantitative review[J]. AustralianJournal of Plant Physiology,2000,27:595-607.
    [269]Price E A C. Studies of growth in the clonal herb Glechoma hederacea Ⅰ. Patterns of physiological integration [J]. Journal of Ecology,1992a,80:25-38.
    [270]Price E A C. Studies of growth in the clonal herb Glechoma hederacea Ⅱ. The effects of selective defoliation[J]. Journal of Ecology,1992b,80:39-47.
    [271]Ren G Y. Decline of the mid2 to late Holoceneforests in China:Climatic change or human impact?[J]. Journal of Quaternary Science,2000,15(3):273-281.
    [272]Reynolds H L. An analytical treatment of root-to-shoot ratio and plant competition for soil nutrient and light[J].American Naturalist,1993,141:51-70.
    [273]Rice E L. Allelopathy [M]. Orlando Florida:Academic Press,1984.
    [274]Richards K D, Snowden K C, Gradner R C. Wai16 and wai17 Genes induced by aluminum in wheat roots[J]. Plant Physiol,1994,105:1455-1456.
    [275]Rodmond D R. Studies in forest pathology. XV.Rootlets, mycorhizae and soil temperature in relation tobirch dieback[J]. Canadian Journal of Botany,1995,23(6):595-627.
    [276]Salzman A G. Habitat selection in a clonal plant[J]. Science,1985,228:603-604.
    [277]Savitch L V, Nassacci A, Gray GR et al. Acclimation to lowtemperature or light mitigates sensitivity to photoinhibition:Roles of the Calvin cycle and the Mehler reaction[J]. Aust. J Plant Physiol,2000,27:253-264.
    [278]Schmid B. Clonal growth in grassland perennials. Ⅲ. genetic variation and plasticity between and within populations of Bellis perennis and Prunella vulgaris[J]. Journal of Ecology,1985,73: 819-830.
    [279]Schmid B, et al. Clonal integration and population structure in perennials:effects of severing rhizome connections[J]. Ecology,1987,68(6):2016-2022.
    [280]Schmid B. Some ecological and evolutionary consequences of modular organization and clonal growth in Plants[J]. Evolutionary Trend in plant,1990,4:25-34.
    [281]Shangguan Z P, Shao M, Dyckmans J. Effects of nitrogen nutrition and water deficit on net photosynthetic rate and chlorophyll fluorescence in winter wheat[J]. Journal Plant Physiol,2000, 156:46-51.
    [282]Silvertown J W. Introduction to Plant Population Eco- logy (second edition) [M]. New York: Long man Group Limited Company,1987.
    [283]Silvertown J W. Introduction to plant population (third edition)[M]. New York:Long man Group Limited Company,1993.
    [284]Slade A J, Hutchings M J. The effects of nutrient availability on foraging in the clonal herb Glechoma hederacea[J].Journal of Ecology,1987a,75:95-112.
    [285]Slade A J, Hutchings M J. The effects of light intensity on foraging in the clonal herb Glechoma hederacea[J].Journal of Ecology,1987b,75:639-650.
    [286]Slade A J, Hutchings M J. Clonal integration and plasticity in foraging behavior in Glechoma hederacea[J].Journal of Ecology,1987c,75:1023-1036.
    [287]Solbrig O T(ed.). From genes to ecosystems-a research agenda for biodiversity[M]. Paris:IUBS, 1991.
    [288]Soltis P S, Soltis D E. Genetics variation in endemic and widespread plant species:examples from Saxifragaceae and Polystichum[J]. Aliso,1991,13:215-223.
    [289]Stevenson G C. Effects of moisture stress on white clover[J]. Plant and Soil,1985,85:249-257.
    [290]Stupak I, Nordfjell T, Gundersen P. Comparing biomass and nutrient removals of stems and fresh and predried whole trees in thinnings in two Norway spruce experiments[J]. Canadian Journal of Eorest Research,2008,38:2660-2673.
    [291]Tambussi E A, Bartoli C G, Beltrano J, Guiarmet J J, Araus J L. Oxidative damage to thylakoid proteins in water-stressed leaves of wheat (Triticum aestivum)[J]. Physial Plant,2000,108: 398-404.
    [292]Tilman D. Plant strategies and the structure and dynamics of plant communities[M]. Princeton: Princeton University Press.1988.
    [293]Thomas FR, Ronald LP, James AF. Drought response of young apple tree on three rootstockll Gas exchange, chlorophyll fluorescence, water relations and leaf abscisic acid[J]. J Amer Soc Hort Sci, 1997,122(6):841-848.
    [294]Thompson L. The effect of grasses on the quality of transmitted radiation and its influence on the growth of white clover Trifolium repens[J]. Oecologia,1988,75:343-347.
    [295]Tubbs C H. Effects of sugar maple root exudate on seedlings of northern conifer species[J]. Forest Science,1973,19:139-148.
    [296]Vehiba K. Selective oxidation of tyrptoha and histidine residues in protein through the coppy-catalyzed autoxidation of 1-ascorbic acid[J]. Biol.Chem,1988,52:1529-1533.
    [297]Wang X Q,Wu W H, Zhang J S. Evidences for regulation of the inward K+-channels by CDPK in Vicia frba guard cells[J]. Acta Bot Sin,1998,40:1001-1009.
    [298]Wang Z Q, Wang Q C, Chen Q S. Spatial heterogeneity of soil nutrients in old growth forests of Korean pine[J]. Journal of Forest Research,1998,9:240-244.
    [299]Watson M A. Integrated physiological units in plants[J]. Trends in Ecology and Evolution,1986,1: 119-123.
    [300]Wei X, Kimmins J P, Zhou G. Disturbances and the sustainability of long-term site productivity in lodgepole pine forests in the central interior of British Columbia An ecosystem modeling approach[J]. Ecological Modelling,2003,164:239-256.
    [301]Werner W L. Canopy dieback in the upper montane rain forests of SriLanka[J].Geochemical Journal,1988,17:245-248.
    [302]Woods R V. The relation between fire, nutrient depletion and decline in productibity in Perpetuity[J], CSIRO Melboure,1989,9:366-370.
    [303]Xu Y, Hanson M R. Programmed cell death during pollination-induced petal senescence in Petunia[J]. Plant Physiol,2000,122:1323-133.
    [304]Yen C H, Yang C H. Evidence for programmed cell death during leaf senescence in plants[J]. Plant Cell Physiol,1998,39(9):922-927.
    [305]Zhang J, Davis W J. ABA in roots and leaves of flooded pea plants[J]. Journal Exp Botany,1987, 38:649-659.
    [306]Zhang Q S. Effects of soil extracts from repeated plantation woodland of Chinese-fir on microbial activities and soil nitrogen mineralization dynamics[J]. Plant Soil,1997,191:205-212.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700