刚度和阻尼可调式半主动空气悬架及控制系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
刚度和阻尼可调式半主动空气悬架表现出诸多优越性。调节悬架刚度可有效避开系统共振频率,避免发生共振,再根据行驶工况对阻尼的需要,通过调节阻尼进一步衰减振动。不仅对道路车辆,对行驶工况更为复杂的农用车辆、军用车辆等非道路车辆来说,应用刚度和阻尼连续可调的半主动悬架可增大刚度和阻尼调节范围,有效提高车辆对复杂工况的适应能力,减振效果更佳。
     本文以刚度和阻尼可调式半主动空气悬架系统的设计制作为核心,完成了阻尼元件磁流变减振器的研制,利用带附加气室的Firestone1T15M-2膜式空气弹簧为弹性元件,构建了半主动悬架系统。结合国内外研究成果,利用理论分析与试验结合的方法对磁流变减振器的力学特性进行了系统研究;试验研究了所构建的半主动悬架系统的振动特性;提出半主动悬架的控制理论与策略,设计了刚度和阻尼连续调节的半主动悬架电控试验系统。所完成的工作及取得的结论归纳如下:
     1.建立了刚度和阻尼可调式半主动悬架系统振动微分方程,推导了振动响应量的标准差解析式,利用逐步选优求解法,分析不同路面和行驶速度下刚度和阻尼的最优匹配,设计了空气弹簧刚度和磁流变减振器阻尼的匹配方案;建立车辆转向时的操纵动力学模型及1/4悬架模型,分析悬架刚度和阻尼对操纵稳定性的影响,并对悬架性能作出了评价。研究结果表明,空气弹簧与磁流变减振器的匹配方案合理。
     2.提出了流动模式磁流变减振器,建立了磁路仿真模型,基于ansys仿真分析了磁路磁场分布规律及结构参数对磁场特性的影响,完成了磁流变减振器的结构设计;对自行研制的磁流变减振器进行了外特性试验,研究磁流变减振器活塞速度和励磁电流对其力学特性的影响。研究结果表明,磁流变减振器的磁路设计方法合理,合理选择磁路结构参数可使磁流变液的流变性能得到最大发挥;通过调节励磁线圈中的电流可改变减振器的输出阻尼力,实现阻尼力可控,减振器的饱和工作电流在1.6~1.8A之间,阻尼力可控倍数达5.9。试验进一步验证了磁流变减振器设计方法的有效性,并为阻尼可调式半主动空气悬架的控制研究提供了依据。
     3.为了定量分析磁流变减振器的力学特性,基于流体动力学理论对流经阻尼通道的磁流变液进行了动力学分析,研究了阻尼通道内磁流变液的流动特性,建立了流量连续性方程,结合磁场分析建立了阻尼力数学模型,对模型系数进行了试验辨识,建立了阻尼力简化模型并对其进行了精度验证。
     4.构建了刚度和阻尼连续可调的半主动悬架振动响应特性试验系统,通过调节定位控制阀输入电压和磁流变减振器励磁电流来改变悬架的刚度和阻尼,试验研究了定位控制阀输入电压、磁流变减振器励磁电流及激励频率对悬架振动特性的影响规律。试验结果表明,定位控制阀输入电压逐渐增大的过程中,系统共振频率有所降低,系统位移传递率、响应加速度均方根值和最大动载荷均迅速降低,在电压增大到4.6V时降至最小值,之后随电压继续增大,三者变化不再明显;定位控制阀输入电压在3V以内时,电压越小,励磁电流对共振点的振动衰减作用越明显,在电流由0增大到0.6A的过程中,振动衰减幅度最大,当定位控制阀电压大于3V时,励磁电流对振动衰减基本无影响。
     5.为了实现悬架刚度和阻尼的实时控制,改善悬架系统的减振性能,提出频域快速控制方法,采用labview作为软件设计开发平台、以PCI6024E数据采集卡为核心组建了控制系统,进行了台架正弦激励振动试验,比较分析了刚度、阻尼可实时控制的半主动悬架与被动悬架的平顺性性能指标,完成了对控制策略和控制系统硬件设计的正确性和有效性检验。试验结果表明,控制系统稳定可靠,采用的控制方法可行,所设计的半主动控制策略能有效抑制簧上质量的垂向振动。
     通过本课题的研究,可系统掌握基于磁流变减振器的带附加气室空气悬架系统的动力学特性,进一步完善悬架半主动控制理论体系,实现刚度和阻尼可控的半主动空气悬架系统的设计制作,对促进该系统在车辆减振系统中的应用,改善车辆悬架系统的减振性能具有重要的理论意义和实用价值。
The semi-active air suspension with adjustable stiffness and adjustable damping has many advantages. Regulating suspension stiffness can avoid system resonance frequency to avoid resonance effectively, and then adjusting damping can damped vibration further. Not only for the road vehicles, but for the off-road vehicles such as agriculture vehicles, military vehicles, the application of semi-active air suspension would help to improve their ability to adapt running road condition, thus improve the damping effect.
     Based on the design and manufacture of semi-active suspension with stiffness and damping continuous adjustable, the Magnetorheological damper have been developed, and then taking firestone1T15M-2type air spring as elastic element, the semi-active suspension with adjustable stiffness and adjustable damping have been established. According to related studies at home and abroad in present, the dynamic characteristics of Magnetorheological damper was systematically researched using the methods of theoretical analysis combining with experiments. The semi-active suspension system vibration characteristics were experimentally studied, and the semi-active suspension control theory and strategy were put forward. Finally the design of semi-active control system was completed. The completed work and achieved results are generalized as follows:
     1. The suspension model with adjustable stiffness and adjustable damping and the standard deviation analytic expression of vibration response were established, then the optimum matching between stiffness and damping under different working conditions was analyzed, and the matching scheme of air spring and magnetorheological damper was determined. The control dynamics model and a quarter-vehicle suspension model were established, then the influences of suspension parameters to steering stability were analyzed and the suspension performance was evaluated. The results showed that, air spring and magnetorheological damper matching scheme is reasonable.
     2. The flow mode magnetorheological damper was puts forward, then the magnetic circuit simulation model was established. The magnetic field distribution and structure parameters'effects on magnetic field characteristics were analyzed, and then the magnetorheological damper structure design was completed. Experiments were conducted to study the impact of input current and the excitation rate on the magnetorheological damper's damping force. The results showed that, the magnetic circuit design method is reasonable, and choosing appropriate parameters can make the magnetic function better. The output damping force can change by adjusting the applied current. The saturated working current is between1.6and1.8and the damping force controllable ratio reaches5.9. Perceived results justify the validity of the design and provide evidence to damping adjustable semi-active air suspension control research.
     3. In order to obtain the mechanical properties of the magnetorheological damper, the fluid dynamic analysis including the magnetorheological fluid flow characteristic and the establishment of a flow continuity equation was done based on fluid dynamics theory. The mathematical model was established combined with magnetic field analysis. The model coefficients were identified so as to establish the damping force simplified model, and then the precision verification was done.
     4. The experimental system of semi-active air suspension with adjustable stiffness and adjustable damping was established. Suspension stiffness and damping were respectively adjusted by position control valve input voltage and damper excitation current. The effects of position control valve input voltage, damper excitation current and actuating frequency on the suspension vibration characteristics were experimentally studied. Experiments showed that, the resonance frequency is reduced with the increase of the positioning control valve input voltage, and at the same time, displacement transmissibility, response acceleration root-mean-square value and maximum dynamic load are reduced quickly. The three indexes all drop to the minimum when the voltage increases to4.6V. In the case of that the position control valve input voltage is less than3V, vibration can be greatly attenuated when the damper excitation current is increased from0to0.6A. However, when position control valve voltage is greater than3V, excitation current has less effect to damped vibration.
     5. A frequency adjust based control strategy was presented in order to real-time control stiffness and damping, so as to improve the suspension performance. Using labview for software development platform, the PCI6024E DAQ as the core, the control system was established. Based on the bench sine excitation vibration test, comfort performance index of semi-active and passive suspension were compared and the control strategy and control system hardware design were verified. Experiments showed that, the control system is stable and reliable, the control method is feasible, the designed semi-active control strategy can effectively suppress sprung mass vertical vibration.
     Through the research in this project, the dynamics characteristics of air suspension system based on the magnetorheological damper can be systematically attained, and the semi-active control theory system will be further improved, so as to realize the semi-active suspension design and production. This research is of important theoretical significance and practical value to promote the application of semi-active air suspension system to vehicle and to improve the performance of vehicle suspension system.
引文
1 Hostens I, Ramon H. Descriptive analysis of combine cabin vibrations and their effect on the human body[J]. Journal of Sound and Vibration,2003,266:453-464
    2 Backman A L. Health Survey of processional drivers[J]. Scand J Work Environ Health, 1983, (9):30
    3 Helmut Sranate H. Long-term effects of whole body vibration[J]. Int Arch Occup Environ Health,1986,58:1
    4 Kevin Waish. Occupational causes of low-back pain [J]. Scand J Work Environ Health, 1989,15:54
    5 骆知俭,毛晓全.全身振动对人体腰椎的影响[J].职业医学,1989,16(5):7-9
    6 巴福森.长时间全身振动对作业人员胃的影响的跟踪研究[J].航天医学与医学工程,1993,6(4):274-281
    7 王和平,潘宏侠,黄晋英等.车辆振动对乘员舒适性影响的研究[J].装备制造技术,2009,(2):321-324
    8 于涛.基于车辆振动的轮胎气压监控系统的研究与开发[D].东北大学硕士学位论文,2004
    9 Lines J, Stiles M, Whyte R. Whole Body Vibration during tractor driving[J]. Journal of Low Frequency Noise and Vibration,1995, (14):87-95
    10寇发荣,方宗德.汽车可控悬架系统的研究进展[J].汽车工程,2007,29(5):426-432
    11陈兵.车辆智能悬架系统发展趋势研究[J].起重运输机械,2005,(6):1-6
    12 Crosby M. J, Karmopp D. C. The active damper—a new concept for shock and vibration control[J]. The shock and vibration bull,1973,43(4):119-133
    13 Karnopp D C, Crosby M J, Harwood R A. Vibration control using semi-active force generators[J].ASME Journal of Engineering for Industry,1974,96(2):619-626
    14姚嘉伶,蔡伟义.汽车半主动悬架系统发展现状[J].汽车工程,2006,28(3):276-280
    15欧进萍.结构振动控制——主动、半主动与智能控制[M].北京:科学出版社,2003
    16 http://en. wikipedia. org/wiki/Magnetorheological fluid
    17 Ginder J M. Shear Stress in Magnetorheological Fluids:Role of Magnetic Saturation, Applied Physics Letters,1994,65 (26):3410-3418
    18 Jolly M R. A Model of the Behavior of Magnetorheological Materials, Smart Mater,1996, 3(5):607-614
    19司鹄.磁流变体力学机理研究[D].重庆大学博士学位论文,2003
    20 http://www.mrfluid.com
    21 Gilbert R, Jackson M. Magnetic Ride Control. GM TechLink4,2002
    22 Cavannugh R D. Air suspension and servo-controlled pneumatic isolation systemes:Shock and vibration handbook[M].Mcgraw-Hill B C,1961, chapter 33
    23 Gee-Clough D,Waller R A. An improved self-damped pneumatic isolator[J]. Journal of Sound and Vibration,1968,8(3):364-376
    24 Esmailzadeh E. Compact self-damped pneumatic isolators for road vehicles[J]. Trans. ASME, J. Dyn. Sys. Meas. Cont,1980, (102):270-277
    25 Katsuya Toyofuku, Chuuji Yamada, Toshiharu Kagawa, Toshinori Fujita. Study on dynamic characteristic analysis of air spring with auxiliary chamber[J]. JSAE Review,1999(20):349-355
    26 Quaglia G, Soli M. Experimental and Theoretical Analysis of an Air Spring with Auxiliary Reservoir[C]. Proc of the 6th Internatioales symposium on Fluid Control Measurement and Visualization. Sherbrooke, Canada, Aug,2000
    27 Quaglia G, Soli M. Air Suspension Dimension Analysis and Design Procedure [J]. Vehicle System Dynamics,2001,35(6):443-475
    28 Hostens I, Deprez K, Ramon H. An improved design of air suspension for seats of mobile agricultural machines. Journal of sound and vibration,2004, (276):141-156
    29 Kenji Kawashima, Tomonori Kato, Koichi Sawamoto, Toshiharu Kagawa. Realization of virtual sub chamber on active controlled pneumatic isolation table with pressure differentiator[J]. Precision Engineering,2007(31):139-145
    30郭荣生.空气弹簧悬挂的振动特性和参数计算(上)[J].铁道车辆,1992(5):1-5
    31郭荣生.空气弹簧悬挂的振动特性和参数计算(下)[J].铁道车辆,1992(6):8-14
    32吴善跃,朱石坚,黄映云.带辅助气室橡胶空气弹簧的冲击特性分析[J].振动工程学报,2005,18(2):248-251
    33王家胜,朱思洪.带附加气室空气弹簧动刚度的线性化模型研究[J].振动与冲击,2009,28(2):72-76
    34王家胜,朱思洪,贺亮.基于复刚度带附加气室空气弹簧振动特性研究[J].中国机械工程,2009,20(12):1418-1422
    35 Lou Z, Ervin R D, Filisko F E. A Preliminary Parametric Study Of Electrorheological Damper[C]. Trans. ASME, Journal of Fluid Engineering,1994,116:570-577
    36 Lord Corporation Rheonetic Linear Damper, Rd-1001/Rd-1004, Product Information Sheet, Lord corp. Pub.1997
    37 Jason E, Lindler, Glen A Dimock, et al. Design of A Magnetorheological Automotive Shock Absorber[C]. SPIE,2000,3985:426-437
    38 Seung-Bok Choi, Hwan-Soo Lee, Sung-Ryong Hong, et al. Control and Response Characteristics of A Magnetorheological Fluid Damper for Passenger Vehicle[C]. SPIE, 2000,3985:438-443
    39德尔福集团.德尔福磁流变液减振器[J].汽车与配件,2004,12(13):38-39
    40 Sameer Marathe, Farhan Gandhi, Wang K W. Helicopter Blade Response and Aeromechanical Stability with A Magnetorheological Fluid Based Lag Damper[C]. SPIE,1998, 3329:390-401
    41张红辉,廖昌荣,陈伟民.磁流变阻尼器磁路设计与性能的相关性研究[J].仪器仪表学报,2004,25(S4):546-550
    42廖昌荣,陈伟民,余淼等.基于混合工作模式的汽车磁流变减振器阻尼特性研究[J].机械工程学报,2001,37(5):44-47
    43廖昌荣,余淼,陈伟民等.基于Poiseuille流动的汽车磁流变减振器分析与测试[J].化学物理学报,2001,14(5):581-586
    44廖昌荣,陈伟民,黄尚廉.汽车智能磁流变减振器设计准则探讨[J].中国机械工程,2002,(8):722-725
    45廖昌荣,余淼,陈伟民等.汽车磁流变减振器设计原理与试验测试[J].中国机械工程,2000,13(16):1391-1394
    46欧进萍,关新春.磁流变耗能器性能的试验研究[J].地震工程与工程振动,1999,19(4):76-81
    47郭大蕾,胡海岩.基于磁流变阻尼器的车辆悬架半主动控制研究[J].振动工程学报,2002,15(1):60-64
    48李礼夫,宋俊.基于预瞄技术的汽车磁流变半主动悬架控制方法[J].功能材料,2006,37(5):776-798
    49喻晶,李礼夫.汽车悬架的磁流变减振器阻尼力调节特性的研究[J].现代制造工程,2009,(2):74-76
    50杨礼康,潘双夏,王维锐等.磁流变减振器滞环特性试验及建模方法[J].机械工程学报,2006,42(11):137-142
    51邓志党,高峰,刘献栋等.汽车磁流变减振器阻尼特性理论分析与计算[J].机械设计,2007,24(1):37-39
    52郑玲,李以农,胡勇等.磁流变减振器磁路设计与结构优化[J].振动工程学报,2008,21(2): 173-178
    53张红辉,廖昌荣,余淼等.考虑磁场的磁流变效应Bingham建模[J].机械工程学报,2006,42(2):33-36
    54舒红宇,王立勇,吴碧华等.一种磁流变减振器的设计与试验[J].农业机械学报,2006,37(5):166-168
    55 Spelta C, Previdi F, Savaresi S M, et al. Control of magnetorheological dampers for vibration reduction in a washing machine[J]. Mechatronics,2009, (19):410-421
    56 Bender E K. Some Fundamental Limitations of Active and Passive Vehicle Suspension System[C]. SAE paper, No.680750,1968
    57 Bender E K. Optimun Linear Preview Control with Application to Vehicle Suspension[C]. Trans. ASME, J. Basic. Eng.,1968, P.213-221
    58 Thompson A G. Design of Active Suspension[C]. Proc. Inst. Mech. Eng,1970,185:553-563
    59惠敢.声纳悬架装置[J].国外汽车,1988,(6):15-17
    60 Crolla D A, Horton D N L, Pitcher R H, et al. Active suspension control for an off-road vehicle [C]. Proceedings of the Institution of Mechanical Engineers,1987,201(1):1-10
    61 Katsuya Tanifujia, Satoshi Koizumib, Ryo-hei Shimamunec. Mechatronics in Japanese rail vehicles:active and semi-active suspensions [J]. Control Engineering Practice. 2002,10 (9):999-1004
    62 Daniel Fischer, Rolf Isermann. Mechatronic semi-active and active vehicle suspensions[J]. Control Engineering Practice,2004,12 (11):1353-1367
    63 Swevers J, Lauwerys C, Vandersmissen B, et al. A model-free control structure for the on-line tuning of the semi-active suspension of a passenger car[J]. Mechanical Systems and Signal Processing,2007,21 (3):1422-1436
    64 Yao G Z, Yap F F, Chen G, et al. MR damper and its application for semi-active control of vehicle suspension system[J]. Mechatronics,2002,12(7):963-973
    65 Gobbi M, Mastinu G. Analytical description and optimisation of the dynamic behaviour of passively suspended road vehicles[J]. Journal of Sound and Vibration,2001, 245(3):457-481
    66 Uys P E, Els P S, Thoresson M. Suspension settings for optimal ride comfort of off-road vehicles travelling on roads with different roughness and speeds[J]. Journal of Terramechanics,2007,44 (2):163-175
    67王世明,王孙安,李天石.半主动悬架及其控制[J].汽车技术,1999,(12):1-3
    68 Gilbert R, Jackson M. Magnetic Ride Control. GM TechLink,2002
    69 Carlson J D, Catanzarite D M, Clair K A St.Commercial Magneto-rheological Fluid Devices[C].5th Int Conf on Electro-Rheological.Magneto-Rheological Suspensions and Associated Technology,Sheffield,10-14 July 1995
    70 Jolly M R, Bender J W, Carlson J D. Properties and Applications of Commercial Magnetorheological Fluids[J]. Journal of Intelligent Material Systems and Structures,1999,10(1):5-13
    71 Hrovat D. Survey of advanced suspension developments and related optimal control applications[R]. Automatica,1997
    72 Youn I, HAC A. Semi-active suspensions with adaptive capability[J]. Journal of Sound and Vibration,1995,180(3):364-381
    73 Yanqing Liu, Hiroshi Matsuhisa, Hideo Utsuno. Semi-active vibration isolation system with variable stiffness and damping control [J]. Journal of Sound and Vibration,2008, 313(1-2):16-28
    74章一鸣,林野. 一种新型车辆悬挂系统的探讨——阻尼最优控制的半主动悬挂系统.汽车工程,1988,10(4):15-20
    75曾志华.一种阻尼可调的减振器[J].汽车技术,1990,(4):10-15
    76刘宏伟,陈燕虹,林逸.汽车主动悬架系统状态反馈控制技术研究[J].汽车技术,2000,(8):2-4
    77舒红宇,李伟,何渝生.汽车主动悬架的理论分析与模型试验[J].汽车工程,1991,13(3):129-135
    78方锡邦,陈无畏,吴乐模.模糊控制技术及其在汽车半主动悬架中的应用[J].机械工程学报,1999,35(3):98-100
    79刘新量,张建武,陈兆能.汽车主动悬架的自校正控制[J].汽车工程,1998,20(3):166-177
    80杨钫.基于PID控制空气悬架系统的仿真与试验研究[D].吉林大学硕士学位论文,2004
    81常同珍.带附加气室空气悬架系统动态特性及其控制的研究[D].武汉理工大学硕士学位论文,2005
    82舒歌群,孙建民.自适应模糊控制车辆悬架系统试验[J].天津大学学报,2006,39(6):651-656
    83艾延廷,王志,甘世俊等.多自由度车辆模型半主动悬架模糊控制[J].振动与冲击,2007,26(3):19-22
    84宋宇,陈无畏,黄森仁.车辆悬架多刚体动力学分析及PID控制研究[J].农业机械学报,2004,35(1):4-7
    85孙涛,陈大跃.电流变智能半主动悬架模糊PID控制[J].汽车工程,2004,26(5):605-608
    86冀杰,李以农,郑玲等.汽车主动悬架几种控制策略的比较研究[J].机械科学与技术,2006,25(6):647-650
    87李以农,郑玲.车辆半主动悬架非线性控制方法的研究[J].农业机械学报,2005,36(5):9-15
    88陈龙,李德超,薛念文等.车辆半主动悬架自适应模糊控制[J].农业机械学报,2001,32(6):9-15
    89张庙康.车辆悬架模糊神经网络半主动振动控制系统的研究[J].振动、测试与诊断,1996,16(2):18-23
    90李以农,卢少波,郑玲等.基于灰色Fuzzy控制算法的车辆悬架与转向综合控制[J].系统仿真学报,2009,21(7):1916-1920
    91张孝祖,武鹏,黄少华.基于模糊鲁棒控制的车辆半主动悬架性能分析[J].农业机械学报,2006,37(5):1-4
    92陈一锴,何杰,李旭宏等.基于模糊控制的重型货车空气悬架性能多目标优化[J].东南大学学报,2008,38(2):319-323
    93崔晓利,陈龙,李德超.基于神经网络的半主动悬架自适应模糊控制研究[J].中国机械工程,2004,15(2):178-181
    94余晓江,胡学军,胡于进等.基于模糊神经网络的车辆间距智能自适应控制[J].华中科技大学学报(自然科学版),2007,35(9):22-24
    95马军,贺岩松,李兴泉等.汽车驾驶员自适应模糊PID控制模型[J].机械与电子,2007,(2):35-38
    96缪赞,屈文忠,邱阳等.汽车主动悬架系统的自适应模糊控制方法[J].汽车工程,2001,23(1):9-12
    97张孝祖,乐巍,陈龙.阻尼模糊控制在车辆半主动悬架中的应用[J].农业机械学报,2004,35(2):5-8
    98李显生,霍娜,于海波等.基于MATLAB仿真的车辆转向稳定性控制策略[J].系统仿真学报,2008,20(11):2982-2986
    99宋宇.空气悬架车辆ADAMS与MATLAB联合仿真研究[J].汽车技术,2008,(10):40-43
    100于军,陈亮明.自适应空气悬架控制器设计[J].机电工程技术,2009,38(1):37-39
    101李晓青.灰色控制理论在汽车半主动悬架控制中的应用[D].武汉理工大学硕士学位论文,2006
    102苏周成.车辆转弯制动稳定性动力学控制研究[D].重庆大学硕士学位论文,2007
    103邵英.车辆主动悬架控制策略的仿真研究[D].南京农业大学硕士学位论文,2003
    104王辉,朱思洪.车辆半主动悬架神经网络自适应控制的研究[J].公路交通科技,2006,23(1): 155-158
    105王辉,朱思洪.半主动空气悬架神经网络的自适应控制[J].农业机械学报,2006,37(1):28-31
    106朱思洪,吕宝占,王辉等.汽车半主动空气悬架的神经网络控制方法[J].交通运输工程学报,2006,6(4):66-70
    107贺亮,朱思洪.带附加空气室空气弹簧垂直刚度和阻尼试验研究[J].机械强度,2006,28(8):33-36
    108王伟.基于最优控制的空气悬架仿真研究[J].机械工程与自动化,2007(5):26-28
    109M. Hauck. Geregelt Daelmfung fuer Traktor Fahrersiter[D]. TU Berlin, Institut fuer Konstruktion von Maschinensystemen,2001
    110 M. Kawana, T. Shimogo. Active suspension of truck seat[J]. Shock and Vibration,1998,5(1):35-41
    111 F. Himmelhuber. Die aktiv geregelte Luftfederung fuer den Traktorsitz[J]. Landtechnik,2006,61(3):132-133
    112 CLAAS KgaAmbH.CLAAS-Kabinenfederung Z-active[oL]
    113M. Martelli, Roberto Paoluzzi, Luca G. Zarotti. The Front Suspension of Agricultural Tractors[C].14th International Conference of the International Society for Terrain-Vehicle Systems, Vicksburg, MS USA October 2002:20-24
    114 A. Mazhei, Alexander A.Uspenskiy, Valery G. Ermalenok. Dynamic analysis of the hydro-pneumatic front axle suspension of agriculture tractor[C]. Commercial Vehicle Engineering Congress and Exhibition, Chicago, Illinois, October-November 2,2006
    115 Dave Crolla,喻凡.车辆动力学及其控制[M].北京:人民交通出版社,2003
    116 Mizuguchi M, Suda T, Chikamori S, et al. Chassis electronic control system for the Mitsubishi 1984 Galant[J]. SAE paper 840258,1984
    117 Konishi J, Shiraishi Y, Katada K. Development of electronically controlled air suspension system[J]. SAE paper 881770,1988
    118 Citroen. Hydractive suspension system, Technical leaflet,1989
    119王家胜,朱思洪.带附加气室空气弹簧动刚度的线性化模型研究[J].振动与冲击,2009,28(2):72-76
    120 SHARP R, CROLLA D. Road vehicle suspension system design-a review[J]. Vehicle System Dynamics:International Journal of Vehicle Mechanics and Mobility,1987, 16 (3):167-192
    121余志生.汽车理论[M].北京:机械工业出版社,2002
    122周长城,周金宝,任传波等.汽车振动分析与测试[M].北京:北京大学出版社,2010
    123王望予.汽车设计[M].北京:机械工业出版社,2011
    124王家胜,朱思洪,贺亮.基于复刚度带附加气室空气弹簧振动特性研究.中国机械工程,2009,20(12):1418-1422
    125王家胜,朱思洪.带附加气室空气弹簧动刚度影响因素试验研究[J].振动与冲击,2010,29(6):1-3+20
    126王家胜.带附加气室空气弹簧动力学特性研究[D].南京农业大学博士学位论文,2009
    127祝辉,陈无畏.汽车悬架、转向和制动系统建模与相互影响分析[J].农业机械学报,2010,41(1):7-13
    128郭孔辉.汽车操纵动力学[M].吉林:吉林科学技术出版社,1991,12
    129 Rajesh Rajamani. Vehicle Dynamics and Control. Springer Science+Business Media, USA, 2005
    130喻凡,林逸.汽车系统动力学[M].北京:机械工业出版社,2005
    131李彬,喻凡.四轮转向和差动制动联合控制的车辆横摆动力学[J].农业机械学报,2008,39(12):1-6
    132 http://www.51gcs.com/info/17952
    133周继忠.转弯制动工况下,汽车制动力分配策略仿真研究[D].上海交通大学硕士学位论文,2008
    134刘伟,史文库,桂龙等.基于平顺性与操纵稳定性的悬架系统多目标优化[J].吉林大学学报(工学版),2011,41(5):1199-1204
    135刘立强,谭继锦,启瑞等.转向工况下汽车悬架系统动力学特性仿真[J].合肥工业大学学报(自然科学版),2004,27(8):886-890
    136 Rabinow J. The Magnetic Fluid Clutch. ATEE Trans,1948,67:1308-1315
    137陈杰平,陈无畏,祝辉等.单出杆汽车磁流变减振器设计与试验[J].农业机械学报,2009,40(3):5-10
    138廖昌荣,陈伟民,余淼等.汽车磁流变减振器设计准则探讨[J].中国机械工程,2002,13(9):723-726
    139翁建生,胡海岩,张庙康.磁流变阻尼器的实验建模[J].振动工程学报,2000,13(4)-616-621
    140 Samantaray A K. Modeling and analysis of preloaded liquid spring/damper shock absorbers[J]. Simulation Modelling Practice and Theory,2009,17(1):309-325
    141 Spencer B F, Dyke S J, Sain M K, et al. Phenomenological Model of a Magnetorheological Damper[J]. ASCE Journal of Engineering Mechanics,March 10,1996:1-23
    142廖昌荣.汽车悬架系统磁流变阻尼器研究[D].重庆大学博士学位论文,2001
    143韦勇,阳杰,容一鸣.汽车减振器阻尼系数与悬架系统阻尼比的匹配[J].武汉汽车工业大学学报,2000,22(6):22-25
    144戴焕云.铁道车辆液压减振器卸荷速度选取方法[J].交通运输工程学报,2008,8(4):11-15
    145 Kasteel R V,钱立新,王成国等.铁道车辆液压减振器的工作原理和数值模型[J].铁道学报,2005,27(2):28-34
    146刘涛,赵立军,赵桂范.汽车设计[M].北京:北京大学,2008
    147邱宣怀.机械设计[M].北京:高等教育出版社,1997
    148 http://zhidao. baidu. com/question/109735060. html
    149 Sevki C, Tahsin E. Modeling and testing of a field-controllable magnetorheological fluid damper[J]. Mechanical Sciences,2010,52(8):1036-1046
    150 Dimitrios A. Bompos, Pantelis G. Nikolakopoulos. CFD simulation of magnetorheological fluid journal bearings[J]. Simulation Modelling Practice and Theory,2011,19 (4):1035-1060
    151Yalcintas M, Dai H. Magnetorheological and Electrorheological Matrial in Adaptive Structures and Their Performance Comparison[J]. Smart Materials and Structures,1999, 8(4):560-573
    152 Chooi W W, Oyadiji SO. Design, modeling and testing of a magnetorheological (MR) dampers using analytical flow solutions[J]. Computers&Structures,2008,86(3-5):473-482
    153 Chooi W W. Experimental characterisation of the properties of magnetorheological (MR) fluids and MR damper[J]. PhD thesis, University of Manchester, UK,2005
    154张也影.流体力学[M].北京:高等教育出版社,2002,8
    155俞德孚.车辆悬架减振器的理论与实践[J].兵工学报—坦克装甲车与发动机分册,1988,(3):25-27
    156叶全勇,俞德孚.车辆悬架减振器外特性非线性的等效线性计算[J].兵工学报—坦克装甲车与发动机分册,1994,(1):22-29
    157张立军,余卓平,欧阳鹏.汽车液压减振器机械阻尼特性试验研究[J].噪声与振动控制,2005,25(3):33-36
    158余志生.汽车理论(第四版)[M].机械工业出版社,2006
    159郭文观,石柏军.空气悬架的发展和试验方法研究[J].机床与液压,2008,36(5):350-354
    160贺亮,周永清,朱思洪.基于激振法的空气弹簧垂向刚度和阻尼特性研究[J].振动与冲击,2008,27(7):167-170
    161 Zhu Sihong, Wang Jiasheng, Zhang Ying. Research on Theoretical Calculation Model for Dynamic Stiffness of Air Spring with Auxiliary Chamber[C]. IEEE VPPC 2008, Harbin, China, Sep,2008
    162 Quaglia G. and Soli M. Experimental and theoretical analysis of an air spring with auxiliary reservoir[J]. Proc of the 6th Internationals symposium on Fluid Control Measurement and Visualization, Sherbrooke, Canada, Aug,2000
    163 Katsuya Toyofuku, Chuuji Yamada, Toshiharu Kagawa, Toshinori Fujita. Study on dynamic characteristic analysis of air spring with auxiliary chamber[J]. JSAE Review 1999 (20):349-355
    164靳晓雄,张立军,江浩.汽车振动分析[M].上海:同济大学出版社,2002
    165 GB/T13061-1991:汽车悬架用空气弹簧试验方法[S]
    166 GJB 4111.20-2000:军用履带式工程机械设计定型通用试验规程—乘员座椅振动试验方法[S]
    167莫荣利,谢建藩,杨军.汽车空气弹簧垂向动态性能及试验方法探讨[J].客车技术与研究,2004,24(6):10-12
    168王进,林达文,彭立群等.轨道车辆用空气弹簧的刚度特性试验[J].世界橡胶工业,2006,33(11):40-43
    169江洪,祁晨宇,汪栋等.空气弹簧特性试验研究[J].机床与液压,2008,36(9):204-208
    170周永清,朱思洪.带附加空气室空气弹簧动态特性的试验研究[J].机械强度,2006,28(1):13-15
    171陈燕虹,杨兴龙,王勋龙.大客车空气弹簧动态特性的试验分析[J].汽车技术,2002(10):19-20
    172肖忠祥.数据采集原理[M].西安:西北工业大学出版社,2001
    173郭虹,艾延延,盛元生.数据采集与处理[M].北京:航空工业出版社,1999
    174赵继海编著.路面不平度的测量分析与应用[M].北京:北京理工大学出版社,2000
    175 GB7031-86:车辆振动输入—路面不平度表示方法[S],1986
    176潘双夏,陈助碧,冯培恩.M-File S-函数在时域路面不平度建模中的应用[J].中国工程机械学报,2006,4(4):379-384
    177周同国.机械工程测试技术[M].北京:北京理工大学出版社,2003
    178杨乐平,李海涛,肖凯等.虚拟仪器技术概述[M].北京:电子工业出版社,2003
    179张易知,肖啸,张喜斌等.虚拟仪器的设计与实现[M].西安:西安电子科技大学出版社,2002
    180秦树人.虚拟仪器[M].北京:中国计量出版社,2004
    181崔红梅.面向测试系统的虚拟仪器设计与应用研究[D].呼和浩特:内蒙古农业大学,2007
    182 Jeffrey Travis, Jim Kring. LabVIEW大学实用教程[M].北京:电子工业出版社,2008
    183杨乐平,李海涛,杨磊LabVIEW程序设计与应用(第2版)[M].北京:电子工业出版社,2005
    184石博强,赵德勇,李畅.LabVIEW6.1编程技术实用教程[M].北京:中国铁道出版社,2005

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700