车辆稳定性系统和四轮转向系统及其集成控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着对汽车“安全、节能、环保”三大目标越来越高的要求,以及汽车行业越来越激烈的竞争,提高车辆操纵稳定性和安全性的研究受到人们的普遍重视。其中,车辆稳定性控制作为主动底盘控制的重要组成部分,已发展为现代汽车技术的一个重要方向,与已有的四轮转向控制的集成研究也开始受到研究者的重视。
     四轮转向控制曾经是主动底盘控制的研究热点之一,对于轨迹保持和侧偏角控制有易于实现的优势。然而,四轮转向控制对轮胎侧向力的依赖和轮胎侧向力及侧偏角饱和特性决定了其方法存在较大局限性,目前的发展方向是基于直接横摆力矩控制(Direct Yaw Moment Control,DYC)的车辆稳定性控制。
     车辆稳定性控制包含两方面的问题,即轨迹保持问题和稳定性问题,分别由车身质心侧偏角和横摆角速度来描述。对于轨迹保持问题,可以车身质心侧偏角为控制目标,对于稳定性问题,可以横摆角速度为控制目标,两者的耦合性也使得车辆稳定性控制算法的研究呈现多元化发展趋势,如横摆角速度控制或质心侧偏角控制或二者的联合控制。由于侧偏角主要是由车辆上的纵向力和侧向力来决定的,用制动力直接控制车辆上的侧向力是比较困难的,而四轮转向系统对轮胎侧向力的控制是直接有效的,因而车辆稳定性控制与四轮转向控制的集成研究具有技术驱动的因素。
     研究资料表明,以改善高速移线行驶操纵稳定性为主要目标的四轮转向系统通过轮胎侧向力对车辆质心侧偏角控制有易于实现的优势,能够满足一般行驶工况下的稳定性要求;而基于直接横摆力矩的车辆稳定性系统通过调节轮胎纵向力实现了紧急工况下轮胎侧向力趋于饱和状态时车辆丧失稳定性的问题,极限工况下的控制效果较好。于是,将四轮转向系统与车辆稳定性系统相结合,并寻求改善集成系统性能的方法,便成为车辆主动底盘控制新的发展方向。
     本文以车辆稳定性系统和四轮转向系统的控制研究为基础,探索车辆稳定性系统与四轮转向系统集成控制的方法,主要包括以下内容:
     建立四轮转向横摆角速度反馈控制系统,考虑到轮胎等非线性因素的影响,同基于神经网络理论的四轮转向控制方法相结合,利用MATLAB神经网络工具箱设计了混合控制系统,实现了四轮转向车辆横摆角速度反馈与神经网络自适应混合控制。
     对车辆稳定性控制目标进行探讨,对基于直接横摆力矩的车辆稳定性控制逻辑进行分析,设计了一种基于横摆角速度反馈的稳定性控制系统。此系统由四轮制动逻辑控制器和单轮制动PID控制器组成,并同ABS系统的轮胎滑移率控制相结合以防止车轮失稳,解决了当轮胎侧向力接近附着极限或达到饱和状态时,车辆易丧失动力学稳定性的问题。
     分析了以质心侧偏角为控制目标的四轮转向系统和以横摆角速度为控制目标的车辆稳定性系统的各自特点,将两个子系统结合起来构成集成控制系统。集成控制系统综合利用两者优点,改善路径跟踪性能,提高转向的稳定性,增强高速行驶的灵活性和转向灵敏度,改善瞬态响应品质,使集成控制的综合性能优于单独控制。
     采用基于ADAMS与MATLAB的联合仿真方法进行计算。ADAMS用于建立系统的虚拟样机模型,MATLAB用于构建分层式集成控制系统。设计了下层子系统控制器和上层系统管理控制器,由上层系统管理控制器对车辆运行状态进行监控和决策。这种分层集成的方式,简化了子系统设计,便于系统扩展,增强了系统的可靠性。
     通过LabVIEW平台设计车辆稳定性控制实验台进行硬件在环仿真,使用自主开发的控制器进行了台架实验。实验结果表明该系统运行正常,控制效果良好。
At present, the study on improving vehicle handling stability and safety is paid attention to by the people with the more and more demands for three goals of aotomobile safety, energy saving, environmental protection and fierce competition increasingly in aotomobile industry. Among them, the vehicle stability control as active chassis technology as an important part of the modern automobile technology has developed into one of the most important direction. The integrated control research with four-wheel steering control also begins to get the attention of researchers.
     Four-wheel steering control used to be a research hotspot of active chassis technology, and it has the advantage of control system of maintaining track and slip angle easily to be realizd. However, four-wheel steering control exists more limitations because of the dependence of transverse force and the slip angle saturated characteristic, the current development direction is the vehicle stability control technology based on the direct yaw moment control (DYC).
     The vehicle stability control contains two aspects of the problem, maintaining track and stability problem described by the body slip angle and the yaw velocity respectively. With regard to the problem of maintaining track, body slip can be the control target, and as for the stability problem, yaw velocity can be the control target, the coupling also makes the research of vehicle stability control algorithm present a diversified development trend, such as the yaw velocity control or the body slip angle control or the combined control. Because the vehicle slip angle is determined together by the longitudinal force and the lateral force, it is difficult to control the lateral force directly with the braking force, and the tire lateral force control is direct and effective by the four-wheel steering control, thus the study of vehicle stability system and four-wheel steering system integration has the factor of technology driving.
     The research data shows that the main goal of four-wheel steering system is to improve the steering stability, and it has the advantage of being easy to realize the goal through the slip angle control by the tire lateral force, and also can satisfy the stability requirements under the general driving condition, and the vehicle stability system based on direct yaw moment solves the loss of stability through the regulation of tire longitudinal force when the tire lateral force tends to be saturated condition under the emergency conditions. So, it becomes a new development direction on the vehicle active chassis control to combine the four-wheel steering system and the stability system and to improve the performance of integrated system.
     Based on the study of vehicle stability control system, this paper explored the integration control method of stability system and four-wheel steering system, which mainly includes the following content:
     This paper established the linear2DOF four-wheel steering model and the yaw velocity feedback control system. Further considered the influnence of tires and other nonlinear factors, used the four-wheel steering control method based on the neural network theory, designed the mixed control system using the MATLAB neural network toolbox, realized a mixed control of the four-wheel steering based on the yaw velocity feedback and the adaptive neural network.
     The vehicle stability control target was discussed, the stability control logic based on direct yawing moment was analysed, a kind of stability control system based on the yaw velocity feedback was designed. This system consisted of a four-wheel brake logic controller and a PID controller of monowheel brake force, and used the ABS system with a tire sliding rate control to prevent wheel instability, solved the loss of dynamic stability when the tire lateral force approached adhesion limit or reached saturation. Each of the shortage was analysed as the body slip angle as the control target for the four-wheel steering system, and as the yaw velocity as the control target for the stability system, and the integrated control system was made up of two subsystem. The integrated control system took advantage of both subsystem synthetically, improved the path tracking performance and the steering stability, enhanced the steering maneuverability and sensitivity, improved the transient response quality and the comprehensive performance of integrated control system.
     The control system co-simulation was based on ADAMS and MATLAB. ADAMS was used to establish the system virtual prototyping model, considered the requirements of integration control of the stability system and the four-wheel steering system, reserved the integration control interface. MATLAB was used to establish the hierarchical integration control system, designed the lower subsystem controller and the upper system management controller, and the upper system management controller monitored the vehicle running state and decided what to do. This kind of layered integration method improved the vehicle comprehensive performance and ensured that the subsystem has a good performance. The vehicle stability system test platform based on LabVIEW was designed and the simulation of hardware in loop was tested, tested the effect of control strategy, developed the controler based on the rapid control prototype and performed the test bench experiment, the experimental results showed that the system runs normally, the control effect is good.
引文
[l]郭孔辉.汽车操纵动力学[M].长春:吉林科学技术出版社,1991.
    [2]屈求真.汽车侧向动力学及其控制研究[D].上海:上海交通大学,1999.
    [3]Yingmin Jia.Robust Control with Decoupling Performance for Steering and Traction of 4WS Vehicles under Velocity-Vary ing Motion[J].IEEE Transactions on Control Systems Technology, 2000(8),3:554-569.
    [4]Furukawa Y,Abe M.Advanced chassis control system for vehicle handling and active safety[J]. Vehicle System Dynamics,1997,28:59-86.
    [5]路清明.日产汽车公司开发电控四轮转向系统[J].汽车电器,1997,4:38-39.
    [6]郭孔辉,轧浩.四轮转向的控制方法的发展[J].中国机械工程,1998(9),5:73-75.
    [7]陈南.车辆动力学和4WS车辆操纵性能控制:现状、问题和发展[J].国际学术动态,2002,3:20-23.
    [8]熊超.汽车四轮转向鲁棒控制方法研究及应用[D].重庆:重庆交通大学,2011.
    [9]段向雷,左曙光.四轮转向的神经网络直接逆控制[J].佳木斯大学学报(自然科学版),2010(28),5:654-658.
    [10]罗颂荣.汽车四轮转向神经网络控制系统[J].河北理工学院学报,2004(26),3:112-115.
    [11]陶健民.车辆稳定性控制策略之比较[J].湖北汽车工业学院学报,2005(19),1:1-5,26.
    [12]Sanos,Furukawa Y,Shlral S.Four Wheel Steering System with Rear Wheel Steer Angle Controlled as a Function of steering Wheel Angle[J].SAE paper 860625,1986.
    [13]Eguchi T,Sakita Y,Kawagoe K.Development of "Super Hicas",A New Rear Wheel Steering System with Phasereversal Control[J].SAE paper 891978,1989.
    [14]Song J G, Yoon Y S.Feedback Control of Four-wheel Steering Using Time Delay Control[J]. International Journal of Vehicle Design,1998(19),3:282-298.
    [15]王纪瑞,左曙光.四轮转向汽车后轮转角控制因子控制效果研究[J].佳木斯大学学报(自然科学版),2010(28),2:217-221.
    [16]殷国栋,陈南,李普.基于降阶观测器的四轮转向车辆扰动操纵稳定性控制[J].机械工程学报,2004(40),10:68-72.
    [17]Ken K,Masaki Y,Yoshiki F,et al.Vehicle Stability Control in Limit Cornering by Active Brake.SAE paper 960487,1996.
    [18]侯波.车辆稳定性控制(VSC)系统及其检修(一)[J].汽车维护与修理,2003,1:34-36.
    [19]Hongtei E T,Behrouz A,Dinu M,Todd A B,Darrel R.The Development of Vehicle Stability Control at Ford[J].IEEE Transactions on Mechatronics,1999(4),3:223-234.
    [20]程军.车辆动力学控制的模拟[J].汽车工程,1999,21(4):199-205.
    [21]Ono E.Analysis and Control for Vehicle Stability[C].3rd International Symposium on Motion and Vibration Control.Japan:1996.
    [22]王增才,刘春辉,张长冲,等.车辆电子稳定系统的最优控制与仿真分析[J].系统仿真学报,2009(21),9:2767-2769.
    [23]Van Z.Control Aspect of the BOSCH-VDC[C].AVEC'96,Aachen:1996.
    [24]吴义虎,宋丹丹,欧林立,周丽,王翠.横摆力矩和主动前轮转向结合的车辆横向稳定性模糊控制仿真[J].计算技术与自动化,2007,26(4):34-40.
    [25]周淑文,颜四平,杨英,黄玲琴.车辆动态控制与四轮转向集成研究[J].东北大学学报(自然科学版),2008,29(8):1155-1158.
    [26]Masao Nagai,Yutaka Hirano and Sachiko Yamanaka.Integrated Control of Active Rear Wheel Steering and Yaw moment control[J].Vehicle System Dynamics,1997(27),5:357-370.
    [27]Peter Rieth.Advanced and Next Generati on Stability Systems[C].SAE 2006 Automotive Dynamics Stability and Controls Conference and Exhibition, Michigan:2006.
    [28]Ansgar T.Integrated Vehicle Dynamics Control Using Active Brake,Steering and Suspension Systems[J].International Journal of Vehicle Design,2004(36),1:59-67.
    [29]杨福广,阮久宏,李贻斌,荣学文,邱绪云,尹占芳4WID-4WIS车辆横摆运动AFS+ARS+DYC模糊控制[J].农业机械学报,2011(42),10:6-12.
    [30]汪东明.基于DYC控制的4WS汽车操纵稳定性研究[J].现代机械,2009,6:42-45.
    [31]祁永宁,陈南,李普.四轮转向车辆的直接横摆力矩控制[J].东南大学学报(自然科学版),2004(34),4:451-454.
    [32]Wu Jianyong,Tang Houjun,Li Shaoyuan,et al.Improvement of vehicle handling and stability by integrated control of four wheel steering and direct yaw moment[C].Proceedings of the 26th Chinese Control Conference,2007:730-735.
    [33]李彬,喻凡.四轮转向和差动制动联合控制的车辆横摆动力学[J].农业机械学报,2008(39),12:1-6.
    [34]庄继德.汽车电子控制系统工程[M].北京:北京理工大学出版社,1998.
    [35]祝辉.基于磁流变半主动悬架的汽车底盘集成控制[D].合肥:合肥工业大学,2009.
    [36]王启瑞,刘立强,陈无畏.基于随机次优控制的汽车电动助力转向与主动悬架集成控制[J].中国机械工程,2005(16),8:743-747.
    [37]陈无畏,孙启启,初长宝.汽车电动助力转向与主动悬架系统的H∞集成控制[J].振 动工程学报,2007(20),1:45-51.
    [38]兰波,喻凡.车辆主动悬架LQG控制器的设计及仿真分析[J].农业机械学报,2004(35),1:13-17.
    [39]张利鹏.汽车转弯制动性能分析与防抱控制仿真研究[D].秦皇岛:燕山大学,2004.
    [40]CHEN W W,XIAO H S, LIU L Q,et al.Integrated Control of Automotive Electrical Power Steering and Active Suspension Systems Based on Random Suboptimal Control[J].Int.J.of Vehicle Design,2006,42:370-391.
    [41]冯金芝,喻凡,李君,等.车辆防抱制动系统与主动悬架联合控制[J].农业机械学报,2002(33),2:15-19.
    [42]Masanori H,Hiroshi H.Analysis of Lateral Stability with Integrated control of Suspension and Steering Systems[J].JSAE Review,1999,20:465-470.
    [43]Shinichiro H,Kazuyuki O,Shinya N.Improvement of Vehicle Handling by Nonlinear Integrated Control of Four Wheel Steering and Four Wheel Torque[J].JSAE Review,1999,20:459-464.
    [44]徐娟.解耦控制理论在车辆集成控制系统中的应用[D].合肥:合肥工业大学,2005.
    [45]刘奋.四轮转向汽车侧向动力学特性及其控制研究[D].上海:上海交通大学,2003.
    [46]余志生.汽车理论[M].北京:机械工业出版社,1989.
    [47]喻凡,林逸.汽车系统动力学[M].北京:机械工业出版社,2005.
    [48]高延令.汽车运用工程(第二版)[M].北京:人民交通出版社,1999.
    [49]郭应时,魏朗.汽车轮胎理论模型的分析[M].西安公路交通大学学报,1998(18),2:65-68.
    [50]轧浩.汽车前轮转向后轮转向及四轮转向的控制分析[D].长春:吉林工业大学,1998.
    [51]Furukawa Y,Yuhara N,Sano S,et al.A review of Four Wheel Steering Studies From the Viewpoint of Vehicle Dynamics and Control[J].Vehicle System Dynamics,1989,18:151-186.
    [52]林柏忠.关于人-车-路闭环系统稳定性及操纵性的研究[D].长春:吉林工业大学,1994.
    [53]詹文章.汽车独立悬架多体系统动力学仿真研究及转向轮高速摆振特性分析[D].长春:吉林工业大学,2001.
    [54]陈欣.汽车悬架多柔体系统动力学研究[D].长春:吉林工业大学,1997.
    [55]Roberson R,Wittenburg J.A Dynamical Formulism for an Arbitrary Number of Interconnected Rigid Bodies-with Reference to the Problem of Satellite Attitude Control[C].Proc.3rd Congress Int.Fed.Auto.Control(IFAC).London:1966.
    [56]Orlandea N,Chace M.Simulation of a Vehicle Suspension with the ADAMS Computer Program.SAE paper 770053,1977.
    [57]J.维滕伯格.多刚体系统动力学(谢传峰译)[M].北京:北京航空学院出版社,1986.
    [58]Lilov L,Lorer M.Dynamic Analysis of Multirigid_Body System Based on the Gauss Principle[J].ZAMM,1982(62),10:539-545.
    [59]E.J.Haug.Computer Aided Analysis and Optimization of Mechanical Systems Dynamics[M].NATO ASI Series,Berlin:Springer-Verlag,1984.
    [60]Bianchi G,Schiehlen W.Dynamics of Multibody Systems[M].Proc. of IUTAM/IFTOMM Symposium,Udine:1985.
    [61]洪嘉振等.多体系统动力学—理论、计算方法和应用[M].上海:上海交大出版社,1992.
    [62]洪嘉振,贾书惠.多体系统动力学与控制[M].北京:北京理工大学出版社,1996.
    [63]刘延柱等.多刚体系统动力学[M].北京:高等教育出版社,1989.
    [64]贾书惠.刚体动力学[M].北京:高等教育出版社,1987.
    [65]袁士杰,吕哲勤.多刚体系统动力学[M].北京:北京理工大学出版社,1992.
    [66]宋宇,陈无畏,黄森仁.车辆悬架多刚体动力学分析及PID控制研究[J].农业机械学报,2004(35),1:4-7,21.
    [67]屈求真,刘延柱.四轮转向汽车的动力学控制现状及展望[J].中国机械工程,1999(10),8:946-949.
    [68]周宇奎,谷正气,王和毅.汽车主动四轮转向系统的解耦自适应控制研究[J].机械与电子,2004,10:11-14.
    [69]殷国栋,陈南.四轮转向车辆鲁棒控制系统快速开发仿真与试验[J].农业机械学报,2009(40),11:13-17,35.
    [70]郭孔辉,轧浩.四轮转向的控制方法的发展[J].中国机械工程,1998(9),5:73-75.
    [71]Shiotsuka T,Nagamatsu A,Yoshida K,Nagaoka M.Active Control of Drive Motion of Four Wheel Steering Car with Neural Network[J].SAE paper 940229,1994.
    [72]郭孔辉,丁海涛,宗长富.人-车闭环操纵性评价与优化的研究进展[J].机械工程学报,2003(39),10:27-35.
    [73]郭孔辉,付皓,胡进,等.车辆电子稳定性控制试验与评价方法的仿真应用[J].汽车技术,2008,10:1-3,15.
    [74]丁海涛.轮胎附着极限下汽车稳定性控制的仿真研究[D].长春:吉林大学,2003.
    [75]Tahami F,Kazemi R,Farhanghi S.A Novel Driver Assist Stability System for All-wheel-drive Electric Vehicles[J].IEEE Transactions on Vehicular Technology,2003(52),3:683-692.
    [76]Koibuchi K,Yamamoto M,Fukada Y,Inagaki S.Vehicle Stability Control in Limit Cornering by Active Brake[J].SAE Paper 960487,1996.
    [77]Ohnuma A,Metz L.Controllability and Stability Aspects of Actively Controlled 4WS Vehicles, SAE paper 891977,1989.
    [78]Matsumoto N,Tomizuka M.Vehicle lateral velocity and yaw rate control with two independent control inputs[J].American Control Conference,1990,2:1868-1875.
    [79]张伯俊,刘升.线控变传动比四轮转向的操纵稳定性研究[J].天津工程师范学院学报,2010(20),1:20-23.
    [80]Wilwert C,Song Y Q,Simonot L F,et al.Evaluating Quality of Service and Behavioral Reliability of Steer-by-wire Systems[C].Emerging Technologies and Factory Automation 2003:193-200.
    [81]Lorincz A.Model Reference Control of a Steer-by-wire Steering System[D].Budapest:Budapest University of Technology and Economics,2004.
    [82]施国标,于蕾艳,林逸.四轮线控转向横摆角速度反馈控制策略研究[J].系统仿真学报,2008(20),2:506-508.
    [83]初长宝.汽车底盘系统分层式协调控制研究[D].合肥:合肥工业大学,2008.
    [84]廖瑛,梁加红.实时仿真理论与支撑技术[M].长沙:国防科技大学出版社,2002.
    [85]马培蓓,吴进华,纪军,徐新林.dSPACE实时仿真平台软件环境及应用[J].系统仿真学报,2004,4:12-15.
    [86]陈永春.从Matlab/Simulink模型到代码实现[M].北京:清华大学出版社,2002.
    [87]聂春燕,张猛,张万里MATLAB和LabVIEW仿真技术及应用实例[M].北京:清华大学出版社,2008.
    [88]刘藻珍,魏华梁.系统仿真[M].北京:北京理工大学出版社,1998.
    [89]侯国屏,王坤,叶齐鑫.LabVIEW7.1编程与虚拟仪器设计[M].北京:清华大学出版社,2005.
    [90]吴成东,孙秋野,盛科LabVIEW虚拟仪器程序设计及应用[M].北京:人民邮电出版社,2008.
    [91]石博强,赵德永,李畅,雷振山.LabVIEW6.1编程技术实用教程[M].北京:中国铁道出版社,2002.
    [92]杨乐平,李海涛,杨磊LabVIEW程序设计与应用[M].北京:电子工业出版社,2005.
    [93]王海宝LabVIEW虚拟仪器程序设计与应用[M].成都:西南交通大学出版社,2005.
    [94]张重雄.虚拟仪器技术分析与设计[M].北京:电子工业出版社,2007.
    [95]陈无畏,刘翔宇,杨军,黄鹤.基于LabVIEW的车辆稳定性控制硬件在环系统[J].中国机械工程,2010(21),23:2882-2886.
    [96]N.V.基里阿纳基,S.Y.尤里斯,N.O.西巴克,V.P.捷伊涅卡.智能传感器数据采集与信号处理[M].北京:化学工业出版社,2004.
    [97]刘剑飞,申琳,张云龙.电容储能式高速电磁阀驱动电路的研制[J].自动控制与测量,2005,7:93-95.
    [98]Infineon Semiconductor Corporation Technical Data.Smart Highside High Current Power Switch.Order Number:BTS6510,2003.
    [99]刘翔宇.基于直接横摆力矩控制的车辆稳定性研究[D].合肥:合肥工业大学,2010.
    [100]周立功等.ARM嵌入式系统基础教程[D].北京:北京航空航天大学出版社.2005.
    [101]韩山,郭云,付海燕.ARM微处理器应用开发技术详解与实例分析[M].北京:清华大学出版社.2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700