干旱条件下白芥的生理差异与柠檬酸合酶表达研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本课题旨在是研究和探索白芥幼苗在干旱胁迫下的生理生化响应和柠檬酸合酶机制。实验采用土培法结合PEG6000模拟干旱胁迫,在白芥幼苗期对白芥进行干旱处理。处理浓度设有10%、15%、20%三个梯度及对照CK,处理时间采取梯度设计,分别为3天、6天、9天和12天,处理结束进行取样。实验材料选用抗旱型白芥品种。通过测定白芥叶片叶绿素含量、可溶性糖含量、可溶性蛋白含量、丙二醛含量、SOD酶活性、CAT酶活性和POD酶活性等研究和揭示白芥幼苗干旱胁迫下的生理生化响应;通过对15%和20%PEG处理的白芥幼苗叶片在三种处理时间下柠檬酸合酶的的荧光定量PCR结果探讨和研究白芥幼苗在干旱胁迫下的柠檬酸合酶表达机制。
     研究结果表明,对白芥幼苗进行不同浓度和不同时间的干旱胁迫处理后发现,干旱胁迫幼苗形态与对照有较大差别。茎部变细变弱,植物萎蔫,叶片变软下垂,下部叶片开始变黄,严重时甚至完全枯萎。干旱处理时白芥幼苗叶片叶绿素含量与对照相比呈下降趋势;可溶性糖和可溶性蛋白的含量都是随着时间的持续和处理浓度的增加呈现先上升后下降的趋势;丙二醛的含量呈现上升的趋势,并且在最高浓度和最长时间的处理下达到了最大值。这三个指标都说明植物是通过这些物质含量的增加来抵御干旱胁迫。干旱处理后三种氧化还原酶的活性(超氧物歧化酶SOD、过氧化氢酶CAT和过氧化物酶POD)基本上呈现先上升后下降趋势,其中SOD和POD都是先上升后下降,而CAT变化不明显。
     从柠檬酸合酶基因的表达来看,短暂轻微的干旱胁迫时白芥以柠檬酸合酶表达升高来应对逆境条件,随后逐渐适应直至表达恢复。严重干旱胁迫时,表达量上升后不会再下降,揭示白芥生理受损程度严重难以恢复。柠檬酸合酶在干旱胁迫中的变化,可以间接判断三羧酸循环在干旱胁迫中起反应的方式,这对研究逆境胁迫条件下植物的抗逆性能和反应情况、揭示糖的分解和合成强度以及脂肪酸代谢等都有重要意义。
The purpose of this study was to study the physiology and biochemistry response and citrate synthase gene expression of Sinapis alba seedling under drought stress. We adopted soil culture and PEG6000simulating drought stress. We had three concentration of PEG which were10%,15%,20%, there were four concentration adding CK group. In addition to there were the different time treatment gradient design, which were3days,6days,9days, and12days respectively, based on the different time of taking leaves. The experimental materials is drought resistance breed white mustard one. The physiology and biochemistry response were studied by the measurement of the chlorophyll content, the content of soluble sugar, soluble protein content, MDA and SOD, CAT, POD enzyme activity of white mustard leaves. The citrate synthase gene expression was researched through the fluorescent quantitative PCR results of gene in white mustard leaves under15%and20%PEG condition and different time.
     Under different concentration and different drought stress time, the external feature of white mustard had enomous differences with CK group. The stem became thinner and weaker and the plant wilted, leaves became soft and prolapsed. The bottom leaves began to become yellow firstly, and some completely withered seriously. Under drought condition, the chlorophyll content dropped contrasted to control group; the soluble sugar and soluble protein content was on the trend of decline after rising first as time continuoued and the increase of the concentration; the content of MDA showed a rising trend all the time. This three indexes showed that the plants resisted drought stress through the increase of the content of the materials. Under drought condition, the activity of the three kinds of oxidoreductase(SOD, CAT and POD) was on the trend of decline after rising basically. SOD and POD is both rises before the fall, but CAT did not change significantly, which was different.
     Which can be seen from citrate synthase gene expression is that white mustard accommodated environmental changes through the increase of gene expression, then the plant gradually adapted to the environment and recovered. Under severe drought stress, the expression did not fall after the rise. That is indicated that the plant physiological damage can not recover any more. From the change of citrate synthase gene expression under drought stress, we can indirectly judge the way in which Krebs cycle in the drought stress react. This is significant to the study of reaction and the synthesis and decomposition of sugar and fatty acid metabolism of plant under the adverse situation.
引文
[1]Alsheikh M K, Heyen B J, Randall S K.2003. Ion binding properties of the dehydrin ERD14 are dependent upon phosphorylation. [J]Journal of Biological Chemistry,278(42): 40882-40889
    [2]T.M.Shanahan. Atlantic Forcing of Persistent Drought in West Africa. [J] Science, 2009:10(1126),377-380
    [3]Chaves M M, Oliveira M M. Mechanisms underlying plant resilience to waterdeficts: prospects forwater-saving agriculture. [J] Exp Bot,2004,55:2365-2384
    [4]Belinda E. Comment on "Drought-Induced Reduction in Global Terrestrial Net Primary Production from 2000 Through 2009". [J] Science,2011:10(1093),1196-1198
    [5]A Picard, P Lory. Microinjection of a conserved peptide sequence of p34cdc2 induces a Ca2+ transient in oocytes. [J]Science,1999:215(3316),327-329
    [6]Jackson M B, Drew M C. Effects of flooding on growth and metabolism of herbaceous plants[M]. Kozlowski, T.T.(Ed.), [J] Flooding and Plant Growth. Academic Press, New York, NY, Orlando, Florida, U.S.A.1984:47-128
    [7]王龙强,盐生药用植物黑果枸杞耐盐生理生态机制研究[D].甘肃农业大学博十论文:2011
    [8]Sachs M M. Molecular genetic basis of metabolic adaptation to anoxia in maize and its possible utility for improving tolerance of crops to soil waterlogging [M]. In Jackson M B, Black C R. Interacting Stresses on Plants in a Changing Climate. NATO ASI Series,1993, 116:375-393
    [9]Anderberg R J, Walker-Simmons M.K. Isolation of a wheate DNA clone for an abseisie aeid-indueible transcrip twith homology toprotein ki-nases. [J]Proc Natl Aead. Sci USA 1992, 89:10183-10187
    [10]Taji T, Ohsumi C, Iuchi S, et al. Important roles of drought-and cold-inducible genes for galactinol synthase in stress tolerance in Arabidopsis thaliana[J]. The Plant Journal,2002, 29(4):417-426
    [11]Altenbach SB.Quantification of individual low-molecular-weight glutenin subunit transcripts in developing wheat grains by competitive RT-PCR. TAG Theoretical and Applied Genetics,97(3):413-421
    [12]李合生.现代植物生理学(第二版)[M].北京:高等教育出版社,2005
    [13]邓西平,山仑,稻永忍.旱地春小麦有限灌水高效利用的研究[J].干旱地区农业研究,1995,13(13):43-46
    [14]Krishnamoorthy H N, Goswami C L, Jai Dayal. Effect of waterlogging and growth retardants on peanut(Arachis Hypogaea L)[J]. Indian Journal of Plant Physiology,1981,24(4):381-385
    [15]The Arabidopsis Genome Initiativel. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature [J],2000,408:796-815
    [16]陈少裕.膜脂过氧化与植物逆境的伤害[J].植物学通报,1989,6(4):211-217
    [17]鲍思伟,谈锋,廖志华.2001.蚕豆(ViciafabaL)对不同水分胁迫的光合适应性研究[J].西南师范大学学报(自然科学版),26(4):448-451
    [18]Van Breemen N. Acidification and decline of Central Europeanforests.Nature,1985,315: 16-23
    [19]Stern. J. R. Oxalacetate transacetase(condensing enzyme, citrogenase). The Enzymes, 1961(5):367-380
    [20]O'Hara P, Slabas A R, Fawcett T. Fatty acid and lipid biosynthetic genes are expressed at constant molar ratios but different absolute levels during embryogenesis [J]. Plant Physiol, 2002,129:310-320
    [21]耿站军,钟颖.水分胁迫对不同基因型油菜的生态适应性影响[J].于旱地区农业研,2008,26(6):159-162
    [22]齐麟.植物抗旱研究进展[J].湖北农业科学,2005(4):107—110
    [23]BellE, MuIIetJ. E. Lipoxgen as gene expression is modulate dinpiants by water defieit, wounding, andmethyl as monat Mol. Gen. Gcnet.1991,230:456-462
    [24]Abebe T, Guenzi AC, Martin B. Tolerance of mannitol-accumulating transgenic wheat to water stress and salinity [J]. Plant Physiology,2003,131(4):1748-1755
    [25]Xu J, Zhang Y, Guan Z, Wei W, Han L, Chai T.2008. Expression and function of two dehydrins under environmental stresses in Brassica juncea L[J]. Molecular Breeding,21(4): 431-438
    [26]Liu H S, Han J F, Meng F T, Du X T. Effects of several physiological index related to resistance in sesame leaves under drought stress in soil[J]. Plant Physiol Commun,2001, 37(2):106-108
    [27]Chaves M M, Oliveira M M. Mechanisms underlying plant resilience to waterdeficts: prospects forwater-saving agriculture[J]. Exp Bot,2004,55:2365-2384
    [28]陈善福,舒庆尧.植物耐干旱胁迫的生物学机理及其基因工程研究进展[J].植物学通报,1999,16(5):555-560
    [29]喻方圆,徐锡增.植物逆境生理研究进展[J].世界林业研究.2003,16(5):6-11
    [30]曹慧,王孝威,等.2001.水分胁迫诱导平邑甜茶叶片衰老期问内肤酶与活性氧累积的关系[J].中国农业科学,37(2):274-279
    [31]Wheeler D M, Edmeades D C, Christie R A.Effect of aluminum on relative yield and plant chemical concentrations of cereals grown in solution culture at low ionic strength[J]. Plant Nutr,1992,15:403-418
    [32]Johnson D. E, Hanson R.S. Bacterial citrate synthases:purification, molecular weight and kinetic mechanism[J]. Biochim Biophys Acta,1974,350(2):336-353
    [33]Ohlrogge J, Pollard M X, Bao, et al. Fatty acid synthesis from CO2 to functional genomics[J]. Biochem Soc Trans,2000,28:567-573
    [34]郭彦,杨洪双,et al.激素对野生大豆幼苗抗旱能力的影响[J].河南农业科学,2007,4:37-39
    [35]Sheveleva E, Chmara W, Bohnert HJ. Increased salt and drought tolerance by D-ononitol production intransgenic Nicoti-anatabacum[J]. PlantPhysiology,1997,115(3):1211-1219
    [36]Takumi S, Koike A, Nakata M, Kume S, Ohno R, Nakamura C. Cold specific and light stimulated expression of a wheat (Triticum aestivum L.) Cor gene Wcor15 encoding a chloroplast targeted protein[J]. Journal of experimental botany,54(391):2265-2274
    [37]Shi J F, Mao X G, Jing R L, Pang X B, Wang Y G, Chang X P. Gene Expression Profiles of Response to Water Stress at the Jointing Stage in Wheat[J]. Agricultural Sciences in China, 9(3):325-330
    [38]Crawford R M M, Braendle R. Oxygen deprivation stress in a changing environment[J]. J Exp Bot,1996,47(295):145-159
    [39]Perata P, Alpi A. Ethanol induced injuries to carrot cells[J]. Plant Physiol,1991,95:784-752
    [40]Rorat T. Plant dehydrins tissue location, structure and function[J]. Cellular and molecular biology letters,11(4):536-556
    [41]Rinne P L H, Kaikuranta P L M, vander Plas L H W, vander Schoot C.1999. Dehydrins in cold-acclimatedapices of birch (Betula pubescens Ehrh.):production, localization and potential role in rescuing enzyme function during dehydration. Planta,209(4):377-388
    [42]庞晓斌,毛新国,施俊凤.小麦幼苗水分胁迫应答基因表达谱分析[J].作物学报,2007,33(2):333-336
    [43]刘祖祺,张石城.植物抗性生理学[M].北京:中国农业出版社,1994.160-192
    [44]种康,谭克辉,黄华梁,等.冬小麦春化作用相关基因的cDNA分子克隆研究[J].中国科学:B辑,1994,24(9):964-970
    [45]LIANG P, PARDEE A B. Differential display of eukaotic messenger RNA by means of the polymerase chain reaction[J]. Science,1992,257(14):967-971
    [46]崔大祥,闫小君,苏成芝.差异表达基因克隆技术的进展[J],生命的化学.1999(05):55-57
    [47]Keime C, Damiola F, Mouchiroud D Identitag, a relational database for SAGE tag identification andinterspecies comparison of SAGE libraries[J]. Science, 1992,257(14):856-859
    [48]Grichko, Varvara P, Bernard R G. Ethylene and flooding stress in plants[J]. Plant Physiology and Biochemistry,2001,3(91):1-9
    [49]Velasco R, Salamini F, Bartels D. Gene structure and expression analysis of the drought-and abscisic acid-responsive CDeTl 1-24 gene family from the resurrection plant[J]. Planta,1998, 204(4):459-471
    [50]Attipalli RR, kolluru VC, Munusamy V. Drought-induced reasponses of photosynthesis and antioxidant metabolism in higher plants[J]. Journal of plant physiology,2004,161(11): 1189-1202
    [51]Richards M;Tan S P;Tan J H The transcriptome profile of human embryonic stem cells as defined by SAGE[J]. Journal of plant physiology,2004,161(11):989-992
    [52]Yang J L, L I G, Zhang F L. Identification of variations of gene expression of visceral adipose and renal tissue in type 2 diabetic rats using cDNA representational difference analysis[J].Chinese Medical Journal,2003(04):55-59
    [53]赵大中,种康,万莉.冬小麦春化作用相关cDNA克隆Vrc79的分子克隆[J].植物学报1999,41(1):34-39
    [54]Davies PJ, The plant hormones:their nature, occurrence and function. In Davies PJ Plant hormones biosynthesis signal transduction action[J]. Kluwer Academic Publishers,2004, 1-15
    [55]Alig S, Prasad K V, Dayi, Reddy A S. Ligand-dependent reduction in the membrane mobility of flagellin sensetive2, an Arabidopsis receptor-like kinases[J]. Plant Cell Physicl,2007, 48(11):1601-1611
    [56]葛体达,隋方功,白莉萍.水分胁迫下夏玉米根叶保护酶活性变化及其对膜脂过氧化作用的影响[J].中国农业科学,38(5):922-928
    [57]景蕊莲,吕小平,变水处理条件下小麦幼苗的甜菜碱代谢与抗旱性的关系[J].作物学报,25(4):12-13
    [58]Gerald A B, Martin Gibbs. Effect of osmotic stress on photosynthesis studied with isolated spinachchloroplast[J]. Plant Physiol,70:1143-1148
    [59]王学德,朱英国.水稻雄性不育与可育花药的mRNA差别显示和cDNA差别片段的分析[J].中国科学c辑,1998,28(3):257--263
    [60]Sargent TD, Dawid IB. Differential gene expression in the gastrula of Xenopus laevis[J]. Science.1983,222:135-139
    [61]刘诚明,谌宏敏,基因芯片技术在肿瘤耐药研究中的应用[J].现代肿瘤医学:2003,5:390-392
    [62]郭懿.基于基因芯片的鼻咽癌研究[D].上海复旦大学博士论文:2008
    [63]叶丽虹,张晓东,王长哗.乳腺癌转移相关基因基因芯片的建立及其建立方法[D].天津南开大学硕十论文:2010
    [64]马宗仁.植物在水分胁迫下脯氨酸积累的研究-关于植物体内脯氨酸积累的直接触发因子[J].草业科学,1994,11(1):15-18
    [65]Yuan BZ, MiHer MJ, Keck CL. Cloning, characterization, and chromosomal localization of a gene frequenfly deleted in human liver cancer(DIC21)homologous to rat RhoGAP[J]. Cancer Res,1998,58:2196-2199
    [66]hang Q, Young T F, Ross R F. Identification and characterization of a Mycoplasma hy— opneumoniae adhesin[J]. Infect Immun.1995,63:1013-1019
    [67]Koster K L.1996. Glass formation and desiccation tolerance in seeds[J]. Plant Physiol, 96:302-304
    [68]Ludlow M M, Chu A C P, Clement R J. Adaptation of species of centrosema to water stress[J]. Aust J Plant Physio,110:119-130
    [69]Elizabeth A, WERETILNYK and ANDREW D, HANSON. Molecular cloning of a plant betaine-aldehyde dehydrogenase, an enzyme implicated in adaptation to salinity and drought[J]. Proc. Nati. Acad. Sci. USA.1990:87,2745-2749
    [70]Shiu S H, Karlowski W M, Pan R, Tzeng Y H, Mayer K F, Li W H. Comparative analysis of the receptor-like kinases family in Arabidopsis and rice[J]. Plant Cell,2004,16(5): 1220-1234
    [71]Roche J, Hewezi T, Bouniols A, Gentzbittel L.2009. Real-time PCR monitoring of signal transduction related genes involved in water stress tolerance mechanism of sunflower. Plant Physiol Biochem,47(2):139-145
    [72]Nylander M, Svensson J, Palva E T, Welin B V. Stress-induced accumulation and tissue-specific localization of dehydrins in Arabidopsis thaliana.Plant Molecular Biology, 45(3):263-279
    [73]Wasinger V C, Cordwell S J, Wilkins M R. Progress with gen Product mapping of the molecules:mycoplsmagenitalium [J]. Electrophoresis,1995,16(1):1090-1094
    [74]Ingunn MV, Roar M, Eli R. Diurnal temperature alternations (DIF/drop) affect chlorophyll content and chlorophyll chlorophyll ratio in Melissa officinalisLand Ocimum basilicum L, but not in Viola wittrockiana Gams[J]. Electrophoresis,2003,17(2):105-109
    [75]Reuveni J, Gale J, Zeroni M. Differentiating day from night effects of high ambient CO2 on the gas exchange and growth of Xanthium strumarium L exposed tosalinity stress[J]. Plant Cell,2004,16(5):1256-1261
    [76]J. Zhu, B. S. Weir. Analysis of cytoplasmic and maternal effects. Ⅱ. Genetic models for triploid endosperms[J],1994:47-50
    [77]Jackson M B, Drew M C. Effects of flooding on growth and metabolism of herbaceous plants[M]. Kozlowski, T.T.(Ed.), [J]Flooding and Plant Growth. Academic Press, New York, NY, Orlando, Florida, U.S.A.1984:47-128
    [78]王龙强,盐生药用植物黑果枸杞耐盐生理生态机制研究[D].甘肃农业大学博士论文:2011:14-20
    [79]Sachs M M. Molecular genetic basis of metabolic adaptation to anoxia in maize and its possible utility for improving tolerance of crops to soil waterlogging [M]. In Jackson M B, Black C R. Interacting Stresses on Plants in a Changing Climate. NATO ASI Series,1993, 116:375-393
    [80]Anderberg R J, Walker-Simmons M.K. Isolation of a wheate DNA clone for an abseisie aeid-indueible transcrip twith homology toprotein ki-nases. [J]Proc Natl Aead. Sci USA 1992, 89:10183-10187
    [81]Taji T, Ohsumi C, Iuchi S, et al. Important roles of drought-and cold-inducible genes for galactinol synthase in stress tolerance in Arabidopsis thaliana[J]. The Plant Journal,2002, 29(4):417-426
    [82]Altenbach SB.Quantification of individual low-molecular-weight glutenin subunit transcripts in developing wheat grains by competitive RT-PCR. TAG Theoretical and Applied Genetics, 97(3):413-421
    [83]李合生.现代植物生理学(第二版)[M].北京:高等教育出版社,2005
    [84]邓西平,山仑,稻永忍.旱地春小麦有限灌水高效利用的研究[J].干旱地区农业研究,1995,13(13):43-46
    [85]刘浩荣,宋海星,刘代平,官春云,刘强,陈社员.油菜茎叶可溶性糖与游离氨基酸含量的动态变化[J].西北农业学报.2007(01):111-115
    [86]赵江涛,李晓峰.可溶性糖在高等植物代谢调节中的生理作用.安徽农业科学,2006,34(24):6423-6425
    [87]张荣华,王万林,安沙舟,李海.4种利用方式下鸭茅生物量和贮藏性营养物质的变化[J].草地学报.2010(06):84-90
    [88]Zhao HR. Ren XH:Changes of urea-soluble and intrinsic membrane proteins in rat lenses during the formation of galactose cataract. [J] 1992, Ophthalmic Research,16(5):1256-1261
    [89]李佐同,靳学慧,张亚玲,吴成龙.水稻幼苗可溶性糖及可溶性蛋白含量与抗瘟性的关系[J].北方水稻.2009(04):211-215
    [90]李天来,李益清.钙对弱光胁迫下番茄叶片保护酶活性及可溶性蛋白含量的影响[J].园艺学报.2008(11):521-530
    [91]Shao G S, Mmhammad J H, Zhang X F. Effects of cadmiumstress on plant growth and antioxidative enzyme system in differentrice genotypes[J]. Chinese Journal of Rice Science, 2004:846-849
    [92]Kanazawa S,Sano S,Koshiba T, et al.Changes in antioxidative enzymes in cucumber cotyledons during natural senescence:comparison with those during dark-induced senescence [J]. Physiologia Plantarum.2000:100-102
    [93]陈鸿鹏,谭晓风.超氧化物歧化酶(SOD)研究综述[J].经济林研究.2007(01):649-650
    [94]黎瑞珍,杨庆建,陈贻锐.超氧化物歧化酶(SOD)活性的测定及其应用研究[J].琼州大学学报.2004(05):40-44
    [95]Stewart HG,Mackenzie IR,Eisen A,et al.Clinicopathological phe-notype of ALS with a novel G72C SOD1 gene mutation mimicking a myopathy[J].2006:66-72
    [96]Lee D H,Lee C B.Chilling stress-induced changes of antioxidant enzymes in the leaves of cucumber:in gel enzyme activity assays[J]. Plant Science.2000:655-660
    [97]Tamura K,Dudley J,Nei M,et al.MEGA4:molecular evolutionary genetics analysis (MEGA) software version 4.0[J]. Molecular Biology.2007:130-135
    [98]闫留华,彭建云,陈敏,王宝山.潮间带生境下两种表型盐地碱蓬的抗氧化系统比较[J].植物生理学通讯.2008(01):497-502
    [99]岳晓翔,陈敏,段迪,王宝山.绿色和紫红色表型盐地碱蓬叶片抗氧化系统比较研究[J].山东师范大学学报(自然科学版).2008(01):294-296
    [100]Hilbenkanp F, Karas M, Beavis R C, et al. Matrix-assisted laser desorption/ionization mass spectrometry of biopolymers[J]. Anal Chem,1991,63:1193-1203
    [101]高忠江,施树良,李钰.SPSS方差分析在生物统计的应用[J].现代生物医学进展.2008(11):30-45
    [102]赵江涛,李晓峰.可溶性糖在高等植物代谢调节中的生理作用[J].安徽农业科学,2006,34(24):6423-6425
    [103]刘淑梅,张煜,孔维国,刘立锋,刘建萍,王峰恩.色素辣椒种子可溶性糖及可溶性蛋白含量的测定分析[J].山东农业科学.2009(10):8-9
    [104]Simmons R W, Pongsakul P, Chaney R L. The relative exclusion of zinc and iron from rice grain in relation to rice grain cadmium as compared to soybean:Implications for human health[J]. Plant and Soil.2003:99-103
    [105]Leystra-Lantz C, Sanelli TR, et al. Neuronal tissue-specific ribonucleoprotein complex formation on SOD1 mRNA:alterations by ALS SOD 1 mutations[J]. Plant and Soil 2006:56-60
    [106]Liu Huiying, Zhu Zujun, LuGuohua. Effect of low tempera-ture stress on chilling tolerance and protective system a-gainst active oxygen of grafted watermelon[J]. Molecular Biology, 2004:24-26
    [107]Marison M J, Vandyk L P. The phytotoxic interaction between bromazil ang dimethoate in citrus plants[J]. Pesticide Biochemistry and Physiology.1987:103-104
    [108]丁新伦,张孟倩.实时荧光定量PcR检测Rsv胁迫下抗病、感病水稻与脱落酸相关基因的差异表达[J].激光生物学报,17(4),2008:21-29
    [109]向勇.水稻抗逆境相关基因的分离和功能分析[D].华中农业大学博十学位论文.2008.5:21-24
    [110]廖晓兰,朱水芳,赵文军,罗宽,漆艳香,陈红运,何昆,朱晓湘.柑桔黄龙病病原16SrDNA克隆,测序及实时荧光PCR检测方法的建立[J].农业生物技术学报.2004(01):54-58
    [111]赵焕英,包金风.实时荧光定量PCR技术的原理及其应用研究进展[J].中国组织化学与细胞化学杂志.2007(04):32-35
    [112]SVANVIK N, STAHLBERG A, SEHLSTEDT U, et al. Detection of PCR products in real time using Light-up probes. Analytical Biochemistry.2000:103-106
    [113]胡丹丹,顾金刚,姜瑞波,董金皋.定量RT-PCR及其在植物学研究中的应用[J].植物营养与肥料学报.2007(03):55-59
    [114]Mikael Kubista, Jose Manuel Andrade, Martin Bengtsson, et al. The real-time polymerase chain reaction. Molecular Aspects of Medicine.2006:125-128

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700