GOLPH2蛋白的结构与功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
GOLPH2(Golgi phosphoprotein2, GP73)是2000年发现的Ⅱ型高尔基体膜蛋白。在一例巨细胞肝炎患者肝组织内,发现GOLPH2mRNA表达量增高;随后的研究发现,GOLPH2的高表达与肝癌、前列腺癌、肾癌等疾病都有相关性。高表达的GOLPH2蛋白可以被剪切和分泌,在血液和尿液中都能检测到GOLPH2蛋白。分泌型GOLPH2作为肝癌的诊断标志,灵敏度和特异性都优于甲胎蛋白(AFP)。
     GOLPH2的功能未知,目前尚没有研究GOLPH2功能的实验模型。本研究的重点是从两方面出发,试图揭示GOLPH2的功能,并建立可信的GOLPH2功能研究模型。(1)通过结构分析和相互作用蛋白筛选,探讨GOLPH2在蛋白调控、转运等生理过程中的作用;(2)在整体水平,利用非洲爪蛙早期胚胎发育模型,探讨GOLPH2在早期胚胎发育过程中,可能参与的调控过程。
     本研究首先从GOLPH2的蛋白结构入手,发现GOLPH2能与自身相互作用,通过免疫共沉淀(Co-immunoprecipitation)和酵母双杂交实验研究发现,全长和分泌的GOLPH2都是以二聚体形式存在,两个亚基依靠coiled-coil结构域相互作用,并形成稳定的二硫键;酵母双杂交实验证明相互作用的界面在coiled-coil结构域的前两个α螺旋里。另外,本研究用酵母双杂交筛选得到数个GOLPH2相互作用蛋白,鉴定了血管紧张素原(AGT)、CASC4(cancer susceptibility candidate4)与GOLPH2的相互作用,希望通过分析相互蛋白的来研究GOLPH2的功能。
     本研究选择非洲爪蛙(Xenopus laevis)作为研究golph2功能的模式动物。比较了爪蛙golph2蛋白和人GOLPH2蛋白的性质,发现golph2也是二聚体,也在高尔基体定位,golph2在爪蛙胚胎的上皮细胞中高表达,普遍分布在大部分器官的上皮细胞中。这些结果显示,golph2和GOLPH2蛋白在蛋白性质和表达调控机制上是类似的。
     非洲爪蛙发育经历卵裂、原肠作用、三胚层分化、器官分化的过程,golph2从原肠作用开始表达,主要表达于胚孔背唇;在尾牙胚(st24期开始),检测到golph2在原肾的表达。根据表达的时间,推测golph2参与原肾的分化过程(st21期开始到st38期)。
     当用特异性morpholino抑制内源golph2蛋白翻译时,非洲爪蛙胚胎出现水肿表型。原肾蛋白表达谱分析证明,抑制golph2表达之后,肾小球结构蛋白Nephrin表达增强,表达范围增大;而肾小管上皮细胞转运蛋白的表达普遍下降(atp1b1, CIC-K, NKCC2和NBC1),特别是在中段肾管和远端肾管。原肾倾向于分化成肾小球,而肾小管的分化程度变弱。基于早期发育转录因子表达分析(WT1, Pax2, Pax8, Liml, GATA3和HNF1β),本研究发现WT1的表达量增强,表达范围增大,并且在肾管区有少量异位表达。推测抑制golph2表达之后,转录因子WT1表达量增高,从而诱导原肾异常分化,和胚胎水肿表型。
     综上所述,本研究证明内源和分泌形式的GOLPH2蛋白都是二聚体,并详细分析了二聚体的作用界面;本研究筛选得到数个GOLPH2相互作用蛋白,可以用于下一步功能分析。
     本研究首次克隆了非洲爪蛙golph2基因,并且分析了golph2在脊椎动物早期胚胎发育中的表达位置和表达量变化。本研究用非洲爪蛙模型,研究golph2的功能,发现golph2是原肾发育必须的蛋白,并且发现golph2可能通过调节WT1表达,影响原肾发育。
Golgi phosphoprotein2(GOLPH2) is a type II Golgi resident membrane protein and up-regulated in kinds of cancers and liver diseases. Although GOLPH2has been identified as a serum biomarker of hepatocellular cancer, no structural information has yet been reported and the function of GOLPH2hasn't been elucidated.
     In this study, we aimed to explore the function of GOLPH2with two different strategies:(1) Identify the interaction protein of GOLPH2;(2) Study the function of golph2during early development of Xenopus laevis.
     We found GOLPH2interacted with itself. The results indicate that intercellular GOLPH2and secreted GOLPH2exist as a disulfide-bonded dimer. The coiled-coil region independent of two intermolecular disulfide bonds was sufficient for their dimerization using co-immunoprecipitation and a yeast two-hybrid approach. These results can help in understanding the structure-function relationship of GOLPH2. Using GOLPH2as bait, yeast two-hybrid was performed to screen against a human liver cDNA library, and angiotensinogen (AGT) was identified as a putative interaction partner of GOLPH2. Using co-immunoprecipitation assays, we showed that GOLPH2interacted with AGT. We also showed that GOLPH2interacted and co-localized with CASC4in the Golgi complex
     GOLPH2is a highly conserved protein. The Xenopus model is used to study the function of human proteins. We describe the isolation and characterization of Xenopus golph2, which dimerizes and localizes to the Golgi in a manner similar to human GOLPH2. Xenopus golph2is expressed in the pronephros during early development. The morpholino-mediated knockdown of golph2results in edema formation. Additionally, Nephrin expression is enhanced in the glomus, and the expression of pronephric marker genes, such as atplbl, C1C-K, NKCC2, and NBC1, is diminished in the tubules and duct. Expression patterns of the transcription factors WT1, Pax2, Pax8, Liml, GATA3, and HNF1β are examined in the embryos lacking endogenous golph2, the expression of WT1is increased in the glomus and expanded laterally in the pronephric region. We conclude that the deletion of golph2causes an increase in the expression of WT1, which may promote glomus formation and inhibit pronephric tubule differentiation.
引文
Alarcon, P., Rodriguez-Seguel, E., Fernandez-Gonzalez, A., Rubio, R., Gomez-Skarmeta, J.L. 2008. A dual requirement for Iroquois genes during Xenopus kidney development. Development 135,3197-3207.
    Bachert, C., Fimmel, C., Linstedt, A.D.,2007. Endosomal trafficking and proprotein convertase cleavage of cis Golgi protein GP73 produces marker for hepatocellular carcinoma. Traffic 8, 1415-1423.
    Bates, C.M.,2000. Kidney development:regulatory molecules crucial to both mice and men. Mol Genet Metab 71,391-396.
    Bollig, F., Mehringer, R., Perner, B., Hartung, C., Schafer, M., Schart1, M., Volff, J.N., Winkler, C, Englert, C.,2006. Identification and comparative expression analysis of a second wtl gene in zebrafish. Dev Dynam 235,554-561.
    Boyle, S., de Caestecker, M.,2006. Role of transcriptional networks in coordinating early events during kidney development. Am J Physiol Renal Physiol 291, F1-8.
    Brennan, H.C., TMijjar, S., Jones, E.A.,1998. The specification of the pronephric tubules and duct in Xenopus laevis. Mech Dev 75,127-137.
    Carroll, T.J., Vize, P.D.,1996. Wilms' tumor suppressor gene is involved in the development of disparate kidney forms:evidence from expression in the Xenopus pronephros. Dev Dyn 206, 131-138.
    Carroll, T.J., Vize, P.D.,1999. Synergism between Pax-8 and lim-1 in embryonic kidney development. Dev Biol 214,46-59.
    Chalmers, A.D., Slack, J.M.,1998. Development of the gut in Xenopus laevis. Dev Dyn 212, 509-521.
    Chan, T.C., Takahashi, S., Asashima, M.,2000. A role for Xlim-1 in pronephros development in Xenopus laevis. Dev Biol 228,256-269.
    Chiang, C.K., Inagi, R.,2010. Glomerular diseases:genetic causes and future therapeutics. Nat Rev Nephrol 6,539-554.
    Christensen, E.I., Raciti, D., Reggiani, L., Verroust, P.J., Brandli, A.W.,2008. Gene expression analysis defines the proximal tubule as the compartment for endocytic receptor-mediated uptake in the Xenopus pronephric kidney. Pflug Arch Eur J Phy 456,1163-1176.
    Cirio, M.C., Hui, Z., Haldin, C.E., Cosentino, C.C., Stuckenholz, C, Chen, X., Hong, S.K., Dawid, I.B., Hukriede, N.A.,2011. Lhxl is required for specification of the renal progenitor cell field. PLoS One 6, e18858.
    Dale, L., Slack, J.M.,1987. Fate map for the 32-cell stage of Xenopus laevis. Development 99, 527-551.
    De Robertis, E.M., Larrain, J., Oelgeschlager, M., Wessely, O.,2000. The establishment of Spemann's organizer and patterning of the vertebrate embryo. Nat Rev Genet 1,171-181.
    Dehbi, M., Ghahremani, M., Lechner, M., Dressier, G., Pelletier, J.,1996. The paired-box transcription factor, PAX2, positively modulates expression of the Wilms'tumor suppressor gene (WT1). Oncogene 13,447-453.
    Dressier, G.R.,2006. The cellular basis of kidney development. Annu Rev Cell Dev Biol 22, 509-529.
    Fenteany, F.H., Colley, K.J.,2005. Multiple signals are required for alpha2,6-sialyltransferase (ST6GalI) oligomerization and Golgi localization. J Biol Chem 280,5423-5429.
    Fischer, A., Schumacher, N., Maier, M., Sendtner, M., Gessler, M.,2004. The Notch target genes Hey 1 and Hey2 are required for embryonic vascular development. Genes Dev 18,901-911.
    Fox, H.,1963. The amphibian pronephros. Q Rev Biol 38,1-25.
    Gerth, V.E., Zhou, X., Vize, P.D.,2005. Nephrin expression and three-dimensional morphogenesis of the Xenopus pronephric glomus. Dev Dyn 233,1131-1139.
    Gilbert, S.F.,2010. Development Biology. Sinauer Associates.
    Gu, Y., Chen, W., Zhao, Y., Chen, L., Peng, T.,2009. Quantitative analysis of elevated serum Golgi protein-73 expression in patients with liver diseases. Ann Clin Biochem 46,38-43.
    Hensey, C., Dolan, V., Brady, H.R.,2002. The Xenopus pronephros as a model system for the study of kidney development and pathophysiology. Nephrol Dial Transplant 17 Suppl 9, 73-74.
    Hostetter, C.L., Sullivan-Brown, J.L., Burdine, R.D.,2003. Zebrafish pronephros:a model for understanding cystic kidney disease. Dev Dyn 228,514-522.
    Howland, R.B.,1916. On the Effect of Removal of the Pronephros of the Amphibian Embryo. Proc Natl Acad Sci U S A 2,231-234.
    Hu, L., Li, L., Xie, H., Gu, Y., Peng, T.,2011. The Golgi localization of GOLPH2 (GP73/GOLM1) is determined by the transmembrane and cytoplamic sequences. PLoS One 6, e28207.
    IACUC,2009. ACUC Learning Module-Xenopus laevis. University of Arizona.
    Iftikhar, R., Havlioglu, N., Kladney, R.D., Luxon, B.A., Solomon, H., Bacon, B.R., Fimmel, C.J., 2002. Hepatocyte exrpession of GP73 is upregulated in non-cirrhotic liver disease. Hepatology 36,440a-440a.
    Iftikhar, R., Kladney, R.D., Havlioglu, N., Schmitt-Graff, A., Gusmirovic, I., Solomon, H., Luxon, B.A., Bacon, B.R., Fimmel, C.J.,2004. Disease-and cell-specific expression of GP73 in human liver disease. Am J Gastroenterol 99,1087-1095.
    Jones, E.A.,2005. Xenopus:a prince among models for pronephric kidney development. J Am Soc Nephrol 16,313-321.
    Jones, E.A., Naylor, R.W.,2009. Notch activates Wnt-4 signalling to control medio-lateral patterning of the pronephros. Development 136,3585-3595.
    Kladney, R.D., Bulla, G.A., Guo, L.S., Mason, A.L., Tollefson, A.E., Simon, D.J., Koutoubi, Z., Fimmel, C.J.,2000. GP73, a novel Golgi-localized protein upregulated by viral infection. Gene 249,53-65.
    Kladney, R.D., Cui, X.Y., Bulla, G.A., Brunt, E.M., Fimmel, C.J.,2002a. Expression of GP73, a resident Golgi membrane protein, in viral and nonviral liver disease. Hepatology 35, 1431-1440.
    Kladney, R.D., Tollefson, A.E., Wold, W.S.M., Fimmel, C.J.,2002b. Upregulation of the Golgi protein GP73 by adenovirus infection requires the E1A CtBP interaction domain. Virology 301,236-246.
    Kreidberg, J.A., Sariola, H., Loring, J.M., Maeda, M., Pelletier, J., Housman, D., Jaenisch, R., 1993. WT-1 is required for early kidney development. Cell 74,679-691.
    Kristiansen, G., Fritzsche, F.R., Wassermann, K., Jager, C., Tolls, A., Lein, M., Stephan, C., Jung, K., Pilarsky, C., Dietel, M., Moch, H.,2008. GOLPH2 protein expression as a novel tissue biomarker for prostate cancer:implications for tissue-based diagnostics. Br J Cancer 99, 939-948.
    Laxman, B., Morris, D.S., Yu, J.J., Siddiqui, J., Cao, J., Mehra, R., Lonigro, R.J., Tsodikov, A., Wei, J.T., Tomlins, S.A., Chinnaiyan, A.M.,2008. A first-generation multiplex biomarker analysis of urine for the early detection of prostate cancer. Cancer Res 68,645-649.
    Little, M., Georgas, K., Pennisi, D., Wilkinson, L.,2010. Kidney development:two tales of tubulogenesis. Curr Top Dev Biol 90,193-229.
    Liu, X.J.,2005. Xenopus Protocols:Cell Biology and Signal Transduction Humana Press.
    Majumdar, A., Lun, K., Brand, M., Drummond, I.A.,2000. Zebrafish no isthmus reveals a role for pax2.1 in tubule differentiation and patterning events in the pronephric primordia. Development 127,2089-2098.
    Marrero, J.A., Romano, P.R., Nikolaeva, O., Steel, L., Mehta, A., Fimmel, C.J., Comunale, M.A., D'Amelio, A., Lok, A.S., Block, T.M.,2005. GP73, a resident Golgi glycoprotein, is a novel serum marker for hepatocellular carcinoma. J Hepatol 43,1007-1012.
    Mauch, T.J., Yang, G., Wright, M., Smith, D., Schoenwolf, G.C.,2000. Signals from trunk paraxial mesoderm induce pronephros formation in chick intermediate mesoderm. Dev Biol 220, 62-75.
    McLaughlin, K.A., Rones, M.S., Mercola, M.,2000. Notch regulates cell fate in the developing pronephros. Dev Biol 227,567-580.
    Moloney, D.J., Panin, V.M., Johnston, S.H., Chen, J., Shao, L., Wilson, R., Wang, Y., Stanley, P., Irvine, K.D., Haltiwanger, R.S., Vogt, T.F.,2000. Fringe is a glycosyltransferase that modifies Notch. Nature 406,369-375.
    Narlis, M., Grote, D., Gaitan, Y., Boualia, S.K., Bouchard, M.,2007. Pax2 and pax8 regulate branching morphogenesis and nephron differentiation in the developing kidney. J Am Soc Nephrol 18,1121-1129.
    Natarajan, R., Linstedt, A.D.,2004. A cycling cis-Golgi protein mediates endosome-to-Golgi traffic. Mol Biol Cell 15,4798-4806.
    Norton, P.A., Comunale, M.A., Krakover, J., Rodemich, L., Pirog, N., D'Amelio, A., Philip, R., Mehta, A.S., Block, T.M.,2008. N-Linked Glycosylation of the Liver Cancer Biomarker GP73. J Cell Biochem 104,136-149.
    Oh, J.J., Grosshans, D.R., Wong, S.G., Slamon, D.J.,1999. Identification of differentially expressed genes associated with HER-2/neu overexpression in human breast cancer cells. Nucleic Acids Res 27,4008-4017.
    Pedersen, A., Skjong, C., Shawlot, W.,2005. Lim 1 is required for nephric duct extension and ureteric bud morphogenesis. Dev Biol 288,571-581.
    Puri, S., Bachert, C., Fimmel, C.J., Linstedt, A.D.,2002. Cycling of early Golgi proteins via the cell surface and endosomes upon lumenal pH disruption. Traffic 3,641-653.
    Reggiani, L., Raciti, D., Airik, R., Kispert, A., Brandli, A.W.,2007. The prepattern transcription factor Irx3 directs nephron segment identity. Genes Dev 21,2358-2370.
    Romano, P.R., Nikolaeva, O.V., Steel, L., Fimmel, C.J., Marrero, J., Evans, A.A., Communale, M.A., Lok, A., London, W.T., Di Bisceglie, A., Block, T.M.,2003. GP73, a resident Golgi membrane protein, appears in sera of patients with viral liver disease and hepatocellular cancer. Hepatology 38,768a-768a.
    Rones, M.S., Woda, J., Mercola, M., McLaughlin, K.A.,2002. Isolation and characterization of Xenopus Hey-1:A downstream mediator of Notch signaling. Dev Dynam 225,554-560.
    Ryan, G., Steele-Perkins, V., Morris, J.F., Rauscher, F.J.,3rd, Dressier, G.R.,1995. Repression of Pax-2 by WT1 during normal kidney development. Development 121,867-875.
    Saladin, K.,2011. Anatomy & Physiology:The Unity of Form and Function. McGraw-Hill Science/Engineering/Math.
    Saxen, L.,1987. Organogenesis of the Kidney. Cambridge, UK:Cambridge University Press.
    Saxen, L.,1994. [Hans Spemann, the founder of modern developmental biology]. Hippokrates (Helsinki) 11,23-33.
    Schwegler, E.E., Cazares, L., Steel, L.F., Adam, B.L., Johnson, D.A., Semmes, O.J., Block, T.M., Marrero, J.A., Drake, F.R.,2005. SELDI-TOF MS profiling of serum for detection of the progression of chronic hepatitis C to hepatocellular carcinoma. Hepatology 41,634-642.
    Seufert, D.W., Brennan, H.C., DeGuire, J., Jones, E.A., Vize, P.D.,1999. Developmental basis of pronephric defects in Xenopus body plan phenotypes. Dev Biol 215,233-242.
    Sive, H.L., Grainger, R.M., Harland, R.M.,2010. Early Development of Xenopus laevis:A Laboratory Manual Cold Spring Harbor Laboratory Press.
    Stelzl, U., Worm, U., Lalowski, M., Haenig, C., Brembeck, F.H., Goehler, H., Stroedicke, M., Zenkner, M., Schoenherr, A., Koeppen, S., Timm, J., Mintzlaff, S., Abraham, C., Bock, N., Kietzmann, S., Goedde, A., Toksoz, E., Droege, A., Krobitsch, S., Korn, B., Birchmeier, W., Lehrach, H., Wanker, E.E.,2005. A human protein-protein interaction network:a resource for annotating the proteome. Cell 122,957-968.
    Summerton, J., Weller, D.,1997. Morpholino antisense oligomers:design, preparation, and properties. Antisense Nucleic Acid Drug Dev 7,187-195.
    Taelman, V., Van Campenhout, C., Solter, M., Pieler, T., Bellefroid, E.J.,2006. The Notch-effector HRT1 gene plays a role in glomerular development and patterning of the Xenopus pronephros anlagen. Development 133,2961-2971.
    Tran, U., Pickney, L.M., Ozpolat, B.D., Wessely, O.,2007. Xenopus Bicaudal-C is required for the differentiation of the amphibian pronephros. Dev Biol 307,152-164.
    Tu, L., Tai, W.C., Chen, L., Banfield, D.K.,2008. Signal-mediated dynamic retention of glycosyltransferases in the Golgi. Science 321,404-407.
    Van Campenhout, C., Nichane, M., Antoniou, A., Pendeville, H., Bronchain, O.J., Marine, J.C., Mazabraud, A., Voz, M.L., Bellefroid, E.J.,2006. Evil is specifically expressed in the distal tubule and duct of the Xenopus pronephros and plays a role in its formation. Dev Biol 294, 203-219.
    Varambally, S., Laxman, B., Mehra, R., Cao, Q., Dhanasekaran, S., Tomlins, S.A., Granger, J., Vellaichamy, A., Sreekumar, A., Yu, J.J., Gu, W.J., Shen, R.L., Ghosh, D., Wright, L.M., Kladney, R.D., Kuefer, R., Rubin, M.A., Fimmel, C.J., Chinnaiyan, A.M.,2008. Golgi Protein GOLM1 Is a Tissue and Urine Biomarker of Prostate Cancer. Neoplasia 10, 1285-U1104.
    Venables, J.P., Klinck, R., Bramard, A., Inkel, L., Dufresne-Martin, G., Koh, C., Gervais-Bird, J., Lapointe, E., Froehlich, U., Durand, M., Gendron, D., Brosseau, J.P., Thibault, P., Lucier, J.F., Tremblay, K., Prinos, P., Wellinger, R.J., Chabot, B., Rancourt, C., Elela, S.A.,2008. Identification of alternative splicing markers for breast cancer. Cancer Res 68,9525-9531.
    Vize, P.D.,2003. The chloride conductance channel C1C-K is a specific marker for the Xenopus pronephric distal tubule and duct. Gene Expr Patterns 3,347-350.
    Vize, P.D., Woolf, A., Bard, J.,2003. The Kidney:From Normal Development to Congenital Diseases. Amsterdam:Academic Press.
    Wang, M.J., Long, R.E., Comunale, M.A., Junaidi, O., Marrero, J., Di Bisceglie, A.M., Block, T.M., Mehta, A.S.,2008. Analysis of GP73 in combination with fucosylated alpha-1-antitrypsin and fucosylated kininogen as a biomarker of primary hepatocellular carcinoma. Cancer Biomark 4,155-155.
    Wessely, O., Tran, U.,2011. Xenopus pronephros development-past, present, and future. Pediatr Nephrol.
    Wild, W., Pogge von Strandmann, E., Nastos, A., Senkel, S., Lingott-Frieg, A., Bulman, M., Bingham, C., Ellard, S., Hattersley, A.T., Ryffel, G.U.,2000. The mutated human gene encoding hepatocyte nuclear factor lbeta inhibits kidney formation in developing Xenopus embryos. Proc Natl Acad Sci U S A 97,4695-4700.
    Wingert, R.A., Davidson, A.J.,2008. The zebrafish pronephros:a model to study nephron segmentation. Kidney Int 73,1120-1127.
    Wright, L.M., Picken, M., Yong, S., Rockey, D.C., Nisar, S., Fimmel, C.J.,2007. Hepatic steatosis and glomerular disease in mice with C-terminally truncated GP73 (Golph2). Hepatology 46, 771a-771a.
    Wright, L.M., Yong, S., Picken, MM., Rockey, D., Fimmel, C.J.,2009. Decreased survival and hepato-renal pathology in mice with C-terminally truncated GP73 (GOLPH2). Int J Clin Exp Pathol 2,34-47.
    Zhang, F., Gu, Y., Li, X., Wang, W., He, J., Peng, T.,2010. Up-regulated Golgi phosphoprotein 2 (GOLPH2) expression in lung adenocarcinoma tissue. Clin Biochem 43,983-991.
    Zhou, W., Ross, M.M., Tessitore, A., Ornstein, D., Vanmeter, A., Liotta, L.A., Petricoin, E.F.,3rd, 2009. An initial characterization of the serum phosphoproteome. J Proteome Res 8, 5523-5531.
    Zhou, X., Vize, P.D.,2004. Proximo-distal specialization of epithelial transport processes within the Xenopus pronephric kidney tubules. Dev Biol 271,322-338.
    Zhou, Y., Li, L., Hu, L., Peng, T.,2010. Golgi phosphoprotein 2 (GOLPH2/GP73/GOLM1) interacts with secretory clusterin. Mol Biol Rep.
    王海燕,2008.肾脏病学.人民卫生出版社.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700