埃塞俄比亚施瑞地区VMS型矿床成矿机制及成矿规律研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
摘要:埃塞俄比亚北部位于西冈瓦纳古陆北缘,是阿拉伯-努比亚地盾西南部新元古代岛弧增生带的重要组成部分。施瑞(Shire)地区是厄立特里亚阿斯马拉(Asmara)—埃塞俄比亚施瑞VMS型铜多金属成矿带的南西延伸地段,具有优越的区域地质成矿条件和找矿前景。近年来,该成矿带发现了阿迪内弗斯(Adi Nefas)、德巴瓦(Debarwa)及英坝德芙(Emba Derho)等中大型VMS型矿床,被誉为是世界上近三十年来VMS型矿床找矿勘探方面取得的最大成就。然而,研究区的基础地质和矿产地质研究程度较低,赋存VMS型矿床的新元古界地层已广泛遭受绿片岩区域变质和强烈的构造变形,造山前、造山期及造山后花岗岩类岩浆侵入活动均较为强烈,使得该地区地质和矿化面貌比较复杂,矿床成因模式、定位机制、定位规律的把握较困难,严重影响铜多金属矿床的勘查部署及外围成矿预测,故迫切需要强化施瑞地区块状硫化物型铜多金属矿床成矿地质条件、成矿机理、控矿因素及矿化定位机制研究。
     通过本文研究工作,主要取得如下成果:
     (1)查明了埃塞俄比亚北部施瑞地区具有造山前、造山期和造山后三期花岗岩类型,各花岗岩类与铜多金属矿床不具有成因关系,不存在成矿元素的叠加作用;较完整的认识了各花岗岩类的成因类型、构造环境及地壳演化背景,为成矿带铜多金属矿的成矿环境提供了必要的基础性数据,为探讨西冈瓦纳古陆东北缘消减带的构造特征和演化机制提供了进一步的依据。
     (2)首次获得埃塞俄比亚北部施瑞地区造山前花岗岩全岩Sm-Nd等时线年龄(824.4Ma±15.5Ma),属新元古代的拉伸纪;源区以幔源物质为主的Ⅰ型花岗岩,构造环境处于新元古代早期沟—弧—盆演化阶段,被动大陆边缘—火山岛弧环境。
     (3)利用地球化学元素频数直方图、蚀变指数及构造环境等方法,查明Pvai变火山岩并不具有明显的双峰式火山岩特征,即非裂谷成因火山岩。变火山岩全岩Sm-Nd等时线年龄(830.7Ma±15.4Ma),与造山前花岗同属新元古代的拉伸纪,形成于洋壳为底的岛弧构造域的张应力较强的弧后扩张盆地。
     (4)首次利用地球化学数据进行小波分析处理,不仅有效划分了区域火山旋回,还有效判别了旋回中的韵律,为利用地球化学资料研究火山旋回韵律提供了一条新的途径。根据火山旋回的地质特征、地球化学及遥感解译综合分析,研究区变火山岩系共划分出6个旋回15个韵律。
     (5)首次利用剖面地球化学数据,通过转换计算得出绿泥石化指数、绢云母化指数、高岭土化指数和硅化指数,研究其蚀变与矿化的关系。结果表明矿体产出位置往往处于各蚀变指数的波峰位置,综合蚀变指数明显大于非赋矿围岩的蚀变指数,且上下盘围岩蚀变程度具有明显对称的特点。
     (6)查明了埃塞俄比亚施瑞地区铜多金属矿的成矿作用,划分出三个成矿期,即次火山热液期、区域变质期和表生氧化期,其中次火山热液期是研究区主成矿期;区域变质作用有限,未叠加新的成矿元素。
     (7)查明了铜多金属矿的成矿物质来源,主要来自富含挥发份铜多金属成矿元素的次火山热液,部分来自流经的先形成的中基性火山熔岩,少部分来自海水从上覆中酸性火山碎屑岩中渗滤萃取出来的成矿元素。
     (8)详细查明了埃塞俄比亚施瑞地区铜多金属矿的矿床成因、控矿因素和成矿规律。施瑞地区铜多金属矿是一个与陆缘岛弧海相火山活动有关的次火山热液充填交代型块状硫化物矿床。矿体主要就位在中(基)性—(中)酸性岩性转换界面附近,构造的交汇部位,火山旋回韵律的第Ⅱ旋回的第3韵律、第Ⅲ旋回的第2韵律和第Ⅳ旋回的第3韵律等。
     (9)提出并探讨了次火山热液充填交代型块状硫化物矿床的成矿机制及成矿理论研究,建立了施瑞地区铜多金属矿床的成矿模式,丰富了VMS型矿床成矿理论及成矿模式方面的研究。该成矿模式是在火山喷发间歇期,中酸性次火山热液(含矿热液)侵入到中基性熔岩与中酸性凝灰岩、沉凝灰岩的岩性组构界面或中酸性凝灰岩、沉凝灰岩内部的有利空间,与从上盘渗滤下来的海水(含矿)相遇,因物理化学条件的变化,形成的次火山热液充填交代型块状硫化物矿床。
     (10)以成矿模式、矿化定位机制和定位规律为建模指导思想,建立了研究区铜多金属多元信息成矿定位预测模型;并在施瑞地区Pvai变火山岩系中圈定了6个找矿靶区。
Abstract:North of Ethiopia, located in the northern margin of west Gondwana, is an important part of Arabia-Nubian shield southwest Neoproterozoic arc accretionary zones. Shire is in the southwest extension area of VMS copper polymetallic mineralization belt in Asmara, Eritrea-Ethiopia, with superiority of regional geology and metallogenic conditions and prospecting potentials. In recent years, the metallogenic belt found a batch of Adi Nefas, Debarwa and Emba Derho medium VMS type copper zinc ore bed, was the greatest achievements in VMS deposit prospecting exploration in nearly three decades in the world. However, the research degree of the basic geology and mineral resources geology in the research area is low. The Neoproterozoic stratum with VMS type deposit has widely experienced the greenschist regional metamorphism and intense tectonic deformation. In addition, the cranite magma intrusion activities were relatively intensive during preorogenic, orogenic and postorogenic periods, making regional geological and mineralization features complex and deposit genesis model, deposit location mechanism and location law hard to grasp, seriously affecting copper polymetallic ore of the exploration deployment and the peripheral metallogenic prediction. Therefore, there is an urgent need to strengthen the research on massive sulfide copper polymetallic deposit ore-forming geological conditions, mineralization mechanism and ore-controlling factors and mineralization locating mechanism in Shire.
     Through the research work in this project, the main achievements were obtained as follows:
     (1) It was found out that there were three kinds of granitoids of periods of preorogenic, orogenic and postorogenic in Shire in northern Ethiopia, granitoids and copper polymetallic deposit were not genetic relationship, there is no superimposition of ore-forming elements. For different granitoids, the differences of petrology characteristics, rare earth microelements and major elements were obvious. And the genetic types, tectonic environment and the background of crust evolution were completely understood. These findings provided the necessary basic data for the metallogenic environment of copper polymetallic metallogenic belt and offered a further basis for exploring tectonic characteristics and the evolution mechanism of subduction zone in the northeast of west Gondwana.
     (2) Sm-Nd isochron age (824.4Ma±15.5Ma) of total rock of the granitoids of the preorogenic period in Shire in northern Ethiopia, was gained for the first time, which belonged to Tonian of the Neoproterozoic; the I type granite in source area mainly consisted of mantle-derived materials, and its tectonic environment was the passive continental margin-volcanic island arc environment in the trench-arc-basin evolution stage of early Neoproterozoic.
     (3) Methods of geochemical element frequency histogram, alteration index and tectonic environment were used in the research, and it was found out that Pvai metavolcanic rock did not have obvious characteristics of bimodal volcanic rock, indicating that it was non-rift valley origin volcanic rock. Sm-Nd isochron age (830.7Ma±15.4Ma) of total rock of the metavolcanic rocks and granitoids of the preorogenic period belonged to Tonian of the Neoproterozoic, and were formed on the site of back-arc spreading basin with strong tensile stress in island arc tectonic domain, where oceanic crust was the bottom.
     (4) It was the first time to use the geochemical data to make wavelet analysis and processing. Not only the volcanic cycle was effectively divided, but also the rhythm of the cycle was discriminated effectively, which provided a new way for studying volcanic cycle rhythm with the geochemical data. According to comprehensive analysis of the geologic features of volcanic cycle, geochemistry and remote sensing interpretation, metavolcanic series in the study area were divided into6cycles and15rhythms.
     (5) It was the first time that the profile geochemical data was used and calculated conversional to get the chloritization index, and sericitization index, kaolinization and silicification index to study the relationship between alteration and mineralization. The results showed that the orebody locality was always right in the crest of the alteration index, the comprehensive alteration index was significantly greater than that of non-enriched ore surrounding rock, and the feature of symmetry of wall rock alteration was obvious.
     (6) The copper polymetallic mineralization in Shire was found out. Mineralization was divided into subvolcanic hydrothermal period, regional metamorphism reform period and supergene oxidation period, among which the subvolcanic hydrothermal period was the main metallogenic period in the study. Superposition of regional metamorphism is limited, there were not the new ore-forming elements.
     (7) We found out the copper polymetallic metallogenic material source. The main part was from subvolcanic hydrothermal solution with rich volatile copper polymetallic ore-forming elements, with a small part from the flowing formed basic lava, and some from the ore-forming elements infiltrated and extracted by sea water from overlying intermediate-acid volcanic clastic rock.
     (8) We found out copper polymetallic ore deposit genesis and ore-controlling factors and metallogenic regularity in Shire in Ethiopia in detail. The genesis of ore deposit of copper polymetallic in Shire was a subvolcanic hydrothermal filling and metasomatic type copper polymetallic massive sulfide deposit related to the epicontinental island arc marine volcanic activities. The main orebody was near the basic-(mid) acidic lithology transition interface, intersection parts of the structure and the3rd rhythm in the II volcanic cycle, the2nd rhythm in the III cycle, the3rd rhythm in the IV cycle, etc.
     (9) Metallogenic mechanism of the subvolcanic hydrothermal filling and metasomatic type massive sulfide deposits and the study of metallogenic theories were proposed and deeply discussed, massive sulfide copper polymetallic deposit metallogenic pattern in Shire was established, and the VMS deposit metallogenic theory and model research was enriched. It was considered that massive sulfide orebody was a kind of subvolcanic hydrothermal filling metasomatic type deposit formed in the intermittent period of volcanic eruption due to the change of physical and chemical conditions, when the mid-acidic subvolcanic hydrothermal (ore-bearing hydrothermal) invaded into the lithologic fabric interface of the basic lava and mid-acidic tuff, tuffite or the internal space of mid-acidic tuff and tuffite, then met with the infiltrated seawater (ore-bearing) from hanging wall.
     (10) Based on the modeling guiding ideology of "metallogenic model, mineralization locating mechanism and locating rule", the model of copper polymetallic multivariate information mineralization locating prediction in the study area was established; and six prospecting target areas were framed in Pvai metavolcanic series in Shire.
引文
[1]U.S. Geological Survey. Mineral commodity summaries 2012[EB/OL].2012-7-25, http://minerals.usgs.gov/minerals/pubs/commodity/copper/mcs-2012-coppe.pdf.
    [2]罗晓玲.国内外铜矿资源分析[J].世界有色金属,2000.4:4-10.
    [3]高永璋,张寿庭.中国铜矿产资源主要特点[J].矿床地质,2010,29:773-774.
    [4]陈正,蒋峥,赵凯等.未来两年全球铜消费量与铜价有望攀升[J].境外矿产资源勘查开发简,2013,34(2):1-7.
    [5]戴问天.海底热液沉积成矿—一种新近被认识的普遍而重要的成矿作用[J].地质与勘探,1985,6:22-28.
    [6]Francheteau J, Needham H D, Choukroune P, et al. Massice deep-sea sulphide ore deposits discovered on the East Pacific Rise[J]. Nature,1979,277(15):523-528.
    [7]Solomon M. "Volcanic" massive sulphide deposits and the host rock review and an axpkanation[A], In:Wolf K A ed. Handbook of strata-bound and stratiform ore deposits (Ⅱ:Regional studies and specific deposots)[C]. Amsterdam: Elsevier Scientific publishing company,1976,21-50.
    [8]Spooner E T C, Chapman H J, Semwing J D, Strontium isotopic contamination and oxidation during ocean floor hydrothermal metamorphism of pohiolitic rocks of the Troodos Masiff, Cyprus [J]. Geochim et Cosmochim Acta,1977, 41:873-890.
    [9]Rona P A. Hydrothermal processes at seafloor spriading centers[M]. N. Y.: Plenum Press,1983.473-489.
    [10]Rona P A, Scott S D. A special issue of seafloor hydrothermal mineralization: new perspecitive[J]. Economic Geology,1993,88(8):1935-2078.
    [11]Lydon J W. Ore deposit models 14, Volcanogenic massive sulfide deposit[J]. Geoscience Canada,1988,83(1):43-66.
    [12]Ohmoto H, Skinner B J. The Kuroko and related volcanggenic massive sulfide deposit[J]. Economic Geology,1983,5:604.
    [13]安伟,曹志敏,郑建斌,等.古代与现代火山成因块状硫化物矿床研究进展[J].地球科学进展,2003,1(5):773-782.
    [14]Chillymanjaro. Geology, Ocean, Seafloor:Field of hydrothermal vents discovered along the Mid-Atlantic Ridge [EB/OL]. The Watchers,2011-8-9, http://thewatchers.adorraeli.com/2011/08/09/field-of-hydrothermal-vents-discov ered-along-the-mid-atlantic-ridge/.
    [15]吴世迎.世界海底热液硫化物资源[M].北京:海洋出版社,2000.
    [16]崔维成,刘峰,胡震,等.蛟龙号载人潜水器的7000米级海上试验[J].船舶力学,2012,16(10):1131-1143.
    [17]Sawking F J. Massive sulphide deposits in relation to geotectonics [C]//Strong K F. Ed. Metallogeny and Plate Tectonics. Geol. Assoc. Canada Spec. Publ.,1976, 14:221-242.
    [18]Sangster D F. Scott S D. Precambrian stratabound massive Cu-Zn-Pb sulfide ores of North America [C]//Wolf K H.ed. Handbkook of strata-bound and stratiform ore deposits. Amsterdam. Elsevier,1976,6:129-222.
    [19]顾连兴.块状硫化物矿床研究进展评述[J].地质评论,1999,45(3):265-276.
    [20]Hutchinson R W. Volcanogenic sulfide deposits and their matallogenic significance[J]. Econ. Geol.,1973,68:1223-1246.
    [21]Hutchinson R W.块状贱金属硫化物矿床[J].国外地质科技,1982(2):50-51.
    [22]Piercey S J, Peter J M, Mortensen J K. A special issue devoted to continental margin massive sulfide deposits and their geodynamic enviroments[J]. Economic Geology,2008,103:1-4.
    [23]Franklin J M, Glbson H L, Jonasson I R, et al. Volcanogenic massive sulfide deposits[J]. Economic Geology 100 Anniversary Volume,2005,523-560.
    [24]李文渊.块状硫化物矿床的类型、分布和形成环境[J].地球科学与环境学报,2007,29(4):331-344.
    [25]夏祖春,夏林折,徐学义.北祁连山元古代末一寒武纪海相火山作用与成矿作用的关系[J].西北地质科学,1995,16(1):29-37.
    [26]宋忠宝,李文渊,李怀坤,等.北祁连山石居里辉长岩的同位素年龄及其地质意义[J].地球学报,2007,28(1):7-10.
    [27]李向民,马中平,孙吉明.甘肃白银矿田基性火山岩的LA-ICP-MS同位素年代学[J].地质通报,2009,28(7):901-906.
    [28]崔峤.块状硫化物矿床与火山岩岩相的关系[J].矿床地质,1984,3(1):77-82.
    [29]姜福芝.双峰式火山岩与块状硫化物矿床[J].矿床地质,2001,20(4):331-338.
    [30]刘继顺.海底火山作用和火山岩的若干特点[J].有色金属矿产与勘查,1995,4(1):35-37.
    [31]Hezig P M, Hanningtong M D. Polymetallic Massive Sul-fides at the Modern Seafloor:A Review[J]. Ore Geologica Review,1995,10:95-115.
    [32]Groves D I, Bierlein F P. Geodynamic settings of mineral deposit systems[J]. Journal of the Geological Society,2007,164:19-30.
    [33]Huston D L, Pehrsson S, Eglington B M, et al.The geology and metallogeny of volcanic-hosted massive sulfide deposits:variations through geologic time and with tectonic setting[J]. Economic Geology,2010,105:571-591.
    [34]孙华山,吴冠斌,刘浏,等.块状硫化物矿床成矿构造环境研究进展[J].地球科学—中国地质大学学报,2011,36(2):299-306.
    [35]何国琦,韩宝福,李茂松.论地壳成熟度及其在大地构造研究中的意义[C]//岩石圈地质科学.北京:北京大学出版社,1990:36-41.
    [36]何金祥,徐克勤,顾连兴,等.南岭与下扬子区块状硫化物矿床特征的对比[J].南京大学学报,1995,31(4):625-634.
    [37]张术根,姚翠霞,杨汉壮,等.粤北凡口式铅锌硫化物矿床关键成矿控制系统及成矿预测研究[M].长沙:中南大学出版社,2012.
    [38]崔志华,徐英霞,于淑艳.块状硫化物矿床的形成环境、类型与成矿机制[J].河北理工大学报(自然科学版),2010,32(4):123-126.
    [39]Stoltz A J, Large R R. Evaluation of the source control on precious metal grade in volcanic-hosted massive sulfide deposits from western Tasmania[J]. Economic Geology,1992,87:720-738.
    [40]Urabe T, Mamumo K. A new model for Kuroko-type deposits of Japan [J]. Episode,1991,14 (3):246-251.
    [41]Kamenetsky V S, Binns R A, Gemmell J B, et al. Parental basaltic melts and fluids in eastern Manus back-arc basin:implications for hydrothermal mineralization [J]. Earth Planet Sci. Lett.,2001,184:685-702.
    [42]Yang K, Scott S D. Magmatic degassing of volatiles and metals into a hydrothermal systems on the modern seafloor of the eastern Manus back-arc basin, western Pacific[J]. Econ. Geol.,2002,97:1079-1100.
    [43]戴宝章,赵葵东,蒋少涌.现代海底热液活动与块状硫化物矿床成因研究进展[J].矿物岩石地球化学通报,2004,23(3):246-254.
    [44]吴远明,王平.块状硫化物矿床研究最新进展[J].内江科技—高校论坛,2010,6:47-57.
    [45]徐克勤,王鹤年,周建平,等.论华南喷流-沉积块状硫化物矿床[J].高校地质学报,1996,2(3):241-256.
    [46]刘晓东,周涛发.块状硫化物矿床地质地球化学特征与形成机理[J].合肥工业大学学报,1999,22(4):42-47.
    [47]陈建立.河南上庄坪铜铅锌矿床地质特征及成因探讨[J].地质找矿论丛, 2005,20(1):26-30.
    [48]顾连兴,胡文瑄,倪培,等.再论大陆地壳断裂拗陷带中的华南型块状硫化物矿床[J].高校地质学报,2003,9(4):592-608.
    [49]顾连兴,汤晓茜,郑远川,等.辽宁红透山铜锌块状硫化物矿床的变质变形和成矿组分再活化[J].岩石学报,2004,20(4):923-934.
    [50]顾连兴,汤晓茜,吴昌志,等.辽宁红透山块状硫化物矿床矿石糜棱岩铜一金富集机制[J].地学前缘,2004,11(2):339-350.
    [51]余凤金.红透山式矿床成矿模式与找矿模型研究[D].沈阳:东北大学,2006.
    [52]张兰英.北祁连“黑矿型”和“塞浦路斯型”块状硫化物矿床成矿条件对比研究[D].北京:中国地质科学院,2008.
    [53]Kazmin V. Geology of Ethiopian basement and possible relation between the Mozambique and the Red See Belts. Egyption Journal Geology,1978,22:73-86.
    [54]Morton W H. The geology of Enticho, Tigre.Bull. Gephys.Obs,1975,15:1-25.
    [55]Kazmin V, Shifferaw A, Balcha T, Ababa A. The ethiopian basement:stratigraphy and possible manner of evolution[J]. Geologische Rundschau,1978, 67(2):531-546.
    [56]Beyth M. The geology of central and western Tigray[D]. Bonn,West Germany: Rheinische Friedrich-Wilhelms Universitat,1972.
    [57]Kitachew W T. Regional geological report of Axum sheet[R]. Ethiopian Institute of Geological Surveys,1974.
    [58]Garland C R. Geology of the Adigrat area[R]. Ethiopian Institute of Geological Sureys,1980.
    [59]Chewaka S, de WIT M. Plate tectonic evolution of Ethiopia and the origin of its mineral deposits:an overview[R]. Addis Ababa:Ethiopian Institute of Geolgical Surveys,1981.
    [60]Gass I G. Pan-African (Upper Proterozoic) Plate tectonics of the Arabian-Nubian shield[J]. Precambrian Plate Tectonics,1981,387-405.
    [61]Vail J R. Pan-African crustal accretion in northeast Africa[J]. Journal of African Earth Sciences,1983,1:285-294.
    [62]Ayalew T, Bell K, Moore M J, et al.. U-Pb and Rb-Sr geochronology of western Ethiopian Shield[J]. Geological Sciety America Bulletin,1990,120:1309-1316.
    [63]Miller N R. Utility of primary and secondary carbonates for strontium isotope chronostratigraphy of the Monterey formation, offshore Santa Barbara[J]. California. AAPG Bulletin,1990,74:990.
    [64]Stern R J, Kroner A, Bender R, et al. Precambrian basement around Wadi Halfa, Sudan:a new perspective on the evolution of the East Saharan Craton[J]. Geol Rundsch,1994,83(3):564-577.
    [65]Tadesse T. Structure across a possible intra-oceanic suture zone in the low-grade Pan-African rocks of northern Ethiopia[J]. Journal of African Earth Sciences, 1996,23(3):375-381.
    [66]Tadesse T, Suziki K, Hoshino M. Chemical Th-Uvergent total Pb isochron age of zircon from the Mereb Granite in northern Ethiopia[J]. Journal of Earth and Planetary Science of Nagoya University,1997,44:21-27.
    [67]Drury, S A, Berhe, S M. Accretion tectonics in the northern Eritrea revealed by remotely sensed imagery [J]. Geo-logical Magazine,1993,130:177-190.
    [68]Drury S A, de Souza Filho C R. Neoproterozoic terrane assemblages in Eritrea: review and prospects[J]. Journal of African Earth Sciences,1998,27:331-348.
    [69]Alemu T, Petrology, geochemistry and geochronology of granitoids from the Axum area, northern Ethiopia[D].1997, Austria:University of Vienna,106-108.
    [70]Tadesse A A. Geochemisstry of Neoproterozoic granitoids from the Axum area, northern Ethiopia[J]. Journal of African Earth Sciences,1998,27(3/4):437-460.
    [71]Alene M, Conti A, Sacchi R, et al. Stable isotope composition (C13 and O18) of Neoproterozoic limestones and dolomites from Tigre, North Ethiopia[J], Bollettino della Societa Geologica Italiana,1999,118:611-615.
    [72]Teklay M. Petrology, geochemistry and geochronology of neoproterozoic magmatic Arc Rocks from Eritrea:Implications for crustal evolution in the southern Nubian shield[R]. Department of Geology, Asmara.,1997.
    [73]Beyth M, Avigad D, Wetzel H U, et al. Crustal exhumation and indications for Snowball Earth in the East African Orogen:North Ethiopia and East Eritrea[J]. Precambrian Research,2003,123:187-201.
    [74]Avigad D, Sandler A, Kolodner K, et al. Mass-production of Cambrian quartz-rich sandstone as a consequence of chemicalweathering of Pan-African orogens:implications for global environment[J]. Earth and Planetary Science Letters,2005,240:818-826.
    [75]Miller N R, Alene M, Sacchi R, et al. Significance of the Tambien Group (Tigrai, N. Ethiopia) for snowball earth events in the Arabian-Nubian shieldfJ]. Precambrian Research,2003,121:263-283.
    [76]Miller N R, Avigad D, Stern R J, et al. Of Island Arcs and Icebergs? Strontium and carbon isotope stratigraphy of Ethiopian snowball Earth sequences [C]// American Geophysical Union Fall Meeting,2004:0943.
    [77]Miller N R, Schilman B, Avigad D, ed al. Neoproterozoic snowball Earth-the Northern Ethiopian record [J]. Snowball Earth Conference Proceedings, 2006,74-75.
    [78]Miller N R, Stern R J, Avigad D, et al. Cryogenian slate-carbonate sequences of the Tambien Group, Northern Ethiopia (I):Pre-"Sturtian" chemostratigraphy and regional correlations [J]. Precambrian Research,2009,170:129-156.
    [79]Asrat A, Barbey P, Ludden J N, et al. Petrology and isotope geochemistry of the Pan-African Negash Pluton, northern Ethiopia:mafic-felsic magma interactions during the construction of shallow-level calcalkaline plutons[J]. Journal of Petrology 2004,45:1147-1179.
    [80]Alene M, Jenkin G R T, Leng M J, et al. Ethiopia:an early Cryogenian (ca. 800-735 Ma) neoproterozoic sequence in the Arabian-Nubian shield[J]. Precambrian Research,2006,149:79-89.
    [81]Avigad D, Stern R J, Beyth M, et al. Detrital zircon U-Pb geochronology of Cryogenian diamictites and Lower Paleozoic sandstone in Ethiopia (Tigrai):Age constraints on Neoproterozoic glaciation and crustal evolution of the southern Arabi[J]. Precambrian Research,2007,154:88-106.
    [82]Woldemichael B W, Kimura J I, Dunkley D J, et al. Shrimp U-Pb zircon geochronology and Sr-Nd isotopic systematic of the Neoproterozoic Ghimbi-Nedjo mafic to intermediate intrusions of Western Ethiopia:a record of passive margin magmatism at 855 Ma?[J]. International Journal of Earth Sciences,2010,99(8):1773-1790.
    [83]曹远远.Arabia地盾块状硫化物矿床成矿特征及选区预测[D].北京:中国地质大学,2012.
    [84]de Souza Filho C R, Drury S A. A Neoproterozoic supra-subduction terrane in northern Eritrea, NE Africa[J]. Journal of the Geological Society,1998, 155:551-566.
    [85]Berhe, S M. Ophiolites in Northeast Africa:implications for Proterozoic crustal growth[J]. Journal of the Geological Society, London,1990,147:41-57.
    [86]Tadesse T, Hoshino M, Sawada Y. Geochemistry of low-grade metavolcanic rocks from the Pan-African of the Axum area, northern Ethiopia[J]. Precambrian Research,1999,96(1/2):101-124.
    [87]Ghebreab W, Greiling R O, Solomon S. Structural setting of Neoproterozoic mineralization, Asmara district, Eritrea[J]. Journal of African Earth Sciences, 2009,55:219-235.
    [88]Tadesse T, Hoshino M, Suzuki K, et al. Sm-Nd, Rb-Sr and Th-U-Pb zircon ages of syn-and post-tectonic granitoids from the Axum area of northern Ethiopia[J]. Journal of African Earth Scineces,2000,30(2):313-327.
    [89]Goto A, Tatsumi Y. Quantitative analysis of rock samples by an X-ray fluorescence spectrometer[J]. The Rigaku Journal,1994,11:40-59.
    [90]Qi L, Hu J, Gregoire D C. Determination of trace elements in granites by inductively coupled plasma-mass spectromety[J]. Talanta,2000,51:507-513.
    [91]梁细荣,韦刚健,李献华,等.利用MC-ICPMS精确测定Nd/Nd和Sm/Nd比值[J].地球化学,2003,32:1-6.
    [92]吴福元,葛文春,孙德有.吉林南部太古代花岗岩Sm-Nd,Rb-Sr同位素年龄测定[J].岩石学报,1997,13(4):499-506.
    [93]Maniar P D, Piccoli P M. Tectonic discrimination of granitoids [J]. Geological Society of America Bulletin,1989,101(5):635-643.
    [94]Peccerillo R, Taylor S R.Geochemistry of eocene calcalkaline volcanic rocks from the Kastamonu area, Northern Turkey [J]. Contributions to Mineralogy and Petrology,1976,58(1):63-81.
    [95]Middlemost E A K. Magmas and magmatic rocks [M]. London:Longman,1985.
    [96]杨德彬,许文良,裴福萍,等.蚌埠隆起区古元古代钾长花岗岩的成因:岩石地球化学、锆石U-Pb年代学与Hf同位素的制约[J].地球科学—中国地质大学学报,2009,34(1):148-164.
    [97]Turner S, Arnaud N, Liu J,et al. Post-collision,Shoshonitic Volcanism on the Tibetan Plateau:Implications for Convective Thinning of the Lithosphere and the Source of Ocean Island Basalts[J]. Journal of Petrology,1996,37(1):45-71.
    [98]Wan Y S. Barium Anomaly and Its Geochemical Significance [J]. Continental Dynamics,1999,4(1):84-87.
    [99]王德滋,沈渭洲.中国东南部花岗岩成因与地壳演化[J].地学前缘,2003,10(3):209-219.
    [100]李福林,谢瑜,周汉文,等.浙江淳安早白垩世脉岩地球化学特征及成岩动力学背景[J].矿物岩石,2011,31(3):55-65.
    [101]Hofrnann A W. Chemical Differentiation of the Earth:the Relationship Between Large Crust, and Oceanic Crust[J]. Earth and Planetary Science Letters, 1988,90(3):297-314.
    [102]Green T H. Significance of Nb/Ta As an Indicator of Geochemical Processes in the Crust-Mantle System[J]. Chemical Geology,1995,120(3/4):347-359.
    [103]汪洋.北京白查A型花岗岩的地球化学特征及其成因与构造指示意义[J].岩石学报,2009,25(1):13-24.
    [104]Rudnick R L, Gao S. Composition of the Continental Crust[C]//Rudniek R L. The Crust. Treaties on Ceochemistry. Oxford:Esevier Pergamon,2003:1-64.
    [105]邵济安,牟保磊,朱慧忠,等.大兴安岭中南段中生代成矿物质的深部来源与背景[J]岩石学报,2010,26(3):649-656.
    [106]郭奎城,张文龙,杨晓平,等.黑河市五道沟地区早二叠世A型花岗岩成因[J].吉林大学学报(地球科学版),2011,41(4):1077-1083.
    [107]Whalen J B, Currie K L, Chappell B W. A-type Granites:Geochemical Characteristics, Discriminatuon and Petrogenesis[J]. Contributions to Mineralogy and Petrology,1987,95:407-419.
    [108]Collins W J, Beams S D, White A J R, et al. Nature and origin of A-type granites with articular reference to southeastern Australia[J]. Contributions to Mineralogy and Petrology,1982,80,189-200.
    [109]Eby G N. Chemical Subdivision of the A-type Granitoids:Petrogenetic and Tectonic Implications[J]. Geology,1992,20(7):641-644.
    [110]Sylvester P J. Post-collisional Strongly Peraluminous Granites [J]. Lithos,1998, 45(1/4):29-44.
    [111]Tuttle O F, Bowen N L. Origin of Granite in the Light of experimental studies in the system-NaAlSi3O8-KAlSi3O8-SiO2-H2O [M]. Boulder:The Geological Society of America,1958.
    [112]石得凤.福建尤溪丁家山铅锌矿矿床成因、成矿机理及成矿规律研究[D].长沙:中南大学,2012.
    [113]张旗,王焰,浅青,等.中国东部燕山期埃达克岩的特征及其构造—成矿意义[J].岩石学报,2001,17:236-244.
    [114]谭俊,魏俊浩,李水如,等.广西昆仑关A型花岗岩地球化学特征及构造意义[J].地球科学—中国地质大学学报,2008,33(6):743-754.
    [115]张旗,冉皞,李承东.A型花岗岩的实质是什么?[J].岩石矿物学杂志,2012,31(4):621-626.
    [116]Pearce J A, Harris N B W, Tindle A G. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks [J]. Journal of Petrology,1984,25(4):956-983.
    [117]Pearce J A. Source and Setting of Granitic Rocks[J]. Episodes,1996, 19(4):120-125.
    [118]真允庆.五台山—恒山一带金、银多金属矿床同位素地球化学及其成矿模型[J].桂林工学院学报,2004,24(2):127-137.
    [119]Lebas M J, Maitre R W, Streckeisen A, et al. A chemical classification of volcanic rocks based on the total alkali-silica diagram[J]. Journal of Petrology, 1986,27:745-750.
    [120]Irvine T N, Baragar W R A. A guide to the chemical classification of the common volcanic rocks[J]. Canadian Journal of Earth Sciences, 1971,8(5):523-548.
    [121]Wright J B. A simple alkalinity ratio and its application to questions of non-orogenic granite genesis[J]. Geological Magazine,1969,106(4):370-384.
    [122]Green T H, Pearson N J. An expermental study of Nb and Ta partitioning between Ti-rich minerals and silicate liquids at high pressure and temperature[J]. Geochimica et Cosmochimica Acta,1987,51(1):55-62.
    [123]Rittman A, Sato M. Structure and evolution of Mount Etna[J]. Philosophical Transactuibs of the Royal Society,1973,274:5-16.
    [124]Glassily W. Geochemistry and tectonics of the Grescent volcanic rocks, Olympic Peninsula, Washington[J]. Geol. Soc. Am. Bull.,1974,85,785-794
    [125]Pearce J A, Cann R C. Tectonic setting of basic volcanic rocks determined using trace element analyses[J]. Earth Planet Sci. Lett.,1973,19:290-300.
    [126]Pearce J A. Geochemical evidence for the genesis and eruptive setting of lavas from Tethyan Ophiolites[C]. proc. Int. Ophiolites Symp,1980:261-272.
    [127]赵崇贺.中基性火山岩成分的ATK图解与构造环境[J].地质科技情报,1989,8(4):1-5.
    [128]马鸿文.新疆西准蛇绿岩地质特征及含矿性研究报告[R],1990,89-100.
    [129]李新虎,罗杰,刘东.测井曲线的沉积旋回划分方法及应用[J].西安科技大学学报,2010,30(6):702-705.
    [130]Rivera N A, Ray S, Jensen J L, et al. Detection of cyclic patterns using wavelets: an example study in the Ormskirk sandstone, Irish sea[J]. Mathematical Geology,2004,36(5):529-543.
    [131]Zhang Liu-ping, Ruan Tian-jian. Application of wavelet analysis to interference elimination for geochemical hydrocarbon exploration[J]. Journal of China University of Geosciences,2000,11(1):89-91.
    [132]Zhang Liu-ping, Bai Guo-ping, Xu Yi-xian. A wavelet-analysis-based new approach for interference elimination in geochemical hydrocarbon exploration[J]. Mathematical Geology,2003,35(8):939-952.
    [133]申维.深部找矿非线性定量理论与技术方法研究进展综述[J].地学前缘,2010,17(5):278-288.
    [134]Zhang Heng-lei, Song Shuang, Liu Tian-you. The ridgelet transform with non-linear threshold for seismic noise attenuation in marine carbonates [J]. Applied Geophysics,2007,4(4):271-275.
    [135]韩世礼,张术根,柳建新,等.地球化学小波分析在火山旋回韵律厘定中的应用—以埃塞俄比亚北部施瑞地区为例[J].中南大学学报(自然科学版),2012,43(11):4388-4394.
    [136]朱红涛,黄众,刘浩冉,等.利用测井资料识别层序地层单元技术与方法进展及趋势[J].地质科技情报,2011,30(4):29-36.
    [137]陈建国,夏庆霖.利用小波分折提取深层次物化探异常信息[J].地球科学-中国地质大学学报,1999,24(5):509-512.
    [138]候遵泽,杨文采.小波分析应用研究[J].物探化探计算技术,1995,17(3):1-9.
    [139]胡昌华,张军波,夏军,等.基于MATLAB的系统分析与设计—小波分析[M].西安:西安电子科技大学,2000:100-150.
    [140]Daubechies I. Ten lectures on wavelets[M]. Phila-delphia:SIAM,1992:5-10.
    [141]董长虹.Matlab小波分析工具箱原理与应用[M].北京:国防工业出版社,2004:10-20.
    [142]赵伟,邱隆伟,姜在兴,等.小波分析在高精度层序单元划分中的应用[J].中国石油大学学报(自然科学版),2009,33(2):18-22.
    [143]Crick R E, Ellwood B B, Hladil J, et al. Magnetostratigraphy susceptibility of the Pridolian-Lochkovian (Silurian-Devonian) GSSP (Klonk, Czech Republic) and a coeval sequence in Anti-Atlas Morocco. Palaeogeogr Palaeocl Palaeoecol, 2001,167:73-100.
    [144]中色金地资源科技有限公司,埃塞美达矿业有限公司.埃塞俄比亚提格雷州施瑞地区特瑞铜多金属矿区地质勘探报告[R].北京:中色金地资源科技有限公司,埃塞俄比亚:埃塞美达矿业有限公司,2010.
    [145]中色金地资源科技有限公司,埃塞俄比亚瑞丰矿业有限责任公司.埃塞俄比亚北部特拉喀密提、纳法斯特、哈姆罗、埃古博、阿迪勒不芮德、迈珠华纳溪铜多金属矿地质勘查报告[R].北京:中色金地资源科技有限公司,埃塞 俄比亚:埃塞俄比亚瑞丰矿业有限责任公司,2010.
    [146]王中杰.内蒙古四子王旗白乃庙铜矿地质特征及矿床成因研究[D].北京:中国地质大学,2011.
    [147]Nesbitt H W, Young G M. Early Proteozoic limates and plate motions inferred from major element chemistry of lutites[J].Nature,1982,299:715-727.
    [148]Panahi A, Young G M, Rainbird R H. Behavior of major and trace elements (including REE) during Paleoprot-erozoic pedogenesis and diagenctic alteration of an Archean granite near Ville Marie, Quebec, Canada[J]. Geochimica et Cosmochimica Acta,2000,64:2199-2220.
    [149]Ishikawa Y, Sawaguchi T, Iways S. Delineation of prospecting targets for Kuroko deposits based on modes of volcanism of underlying dacite and alteration halos[J]. Mining Geology,1976,26:105-124.
    [150]Large R R, Gemmell J B, Paulick H, et al. The alteration box plot:A simple approach to understanding the relationship between alteration mineralogy and lithogeochemistry associated with volcanic hosted massive sulfide deposits. Economic Geology,2001,96:957-971.
    [151]侯增谦,浦边郎.古代与现代海底黑矿型块状硫化物矿床矿石地球化学比较研究[J].地球化学,1996,25(3):228-24.
    [152]韩世礼,张术根,丁俊,等.稀土元素地球化学在成矿系统厘定及矿床成因分析中的应用—以印度尼西亚塔里亚布岛铁多金属矿田为例[J].中国有色金属学报,2012,22(3):784-794.
    [153]Sangster D F. Sulphur and lead isotopes in strata bound deposits[C]//Wolf K H. Handbook of strata-bound and stratiform ore deposits, Amsterdam: Elsevier,1976,2:219-266.
    [154]Franklin J M, Lydon J W, Sangster D F. Volcanic-associated massive sulfide deposits[M]. Economic Geology,1981.
    [155]刘文化,张殿龙,杨晋升,张涛.山东埠上金矿黄铁矿成因矿物学研究[J].黄金科学技术,2011,19(2):47-51.
    [156]范长福,李培斌,王志峰.热液金矿床中黄铁矿特征[J].科技论坛,2011,8:36.
    [157]徐万臣,赵秀英,邢玉屏.二道沟金矿床中黄铁矿的标型特征[J].辽宁地质,1991,4:314-321.
    [158]周涛发,张乐骏,袁峰,等.安徽铜陵新桥Cu-Au-S矿床黄铁矿微量元素LA-ICP-MS原位测定及其对矿床成因的制约[J].地学前缘,2010,17(2): 306-319.
    [159]Springer G, Schachner-Korn D, Long J V P. Metastable solid so-lution relations in the system FeS2-CoS2-NiS2 [J]. Economic Geology,1964,59:475-491.
    [160]Brill B A. Trace-element contents and partitioning of elements in ore minerals from the Csa Cu-Pb-Zn deposit, Australia [J]. Ca-nadian Mineralogist,1989, 27:263-274.
    [161]Raymond O L. Pyrite composition and ore genesis in the Prince Lyell copper deposit, Mt Lyell mineral field, western Tasmania, Australia [J]. Ore Geology Reviews,1996,10:231-250.
    [162]刘成湛,滕文超.甘肃白银厂黄铁矿中的Co/Ni比及矿床成因初探[J].桂林冶金地质学院学报,1982,1:45-50.
    [163]彭丽娜,魏俊浩,孙晓雁,等.浙东南怀溪铜金矿床黄铁矿标型特征及其地质意义[J].地质与勘探,2009,45(5):577-587.
    [164]梅建明,浙江遂昌治岭头金矿床黄铁矿的化学成分标型研究[J].现代地质,2000,14(1):51-55.
    [165]Yardley B W D. An Introduction to Metamorphic Petrology (Longman Earth Science Series)[M]. London:Prentice Hall,1989.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700