单分散α-Al_2O_3纳米颗粒粉体的制备与表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究本着两个主要的研究思想:一是从制取α-Al_2O_3纳米颗粒的方法上探求出一种低成本、高产出的新的制取方法;二是从制备α-Al_2O_3纳米颗粒的过程中来对其形貌和尺寸实现人为地控制,探索由简单的液相沉淀法批量制备单分散的α-Al_2O_3纳米颗粒的制备工艺。以廉价的硝酸铝、氨水为原料采用化学沉淀法制备出α-Al_2O_3的前驱物-氢氧化铝,通过分析不同晶体结构的氢氧化铝在相转变过程中的热行为、晶粒长大现象、以及得到最终产物α-Al_2O_3的产率;再藉由不同的处理方式,研究处理过的氧化铝前驱体在煅烧过程的晶型转变及α-Al_2O_3晶粒的成核与长大,观察在低温下所制得α-Al_2O_3纳米颗粒的颗粒尺寸、团聚程度;自主研发了一种新型的制备方法,隔离相辅助煅烧方法。通过在氧化铝前驱体里混入隔离相,研究隔离相在煅烧过程中的隔离机制与所制得α-Al_2O_3纳米颗粒的粒径、分散性的关系。
     研究结果表明,在氧化铝前驱体中加入的α-Al_2O_3晶种提供异质成核点,使得α-Al_2O_3晶粒在过渡态Al_2O_3基质中的异质成核的活化能△G_(hu)极大地降低,促使α-Al_2O_3晶相在相对较低的温度形成,获得低团聚的α-Al_2O_3纳米颗粒粉体。
     前驱体的软研磨处理,在微细化粉体颗粒的同时,会造成Al原子亚晶格的紊乱,促使由紊乱的Al原子亚晶格组成的变形结构向更稳定的α-Al_2O_3晶相转变。同时,在研磨处理过程,软研磨的提供的能量可能会促使某些活性羟基的脱去,但没有剩余或足够大的能量使颗粒表面吸附的羟基键合,因而不会使得氧化铝前驱体颗粒间因形成氢键而团聚厉害。
     在研磨活化和添加α-Al_2O_3晶种的共同作用下,α-Al_2O_3前驱体在煅烧过程通过α-Al(OH)_3→γ-AlOOH→γ-Al_2O_3→α-Al_2O_3晶相转变途径转化为α-Al_2O_3晶相,α-Al_2O_3晶相的起始形成、相变完成温度分别降低了800℃与150℃,获得的α-Al_2O_3粉也由平均粒径100 nm的严重烧结的颗粒粉体变为平均粒径40 nm分散的颗粒粉体。
     在研磨活化和添加α-Al_2O_3晶种的共同作用下,较细结构的γ-Al(OH)_3前驱体在煅烧过程,小部分通过γ-Al(OH)_3→χ-Al_2O_3→α-Al_2O_3晶型转变途径在300℃直接转变部分α-Al_2O_3晶粒,大部分通过γ-Al(OH)_3→χ-Al_2O_3→κ-Al_2O_3→α-Al_2O_3晶型转化途径转化为α-Al_2O_3晶粒;基于χ-Al_2O_3、κ-Al_2O_3以及α-Al_2O_3三者结构上的相似性,α-Al_2O_3晶粒更容易的异质成核,在750℃煅烧时保温10天几乎完全转变为α-Al_2O_3晶相,制得分散的20 nm近球型α-Al_2O_3纳米颗粒。
     采用的隔离相辅助煅烧方法,即在制备α-Al(OH)_3前驱体过程中引入化学稳定的无机盐充当隔离相辅助煅烧。隔离相的含量,对制备单分散的α-Al_2O_3纳米颗粒的尺寸、形貌以及团聚程度有直接的影响。隔离相含量太低时,不能完全隔离开Al_2O_3纳米颗粒,煅烧时发生纳米颗粒间烧结、团聚以及长大。随隔离相含量增加,α-Al_2O_3纳米颗粒间烧结、团聚明显减弱,但氧化铝前驱体转变为α-Al_2O_3晶相所需的煅烧温度升高;同时,在煅烧时,在液态NaCl隔离相和固态Al_2O_3纳米颗粒相的混合体系中发生固液两相相分离,使得制得的α-Al_2O_3纳米颗粒呈现α-Al_2O_3多晶大颗粒与α-Al_2O_3单晶小颗粒两种形态。对制备单分散的α-Al_2O_3纳米颗粒,隔离相的含量存在临界值;当隔离相与硝酸铝的摩尔比为20:1时,隔离相在煅烧时有效地隔离Al_2O_3纳米颗粒,避免Al_2O_3纳米颗粒在高温煅烧时粗化、烧结以及长大,在1000℃煅烧就可以制得颗粒尺寸分布窄、平均粒径10nm的单分散球形α-Al_2O_3纳米颗粒。
Two strategies forα-Al_2O_3 nanopowder preparation are presented in this dissertation. One is to develop a new method with low cost and high yield to prepare nanosizedα-Al_2O_3 powders. And the other one is to realize artificial control ofα-Al_2O_3 nanoparticle size and shape during the preparation process. A simple chemical precipitation method was explored to prepare monodiperseα-Al_2O_3 nanoparticles. The cheap aluminum nitrate and ammonia were used as raw materials to prepared alumina precursors, aluminum hydroxides, by chemical precipitation. Thermal behavior, grain growth, andα-Al_2O_3 productivity of aluminum hydroxides with different crystal structures during phase transformation process were analyzed. During calcinations, the phase transformation of precursors withα-Al_2O_3 seeding and grinding treatment and the nucleation and grain growth ofα-Al_2O_3 were investigated. The particle size and agglomeration degree of calcinatedα-Al_2O_3 nanopowder were analyzed. Then, a novel calcinations method, namely the isolating phase assistant calcination, was developed to prepare monodisperseα-Al_2O_3 nanoparticles. That is, by introducing a salt as isolating phase to isolate alumina precursor particles to avoid the contacts between the alumina precursor particles, between the transition alumina particles as well as between theα-Al_2O_3 particles to eliminate the particle growth and agglomeration of theα-Al_2O_3 particles during calcinations.
     It was found that addition ofα-Al_2O_3 seeds in alumina precursors could supply the heterogeneous nucleation sites, reduce the activation energy of heterogeneous nucleation ofα-Al_2O_3 grains in transition Al_2O_3 matrix, and accelerate the formation of theα-Al_2O_3 crystal phase at relative low temperatures to obtainα-Al_2O_3 nanopowder with low-degree agglomeration.
     Soft grinding treatment of precursors refines the precursor particles, results in the lattice distortion of the initial particles, and leads to a strained framework of disordered Al-atom sublattice to easily rearrange into the stable framework ofα-Al_2O_3 phase. Meanwhile, the energy introduced by soft grinding might lead to the removal of a part of active hydroxyl but is not enough to bond the hydroxyl adsorbed on the surface of particles; thus no serious agglomeration due to the formation of hydrogen bond between alumina precursor particles was formed.
     Due toα-Al_2O_3 seeding and soft-grinding treatment, bayerite undergoes a series of phase transformations via theα-Al(OH)_3→γ-AlOOH→γ-Al_2O_3→α-Al_2O_3 path without the formation of theθ-Al_2O_3 transition phase and transforms intoα-Al_2O_3 crystal phase. The onset and completion temperatures of the transformation toα-Al_2O_3 in the ground bayerite are about 800℃and 150℃lower than that in the unground bayerite, respectively. The obtainedα-Al_2O_3 nanoparticles with an average diameter of 40 nm are relatively disperse.
     Due toα-Al_2O_3 seed addition and soft-grinding treatment, during calcinations of fine gibbsiteγ-Al(OH)_3, a small part ofγ-Al(OH)_3 transformed intoα-Al_2O_3 at 300℃viaγ-Al(OH)_3→χ-Al_2O_3→α-Al_2O_3 phase transition sequence, and mostγ-Al(OH)_3 transformed intoα-Al_2O_3 viaγ-Al(OH)_3→χ-Al_2O_3→κ-Al_2O_3→α-Al_2O_3 phase transition path. The similar structures ofα-Al_2O_3,κ-Al_2O_3, andχ-Al_2O_3 (hexagonal closed-packing of oxygen atoms) lead to more easy heterogeneous nucleation; disperseα-Al_2O_3 nanoparticles with an average diameter of 20 nm were achieved by calcining ground gibbsite at 750℃for 10 days.
     The isolating phase assistant calcination method was employed to preapre monodieperseα-Al_2O_3 nanoparticles. In this novel method, the inorganic salt (NaCl) serving as isolating phase was introduced in preparation process of precursor,α-Al(OH)_3. The content of isolating phase influences directly the particle size, shape, and agglomeration of theα-Al_2O_3 nanoparticles. When a small quantity of isolating phase was used, the Al_2O_3 nanoparticles could not be isolated completely; and the sintering, agglomeration, and grain growth ofα-Al_2O_3 nanoparticles occurred. With increasing content of the isolating phase, the sintering, agglomeration, and grain growth ofα-Al_2O_3 nanoparticles obviously reduce, but the completation temperature of phase transformation ofα-Al_2O_3 increases. Meanwhile, during calcinations at high temperatures, the solid phase-liquid phase segregation occurred in the system composed of a liquid isolating phase (NaCl) and a solid phase of the Al_2O_3 nanoparticles. The solid phase-liquid phase segregation occurring during high temperature calcinations results in two sorts ofα-Al_2O_3 nanoparticles. One sort ofα-Al_2O_3 nanoparticles formed in the region of relatively higher isolating phase content and were small single-crystal nanoparticles of about 10 nm in size. The other sort ofα-Al_2O_3 nanoparticles formed in the region of relatively lower isolating phase content and were large polycrystal nanoparticles of 20-30 nm in size. For preparation of monodisperseα-Al_2O_3 nanoparticles, the isolating phase content has a critial value. When the molar ratio of salt to aluminum nitrate is about 20:1, the isolating phase can isolate the Al_2O_3 nanoparticles well to avoid the sintering, agglomeration, and grain growth of Al_2O_3 nanoparticles during calcinations. Monodisperse and sphericalα-Al_2O_3 nanoparticles with a narrow size distribution and an average diameter of 10 nm were obtained by a 1000℃calcination.
引文
[1] J. Karch, R. Birringer, H. Gleiter. Ceramics ductile at low temperature [J]. Nature, 1987, 330, 556-558.
    [2] H. Gleiter. Nanocrystalline materials [J]. Prog. Mater. Sci., 1989, 33, 223-315.
    [3] M. J. Mayo, D. C. Hague, D. J. Chen. Processing nanocrystalline ceramics for applications in superplasticity [J]. Mater. Sci. Eng., 1993, A166, 145-159.
    [4] M. J. Mayo. Synthesis and application of nanocrystalline ceramics [J]. Mater. Des., 1993, 16,323-329.
    [5] H. Hahn. Microstructure and properties of nanostructured oxides [J]. Nanostruct. Mater., 1993,2,251-265.
    [6] A. G. Euans. Engineering property requirements for high performance ceramics [J]. Mater. Sci. Eng., 1985, 71, 3-21.
    [7] 张立德,牟季美.纳米材料和纳米结构[M].北京,科学出版社,2001.
    [8] H. Suzuki. Recent trends in the development of fine ceramics in Japan [J]. Mater.Sci. Eng., 1985, 71, 211-226.
    [9] M. Pal, D. Chakravorty. Superplasticity in Nanoceramics. Encyclopedia of Nanoscience and Nanotechnology [M], (Am., American Scientific Publishers), 2004, 10,237-245.
    [10] I. Levin, D. Brandon. Metastable alumina polymorphs: crystal structures and transition sequences [J]. J. Am. Ceram. Soc., 1998, 81, 1995-2012.
    [11] F. W. Dynys, J. W. Halloran. Alpha alumina formation in alum-derived gamma alumina [J]. J. Am. Ceram. Soc., 1982, 65, 442-448.
    [12] H. L. Wen, Y. Y. Chen, F. S. Yen, C. Y. Huang. Size characterization of θ- and α-Al_2O_3 crystallites during phase transformation [J]. Nanostruct. Mater., 1999, 11,89-101.
    [13] P. L. Chang, F. S. Yen, K. C. Cheng, H. L. Wen. Examinations on the critical and primary crystallite sizes during θ-to-α phase transformation of ultrafine alumina powders [J]. Nano Lett., 2001, 1, 253-261.
    [14] D. Turnbull, B. Vonnegut. Nucleation catalysis [J]. Ind. Eng. Chem., 1952, 44, 1292-1298.
    [15] C. Scott Nordahl, Gary L. Messing. Sintering of α-Al_2O_3-seeded nanocrystalline γ-Al_2O_3 powders [J]. J. Eur. Ceram. Soc., 2002, 22, 415-422.
    [16] G. Urretavizcaya, J. J. P. Lopez. Thermal transformation of sol-gel alumina into α-phase: effect of α-Al_2O_3 seeding [J] . Mater. Res. Bull., 1992, 27, 375-385.
    [17] J. Tartaj, G. L. Messing. Anisotropic grain growth in α-Fe_2O_3-doped alumina [J]. J. Eur. Ceram. Soc., 1997, 17, 719-725.
    [18] 曾庆猛.氧化铝市场前景分析[J].世界有色金属,2005,12,25-29.
    [19] A. M. Thompson, H. M. Chan, M. P. Harmer, R. E. Cook. Crack healing and stress relaxation in Al_2O_3-SiC nanocomposites [J]. J. Am. Ceram. Soc., 1995, 78, 567-571.
    [20] 马如璋,蒋尼华,徐祖雄.功能材料科学概论[M].北京,冶金工业出版社,1999.
    [21] 张贤利,李福生,方道胶.荧光粉层一氧化铝保护膜层光学特性的研究[J].照明工程学报,2001,12,9-12.
    [22] R. W. Maatman. How to make a more effective platinum-alumina catalyst [J]. Ind. Eng. Chem., 1959, 51, 913-917.
    [23] 田明原,施尔威,仲维卓,庞文琴,郭景坤.纳米陶瓷与纳米陶瓷粉末[J].无机材料学报,1998,13,129-137.
    [24] S. L. Jones, C. J. Norman. Dehydration of hydrous zirconia with methanol [J]. J. Am. Ceram. Soc., 1988, 71, c190-c191.
    [25] M. S. Kaliszewski, A. H. Heuer. Alcohol interaction with zirconia powders [J]. J. Am. Ceram. Soc., 1990, 73, 1504-1509.
    [26] A. Maskra, D. M. Smith. Agglomration during the drying of fine silica powders, part Ⅱ: the role of particle solubility [J]. J. Am. Ceram. Soc., 1997, 80, 715-722.
    [27] G. R. Karagedov, N. Z. Lyakhov. Preparation and sintering of nanosized α-Al_2O_3 powder [J]. Nanostruct. Mater., 1999, 11, 559-572.
    [28] Y. G. Wang, C Suryanarayana, L. An. Phase transformation in nanometer-sized γ-Alumina by mechanical milling [J]. J. Am. Ceram. Soc., 2005, 88, 780-783.
    [29] E. Kostic, S. Kiss, S. Boskovic, S. Zec. Mechanical activation of the gamma to alpha transition in Al_2O_3 [J]. Powder Technol., 1997, 91, 49-54.
    [30] P. A. Zielinski, R. Schulz, S. Kaliaguine, A. Van Neste. Structural transformations of alumina by high energy ball-milling [J]. J. Mater. Res., 1993, 8, 2985-2992.
    [31] A. Tonejc, M. Stubicar, A.M. Tonejc, K. Kosanovic, B. Subotic, I. Smit. Transformation of γ-AlOOH (boehmite) and Al(OH)_3 (gibbsite) to α-Al_2O_3 (corundum) induced by high-energy ball-milling [J]. J. Mater. Sci. Lett., 1994, 13, 519-520.
    [32] M. L. Panchula, J. Y. Ying. Mechanical synthesis of nanocrystalline α-Al_2O_3 seeds for enhanced transformation [J]. Nanostruct. Mater., 1997, 9, 161-164.
    [33] G. D. Zhan, J. Kuntz, J. Wan, J. Garay, A. K. Mukherjee. A novel processing route to develop a dense nanocrystalline alumina matrix (<100 nm) nanocomposite material [J]. J. Am. Ceram. Soc., 2003, 86, 200-202.
    [34] J. Z. Jiang, S. Morup, S. Linderoth. Formation of 25 mol% Fe_2O_3-Al_2O_3 solid solution by high-energy ball milling [J]. Mater. Sci. Forum, 1996, 225-227, 489-496.
    [35] 李友凤,周继承.氧化铝纳米材料的制备与应用[J].硬质合金,2003,20,242-245.
    [36] K. Morinaga, T. Torikai, K. Nakagawa, S. Fujino. Fabrication of fine α-alumina powders by thermal decomposition of ammonium aluminum carbonate hydroxide (AACH) [J]. Acta Mater., 2000, 48, 4735-4741.
    [37] E. Borsella, S. Bottis. Laser-driven synthesis of nanocrystalline alumina powder from gas-phase precursors [J]. Appl. Phys. Lett., 1993, 63, 1345-1347.
    [38] K. H. Kim, C. H. Ho, T. G. Suh, S. Prakash, R. F. Bunshah. Ultrafine aluminum oxide powder prepared by chemical vapor deposition of trimethylaluminum [J]. J. Mater. Eng., 1991, 13, 199-205.
    [39] 李晓杰.氧化物粉末的爆轰合成方法[P].中国专利,申请号:200410020553,分类号:C01B13/14,2004.
    [40] X. Li, R. Li, Z. Zhao, X. Xie, Y. Qu, Z. Wang, T. Chen. Ultrafine aluminum oxide production by detonation [J]. Explosion and Shock Waves, 2005, 25, 145-150.
    [41] 李继光,孙旭东,张民.碳酸铝钱热分解制备α-Al_2O_3超细粉[J].无机材料学报,1998,13,803-807.
    [42] I. N. Bhattacharya, J. K. Pradhan, P. K. Gochhayat, S. C. Das. Factors controlling precipitation of finer size alumina trihydrate [J]. Int. J. Miner. Process., 2002, 65, 109-124.
    [43] B. Felde, A. Mehner, F. Hoffmann, P. Mayr. Synthesis of ultrafine alumina powder by sol-gel techniques [J]. Adv. Sci. Technol., 1999, 13, B49-56.
    [44] W. M. Zeng, L. Gao, J. K. Guo. A new sol-gel route using inorganic salt for synthesizing Al_2O_3 nanopowders [J]. Nanostruct. Mater., 1998, 10, 543-550.
    [45] H. Wang, L. Gao, W. Li, Q. Li. Preparation of nanoscale α-Al_2O_3 powders by the polyacrylamide gel method [J]. Nanostruc. Mater., 1999, 8, 1263-1267.
    [46] H. Zhu, J. Riches, J. Barry. γ-Alumina nanofibers prepared from aluminum hydrate with poly(ethylene oxide) surfactant [J]. Chem. Mater., 2002, 14, 2086-2093.
    [47] J. Yang, S. Mei, J. M. F. Ferreira. Hydrothermal synthesis of submicrometer α-alumina from seeded tetraethylammonium hydroxide-peptized aluminum hydroxide [J]. J. Am. Ceram. Soc., 2003, 86, 2055-2058.
    [48] 周恩绚,胡学寅.用相转移分离法制备α-Al_2O_3超细粒子[J].化学通报,1997,4,38-40.
    [49] 方佑龄,赵文宽.透明超微粒子氧化铝的制备[J].武汉大学学报,1996,42,13-16.
    [50] J. Li, Y. Ye. Densification and grain growth of Al_2O_3 nanoceramics during pressureless sintering. J. Am. Ceram. Soc., 2006, 89, 139-143.
    [1] J. W. Mullin. Crystallization (3rd ed.) [M]. U.K., Butterworth-Heimemann, 1993.
    [2] 周英彦,高首山,李红霞,李莉香.关于成核速率公式的研究[J].中国粉末技术,2000,6,287-294.
    [3] T. Sugimoto. Fine particles: synthesis, characterization, and mechanisms of growth [M]. N.Y., Marcel Dekker, 2000.
    [4] 李藯强.湿化学法合成陶瓷粉料的原理和方法[J].硅酸盐学报,1994,22,85-91.
    [5] 曹茂盛.超微颗粒制备科学与技术[M].哈尔滨,哈尔滨工业大学出版社,1998.
    [6] J. N. Ness, E. T. White. Collision nucleation in an agitated crystallizer [J]. AIChESymp. Ser., 1976, 72, 64-72.
    [7] M. Aoun, E. Plassari, R. David. A simultaneous determination of nucleation and growth rates from batch spontaneous precipitation [J]. Chem. Eng. Sci., 1999, 54, 1161-1180.
    [8] A. E. Nielsen. Homogeneous nucleation in barium sulphate precipitation [J]. Acta. Chem. Scand., 1961, 15, 441-442.
    [9] J. A. Dirksen, T. A. Ring. Fundamentals of crystallization: kinetic effects on particle size distributions and morphology [J]. Chem. Eng. Sci., 1991, 46, 2389-2427.
    [10] C. Misra, E. T. White. Kinetics of crystallization of aluminum trihydroxide from seeded caustic aluminate solutions [J]. AIChE Symp. Ser., 1971, 67, 53-61.
    [11] A. Tanimoto, K. Kobayashi, S. Fujita. Overall crystallization rate of copper sulfate pentahydrate in an agitated vessel [J]. Int. Chem. Eng., 1964, 4, 153-159.
    [12] A. S. Michaels, A. R. Colville. The effect of surface active agents on crystal growth rate and crystal habit [J]. J. Phys. Chem., 1960, 64, 13-19.
    [13] E.B.哈姆斯基(著);古涛,叶铁林(译).化学工业中的结晶[M].北京,化学工业出版社,1984.
    [14] 张克从,张乐惠.晶体生长科学与技术[M].北京,科学出版社,1997.
    [15] Y. Liu, G. H. Nancollas. Crystallization and colloidal stability of calcium phosphate phases [J]. J. Phys. Chem. B, 1997, 101, 3464-3468.
    [16] M. Volmer. Kinetik de phasenbildung [M]. Dresden-Leipzig, Steinkopff, 1939.
    [17] M. Volmer, A.Weber. Nucleus formation in supersaturated systems [J]. Z. Phys. Chem., 1926, 119,277-289.
    [18] A. S. Bramley, M. J. Hounslow, R. L. Ryall. Aggregation during precipitation from solution: kinetics for calcium oxalate monohydrate [J]. Chem. Eng. Sci., 1997,52,747-757.
    [19] T. Sugimoto. Preparation of monodispersed colloidal particles [J]. Adv. Colloid Interf. Sci., 1987,28,65-108.
    [20] 赵国玺.表面活性剂物理化学[M].北京,北京大学出版社,1991.
    [21] K. Schmok. Modeling of mechanism of agglomeration KCl crystallization [J]. Cryst. Res. Technol., 1988, 23, 967-972.
    [22] P. More, A. Mersmann. Batch precipitation of barium carbonate [J]. Chem. Eng. Sci., 1993,4,3083-3087.
    [23] S. Melis, M. Verduyn. Effect of fluid motion on the aggregation of small particles subject to interaction forces [J]. AIChE J., 1999, 45, 1383-1393.
    [24] J. Mydlarz, A. G. Jones. Crystallization and agglomeration kinetics during the batch drawing-out precipitation of potash alum with aqueous acetone [J]. Powder Technol., 1991,65, 187-194.
    [25] E. J. W Verwey, J. T. G Overbeek. Theory of the stability of lyophobic colloids [M]. London, Courier Dover Publications, 1999.
    [26] J. P. Hsu, B. T. Liu. Effect of particle size on critical coagulation concentration [J]. J. Colloid Interf. Sci., 1998, 198, 186-189.
    [27] R. Zahradnik, P. Hobza. Weak intermolecular interactions: statics and dynamics [J]. Int. J. Quantum Chem., 1985, 29, 663-676.
    [28] J. T. G Overbeek. The role of energy and entropy in the electrical double layer [J]. Colloid Surface, 1990, 51, 61-75.
    [29] N. P. Rajesh, P. S. Raghavan, P. Ramasamy, C. W. Lan. Enhancement of metastable zone of some aqueous solutions [J]. J. Chin. Inst. Chem. Eng., 2002, 33,325-331.
    [30] M. J. Houslow, H. S. Mumtaz. A micro-mechanical modal for the rate of aggregation during precipitation from solution [J]. Chem. Eng. Sci., 2001, 56, 2543-2552.
    [31] J. Franke, A. Mersmann. The influence of the operational conditions on the precipitation process [J]. Chem. Eng. Sci., 1995, 50, 1737-1753.
    [32] H. S. Mumtaz, M. J. Hounslow. Aggregation during precipitation from solution: anexperimental investigation using poiseuille flow [J]. Chem. Eng. Sci., 2000, 55,5671-5651.
    [33] J. C. Kim, K. H. Auh, D. M. Martin. Multi-level particle packing model of ceramic agglomerates [J]. Model. Simul. Mater. Sci., 2000, 8, 159-168.
    [34] M. S. Kaliszewski, A. H. Heuer. Alcohol interaction with zirconia powders [J]. J. Am. Ceram. Soc., 1990, 93, 1504-1509.
    [35] A. Maskara, D. M. Smith. Agglomeration during the drying of fine silica powders, part Ⅱ: the role of particle solubility [J]. J. Am Ceramic Soc., 1997, 80, 1715-1722.
    [36] G. W. Scherer. Drying gels L general theory [J]. J. Non-Cryst. Solids, 1986, 87, 199-225.
    [37] J. L. Shi, J. H. Gao, Z. X. Lin, D. S. Yan. Effect of agglomerate in superfine zirconia powder compacts on the microstructur development [J]. J. Mater. Sci., 1993,28,342-346.
    [38] 高镰,孙静.纳米粉体的分散与表面改性[M].北京,化学工业出版社,2003.
    [39] 赵国玺.表面活性剂物理化学[M].北京,北京大学出版社,1991.
    [40] F. W. Dynys, J. W. Halloran. Alpha alumina formation in alum-derived gamma alumina [J]. J. Am. Ceram. Soc., 1982, 65, 442-448.
    [41] C. J. P. Steiner, D. P. H. Hasselman, R. M. Spriggs. Kinetics of the gamma to alpha alumina phase transformation [J]. J. Am. Ceram. Soc., 1971, 54, 412-413.
    [42] M. Kumagai, G. L. Messing. Enhanced densification of boehmite sol-gels by α-alumina seeding [J]. J. Am. Ceram. Soc., 1984, 67, C-230-231.
    [43] M. Kumagai, G. L. Messing. Controlled transformation and sintering of a boehmite sol-gel by α-alumina seeding [J]. J. Am. Ceram. Soc., 1985, 68, 500-505.
    [44] R. A. Shelleman, G. L. Messing, M. Kumagai. Alpha alumina transformation in seeded boehmite gels [J]. J. Non-Cryst. Solids, 1986, 82, 277-285.
    [45] J. L. McArdle, G. L. Messing. Transformation and microstructure control in boehmite-derived alumina by ferric oxide seeding [J]. Adv. Ceram. Mater., 1988, 3, 387-392.
    [46] L. Pach, R. Roy, S. Komarneni. Nucleation of alpha alumina in boehmite gel [J]. J. Mater. Res., 1990, 5, 278-285.
    [47] G. Urretavizcaya, J. M. Porto Lopez. Thermal transformation of sol-gel alumina into α-phase: effect of α-Al_2O_3 seeding. Mater. Res. Bull., 1992, 27, 375-385.
    [48] N. S. Bell, S. B. Cho, J. H. Adair. Size control of α-alumina particles synthesized in 1,4-butanediol solution by α-alumina and α-hematite seeding [J]. J. Am. Ceram. Soc, 1998, 81, 1411-1420.
    [49] E. Suvaci, G. L. Messing. Seeding of the reaction-bonded aluminum oxide process [J]. J. Am. Ceram. Soc, 2001, 84, 657-659.
    [50] C. Scott Nordahl, Gary L. Messing. Thermal analysis of phase transformation kinetics in α-Al_2O_3 seeded boehmite and γ-Al_2O_3. Thermochim. Acta, 1998, 318, 187-199.
    [51] J. G Li, X. D. Sun. Synthesis and sintering behavior of a nanocrystalline α-alumina powder [J]. Acta Mater., 2000, 48, 3103-3112.
    
    [52] F. S. Yen, H. S. Lo, H. L. Wen, R. J. Yang. θ- to α-Phase transformation subsystem induced by α-Al_2O_3-seeding in boehmite-derived nano-sized alumina powders [J]. J. Cryst. Growth, 2003, 249, 283-293.
    [53] H. Bakker, G. F. Zhou, H. Yang. Mechanically driven disorder and phase transformation [J]. Prog. Mater. Sci., 1995, 39, 159-241.
    [54] V. V. Boldyrev, S. V. Pavlov, E. L. Goldberg. Interrelation between fine grinding and mechanical activation [J]. Int. J. Miner. Process., 1996, 44-45, 181-185.
    [55] B. B. Bokhonov, J. G Konstanchuk, V. V. Boldyrev. Structural and morphological changes during the mechanical activation of nano-size particles [J]. Mater. Res. Bull., 1995, 30, 1277-1284.
    [56] V. V. Boldyrev. Mechanochemistry and mechanical activation of solids [J]. Russ. Chem. Rev., 2006, 75, 177-189.
    [57] Y. Arai, T. Yasue, I. Yamaguchi. Mechanochemical phenomena of aluminum hydroxides by grinding [J]. Nippon Kagaku Kaishi, 1972, 8, 1395-1404.
    [58] T. Tsuchida, N. Ichikawa. Mechanochemical phenomena of gibbsite, bayerite and boehmite by grinding [J]. React. Solids, 1989, 7, 207-217.
    [59] K. J. D. MacKenzie, J. Temuujin, K. Okada. Thermal decomposition of mechanically activated gibbsite [J]. Thermochim. Acta, 1999, 327, 103-108.
    [60] O. A. Kirichenko, V. A. Ushakov, O. A. Andryushkova, S. V. Ivchenko, V. A. Poluboyarov. Low-temperature forms of alumina [J]. Inorg. Mater., 1999, 35, 333-341.
    [61] E. Kostic, S. Kiss, S. Boskovic, S.Zec. Mechanical activation of the gamma to alpha transition in Al_2O_3 [J]. Powder Technol., 1997, 91, 49-54.
    [62] O. V. Andryushkova, O. A. Kirichenko, V. A. Ushakovb, V. A. Poluboyarov. Effect of mechanical activation on phase transformations in transition aluminas [J]. Solid State Ionics, 1997, 101-103, 647-653.
    [63] J. Kano, S. Saeki, F. Saito. Application of dry grinding to reduction in transformation temperature of aluminum hydroxides [J]. Int. J. Miner. Process., 2000,60,91-100.
    [64] 吴义权,张玉峰,黄校先等,低温制备纳米α-Al_2O_3粉体[J].无机材料学报,2001,16,349-352.
    [65] K. Morinaga, T. Torikai, K. Nakagawa, S. Fujino. Fabrication of fine α-alumina powders by thermal decomposition of ammonium aluminum carbonate hydroxide (AACH) [J]. Acta Mater., 2000, 48, 4735-4741.
    [66] H. Hofmeister, P. T. Miclea, W. Morke. Metal nanoparticle coating of oxide nanospheres for core-shell structures [J]. Part. Part. Syst. Char., 2002, 19, 359-365.
    [67] H. Wang, L. Gao, W. li, Q. Li. Preparation of nanoscale α-Al_2O_3 powders by the polyacrylamide gel method [J]. Nanostruc. Mater., 1999, 8, 1263-1267.
    [68] K. Elkins, D. Li, N. Poudyal, V. Nandwana, Z. Jin, K. Chen, J P. Liu. Monodisperse face-centred tetragonal FePt nanoparticles with giant coercivity [J]. J. Phys. D: Appl. Phys., 2005, 38, 2306-2309.
    [1] B. L. Averbach, M. Cohen. X-ray determination of retained austenite by integrated intensity [J]. Trans. AIME, 1948, 176, 401-404.
    [2] H. P. Kung, L. E. Alexander. X-ray diffraction procedures for polycrystalline and amorphous materials [M]. N.Y., Wiley, 1974.
    [3] B. E. Warren. X-Ray diffraction methods [J]. J. Appl. Phys., 1941, 12, 375-384.
    [1] K. C. Song, I. J. Chung. The structure formations of aluminum hydroxide gels under HCl and NH_4OH conditions [J]. J. Non-Cryst. Solids., 1989, 108, 37-44.
    [2] A. C. Pierre, D. R. Uhlmann. Amorphous aluminum hydroxide gels [J]. J. Non-Cryst. Solids., 1986, 82, 271-276.
    [3] J. E. G. J. Wijnhoven. Seeded growth of monodisperse gibbsite platelets to adjustable sizes [J]. J. Colloid Interf. Sci., 2005, 292, 403-409.
    [4] T. Sato. Transformation from bayerite to hydrargillite [J]. Naturwiss., 1959, 46, 376-379.
    [5] C. E. Corbato, R. T. Tettenhorst, G. G. Christoph. Structure refinement of deuterated boehmite [J]. Clays Clay Miner., 1985, 33, 71-75.
    [6] R. Rothbauer, F. Zigan, H. O'Daniel. Verfeinerung der struktur des bayerits. Z. Krist. Bd., 1967, 125, 317-331.
    [7] C. H. Shek, J. K. L. Lai, T. S. Gu, G. M. Lin. Transformation evolution and infrared absorption spectra of amorphous and crystalline nano-Al_2O_3 powders [J]. Nanostruct. Mater., 1997, 8, 605-610.
    [8] M. Rokita, M. Handke, W. Mozgawa. The AIPO_4 polymorphs structure in the light of Raman and IR spectroscopy studies [J]. J. Mol. Struct., 2000, 555, 351-356.
    [9] M. N. Barroso, M. F. Gomez, L. A. Arnia, M. C. Abello. Reactivity of aluminum spinels in the ethanol steam reforming reaction [J]. Catal. Lett., 2006, 109, 13-19.
    [10] X. Qi, Z. Wang, S. Li , B. Li, X. Liu, B. Lin. Characterization of high silica mordenite synthesized from amine-free system using fluoride as structure-directing agent [J]. Acta Phys. Sin., 2006, 22, 198-202.
    [11] T. Meher, A. K. Basu, S. Ghatak. Physicochemical characteristics of alumina gel in hydroxyhydrogel and normal form [J]. Ceram. Int., 2005, 31, 831-838.
    [12] I. Levin, D. Brandon. Metastable alumina polymorphs: crystal structures and transition sequences [J]. J. Am. Ceram. Soc., 1998, 81, 1995-2012.
    [13] M. H. Elmasry, O. M. Sadek, W. K. Mekhemer. Purification of raw surface water using electro-coagulation method [J]. Water Air Soil Pollut., 2004, 158, 373-385.
    [14] P. Padmaja, G. M. Anilkumar, P. Mukundan, G. Aruldhas, K. G. K. Warrier. Characterisation of stoichiometric sol-gel mullite by fourier transform infrared spectroscopy [J]. Int. J. Inorg. Mater., 2001, 3, 693-698.
    [15] N. Koga, S. Yamada. Controlled rate thermal decomposition of synthetic bayerite under vacuum [J]. Solid State Ionics, 2004, 172, 253-256.
    [16] L. Haurie, A. I. Fernandez, J. I. Velasco, J. M. Chimenos, J. M. Lopez-Cuesta, F. Espiell. Effects of milling on the thermal stability of synthetic hydromagnesite [J]. Mater. Res. Bull., 2007, 42, 1010-1018.
    [17] W. H. Rhodes, B. J. Wuensch. Relation between precursor and microstructure in MgO [J]. J. Am. Ceram. Soc, 1973, 56, 495-496.
    [18] H. P. Beck, W. Eiser, R. Haberkorn. Pitfalls in the synthesis of nanoscaled perovskite type compounds. Part I: Influence of different sol-gel preparation methods and characterization of nanoscaled BaTiO_3 [J]. J. Eur. Ceram. Soc, 2001,21,687-693.
    [19] C. H. Lu, C. H. Yeh. Influence of hydrothermal conditions on the morphology and particle size of zinc oxide powder [J]. Ceram. Int., 2000, 26, 351-357.
    [20] G.W. Brindley, G. Brown. X-ray identification and crystal structures of clay minerals [M]. London, Mineralogical Society, 1980.
    [21] N. Ishizawa, T. Miyata, I. Minato, F. Marumo, S. Iwai. A structural investigation of α-Al_2O_3 at 2170 K [J]. Acta Cryst. B, 1980, 36, 228.
    [22] P. Brand, R. Troschke, H. Weigelt. Formation of α-Al_2O_3 by thermal decomposition of basic aluminum chlorides at low temperatures [J]. Cryst. Res. Technol., 1989,24,671-675.
    [23] J. Li, Y. Pan, C. Xiang, Q. Ge, J. Guo. Low temperature synthesis of ultrafine α-Al_2O_3 powder by a simple aqueous sol-gel process [J]. Ceram. Int., 2006, 32, 587-591.
    [24] N. Bahlawane, T. Watanabe. New sol-gel route for the preparation of pure α-alumina at 950℃ [J]. J. Am. Ceram. Soc, 2000, 83, 2324-2326.
    [25] K. J. D. MacKenzie, J. Temuujin, K. Okada. Thermal decomposition of mechanically activated gibbsite [J]. Thermochim. Acta, 1999, 327, 103-108.
    [26] K. J. D. MacKenzie, J. Temuujin, M. E. Smith, P. Angerer, Y. Kameshima. Effect of mechanochemical activation on the thermal reactions of boehmite (γ-AlOOH) and γ-Al_2O_3 [J]. Thermochim. Acta, 2000, 359, 87-94.
    [27] T. C. Chou, T. G. Nieh. Nucleation and concurrent anomalous grain growth of α-Al_2O_3 during θ-a phase transformation [J]. J. Am. Ceram. Soc, 1991, 74, 2270-2279.
    [28] J. L. McArdle, G. L. Messing. Transformation, microstructure development, and densification in α-Fe_2O_3-seeded boehmite-derived alumina [J]. J. Am. Ceram. Soc, 1993, 76, 214-222.
    [29] P. Lin, S. B.Wen, T. T. Lee. Preparation of nanometer sized α-alumina powders by calcining an emulsion of boehmite and oLeic acid [J]. J. Am. Ceram. Soc, 2002, 85, 129-33.
    [30] Z. Wu, Y. Shen, Y. Dong, J. Jiang. Study on the morphology of α-Al_2O_3 precursor prepared by precipitation method [J]. J. Alloy Compd., doi:10.1016/j.jallcom.2007.12.092.
    [31] J. G.Li, X. Sun. Synthesis and sintering behavior of a nanocrystalline α-alumina powder [J]. Acta. Mater., 2000, 48, 3103-3112.
    [32] H. J. Youn, J. W. Jang, I. K. Kim, K. S. Hong. Low temperature formation of a-alumina by doping of an alumina-sol [J]. J. Colloid Interf. Sci., 1999, 211, 110-113.
    [30] M Rajendran, AK Bhattacharya. Low-temperature formation of alpha alumina powders from carboxylate and mixed carboxylate precursors [J]. Mater. Lett., 1999,39, 188-195.
    [1] M. Mazloumi, R. Khalifehzadeh, S. K. Sadrnezhaad. Alumina nanopowder production from synthetic bayer liquor [J]. J. Am. Ceram. Soc., 2006, 89, 3654-3657.
    [2] H. Hahn. Unique features and properties of nanostructured materials [J]. Adv. Eng. Mater., 2003, 5, 277-284.
    [3] J. S. Valente, X. Bokhimi, J. A. Toledo. Synthesis and catalytic properties of nanostructured aluminas obtained by sol-gel method [J]. Appl. Catal. A, 2004, 264,175-181.
    [4] E. G. Avvakumov, M. Senna, N. Kosova. Soft mechanochemical synthesis: a basis for new chemical technologies [M]. Boston, Kluwer Academic Publishers, 2001.
    [5] P. Billik, T. Turanyi, G. Plescha, B. Horvathc. Mechanically activated basic polyaluminium chloride as precursor for low-temperature α-Al_2O_3 formation [J]. Scripta Mater., 2007, 57, 619-621.
    [6] C. Yong, J. Wang. Mechanical-activation-triggered gibbsite-to-boehmite transition and activation-derived alumina powders [J]. J. Am. Ceram. Soc., 2001, 84, 1225-1230.
    [7] K. J. D. MacKenzie, J. Temuujin, K. Okada. Thermal decomposition of mechanically activated gibbsite [J]. Thermochimica Acta, 1999, 327, 103-108.
    [8] I. Levin, D. Brandon. Metastable alumina polymorphs: crystal structures and transition sequences [J]. J. Am. Ceram. Soc, 1998, 81, 1995-2012.
    [9] T. Tsuchida, N. Ichikawa. Mechanochemical phenomena of gibbsite, bayerite and boehmite by grinding [J]. React. Solids, 1989, 7, 207-217.
    [10] R. B. Bagwell, G. L. Messing. Effect of seeding and water vapor on the nucleation and growth of α-Al_2O_3 from γ-Al_2O_3 [J]. J. Am. Ceram. Soc, 1999, 82, 825-832.
    [11] C. S. Nordahl, G. L. Messing. Sintering of α-Al_2O_3-seeded nanocrystalline γ-Al_2O_3 powders [J]. J. Eur. Ceram. Soc, 2002, 22, 415-422.
    [12] N. Bahlawane. Novel sol-gel process depositing α-Al_2O_3 for the improvement of graphite oxidation-resistance [J]. Thin Solid Films, 2001, 396, 126-130.
    [13] M. Senna. A straight way toward phase pure complex oxides [J]. J. Eur. Ceram. Soc, 2005,25, 1977-1984.
    [14] B. K. Gan. Crystallographic transformations involved in the decomposition of gibbsite to alpha alumina. Ph.D. Thesis, Australia, Curtin University of Technology, 1996.
    [15] B. Whittington, D. Ilievski. Determination of the gibbsite dehydration reaction pathway at conditions relevant to bayer refineries [J]. Chem. Eng. J., 2004, 98, 89-97.
    [16] G. W. Brindley, J. O. Choe. The reaction series: gibbsite to chi-alumina to kappa-alumina to corundum [J]. Am. Min., 1961, 46, 771-785.
    [17] N. Ishizawa, T. Miyata, I. Minato, F. Marumo, S. Iwai. A structural investigation of α-Al_2O_3 at 2170 K [J]. Acta Crystallogr. B, 1980, 36, 228-230.
    [18] O. Mekasuwandumrong, V. Pavarajarn, M. Inoue, P. Praserthdam. Preparation and phase transformation behavior of x-Alumina via solvothermal synthesis . Mater. Chem. Phys., 2006, 100, 445-450.
    [19] O. V. Andryuskova, O. A. Kirichenko, V. A. Ushakov, V. A. Poluboyarov. Effect of mechanical activation on phase transformations in transition aluminas [J]. Solid State Ionics, 1997, 101-103, 647-653.
    [20] J. Kano, S. Saeki, F. Saito, M. Tanjo, S. Yamazaki. Application of dry grinding to reduction in transformation temperature of aluminum hydroxides [J]. Int. J. Miner. Process, 2000, 60, 91-100.
    [21] K. J. Morrisey, K. K. Czanderna, R. P. Merrill, C. B. Carter. Transition alumina structures studied using HREM [J]. Ultramicroscopy, 1985, 18, 379-386.
    [22] P. L. Chang, F. S. Yen, K. C. Cheng, H. L. Wen. Examinations on the critical and primary crystallite sizes during θ- to α-phase transformation of ultrafine alumina powders [J]. Nano Lett., 2001, 1, 253-261.
    [1] K. Okada, A. Hattori. Effect of divalent cation additive on the γ-Al_2O_3-to-α-Al_2O_3 phase transition [J]. J. Am. Ceram. Soc., 2000, 83, 928-932.
    [2] P. K. Sharma, M. H. Jilavi, D. Burgard, R. Nass, H. Schmidt. Hydrothermal synthesis of nanosize α-Al_2O_3 from seeded aluminum hydroxide [J]. J. Am. Ceram. Soc., 1998, 81, 2732-2734.
    [3] S. Kwon, G. L. Messing. Sintering of mixtures of seeded boehmite and ultrafine α-alumina [J]. J. Am. Ceram. Soc., 2000, 83, 82-88.
    [4] H. Wang, L. Gao, W. Li, Q. Li. Preparation of nanoscale α-Al_2O_3 powders by the polyacrylamide gel method [J]. Nanostruc. Mater., 1999, 11, 1263-1267.
    [5] 王宏志,高濂,高分子网络凝胶法制备纳米α-Al_2O_3粉体[J].无机材料学报,2000,15,356-360.
    [6] J. Li, Y. Ye. Densification and grain growth of Al_2O_3 nanoceramics during pressureless sintering [J]. J. Am. Ceram. Soc, 2006, 89, 139-143.
    [7] J. L. McArdle, G. L. Messing. Transformation, microstructure development and densification in α-Fe_2O_3 seeded boehmite derived alumina [J]. J. Am. Ceram. Soc, 1993,76,214-222.
    [8] P. Wang, C. Wang, L. Lin, Y. Zhu, Y. Xie. Efficient preparation of submicrometer α-alumina powders by calcining carbon-covered alumina [J]. J. Am. Ceram. Soc, 2006, 89, 2744-2748.
    [9] Y. Ding, S. A. Majetich, J. Kim, K. Barmak, H. Rollins, P. Sides. Sintering prevention and phase transformation of FePt nanoparticles [J]. J. Magn. Magn. Mater., 2004, 284, 336-341.
    [10] K. Elkins, D. Li, N. Poudyal, V. Nandwana, Z. Jin, K. Chen, J Liu. Monodisperse face-centred tetragonal FePt nanoparticles with giant coercivity [J]. J. Phys. D: Appl. Phys., 2005, 38, 2306-2309.
    [11] C. Rong, N. Poudyal, G.Chaubey, V. Nandwana, Y. Liu, Y. Wu, M. Kramer, M. Kozlov, R. Baughman, J. Liu. High thermal stability of carbon-coated Ll_0-FePt nanoparticles prepared by salt-matrix annealing [J]. J. Appl. Phys., 2008, 103, 07E131.
    [12] H. L. Wen, Y. Y. Chen, F. S. Yen, C. Y. Huang. Size characterization of 9- to α-Al_2O_3 crystallites during phase transformation [J]. Nanostruc. Mater., 1999, 11, 89-101.
    [13] P. L. Chang, F. S. Yen, K. C. Cheng, H. L. Wen. Examinations on the critical and primary crystallite sizes during θ-to-α Phase transformation of ultrafine alumina powders[J]. Nano Lett., 2001, 1, 253-261.
    [14] P. Fratzl, O. Penrose. Competing mechanisms for precipitate coarsening in phase separation with vacancy dynamics [J]. Phys. Rev. B, 1997, 55, R6101- R6104.
    [15] J. M. Roussel, P. Bellon. Vacancy-assisted phase separation with asymmetric atomic mobility: coarsening rates, precipitate composition, and morphology [J]. Phys. Rev. B, 2001, 63, 184114-184128.
    [16] F. W. Dynys, J. W. Halloran. α-Alumina formation in alum-derived γ-Alumina [J]. J. Am. Ceram. Soc, 1982, 65, 442-445.
    [17] I. I. M. Tijburg, H. D. Bruin, P. A. Elberse, J. W. Geus. Sintering of pseudo- boehmite and γ-Al_2O_3 [J]. J. Mater. Sci., 1991, 26, 5945-5949.
    [18] B. Djuricic, S. Pickering, P. Glaude, D. Mcgarry, P. Tambuyser. Thermal stability of transition phase in zirconia-doped alumina [J]. J. Mater. Sci., 1997, 32,589-601.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700