ABR-MBR组合工艺处理城市污水的性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水体富营养化是太湖流域亟待解决的重大环境问题之一,控制营养元素进入水体是降低水体富营养化风险的有效手段。而城市污水富含大量氮,磷等引起水体富营养化的污染物,故开发一种新型的更加有效的城市污水处理工艺是十分有必要的。为此,结合厌氧折流板反应器(anaerobic baffled reactor, ABR)和膜生物反应器(membrane bioreactor,MBR)各自优势,构建优化组合工艺(CAMBR),以克服传统活性污泥法系统的不足,解决传统MBR工艺存在的问题,减缓膜污染进程,增强其降解有机污染物的能力,同时强化脱氮除磷效果,对进一步提高处理污水出水水质及其实际生产应用具有重要的理论和现实意义。主要研究结果如下:
     (1)CAMBR工艺历经72天启动成功,ABR各隔室内混合液悬浮固体(MLSS)维持在28g·L~(-1)左右,好氧池和膜池维持在6g·L~(-1)左右,污泥浓度,污泥活性和出水水质稳定。启动阶段ABR内出现了最大粒径3mm的厌氧颗粒污泥及MBR内最大2mm的好氧颗粒污泥,标志着反应器成功启动。CAMBR工艺启动后期稳定运行状况下,系统出水化学需氧量(COD)、氨氮(NH_4~+-N)、总氮(TN)和总磷(TP)的平均浓度分别在32、2.3、13.3和1.22mg·L~(-1)左右,平均去除率分别达91%、92%、72%和70%。
     (2)为保证CAMBR工艺良好的出水水质,综合考虑系统运行效果,可以确定工艺的最佳运行条件是水力停留时间(HRT)为7.5h,R为200%以及溶解氧(DO)为3mg·L~(-1)。在此运行条件下,系统出水COD平均浓度为25.6mg·L~(-1),出水NH_4~+-N平均浓度为0.5mg·L~(-1),出水TN平均浓度为10.5mg·L~(-1),出水TP平均浓度为0.4mg·L~(-1),完全能够满足《城镇污水处理厂污染物排放标准》(GB18918-2002)一级A标准,也符合我国回用水水质标准的要求。
     (3)整个工艺实现了厌氧反硝化,厌氧释磷,缺氧反硝化除磷,好氧硝化和吸磷等微生物相的有效分离。在HRT为7.5h,R为200%,DO为3mg·L~(-1),好氧区MLSS浓度为8000mg·L~(-1)的条件下,系统对NH_4~+-N和TN的去除率分别可达99%和80%,其出水NH_4~+-N和TN浓度平均分别为0.33mg·L~(-1)和10.6mg·L~(-1)。好氧池和膜池存在同步硝化反硝化作用,强化了系统脱氮效果。出水TP浓度平均为0.31mg·L~(-1),去除率为93%。其中MBR对NH_4~+-N、TN和TP的强化去除率分别为14%、11%和18%。工艺生物量大,处理功能强,实现了稳定、高效的同步脱氮除磷功效,出水水质优良,满足小规模城镇污水处理的新型、高效、集成式一体化要求。
     (4)在最佳运行条件下(HRT为7.5h,R为200%,DO为3mg·L~(-1)),工艺对进水水质的转换具有较强的适应能力,可对试验的两种实际污水进行有效的处理,出水水质稳定而优良,出水COD浓度低于28mg·L~(-1),NH_4~+-N浓度低于0.6mg·L~(-1),TN浓度低于12.6mg·L~(-1),TP浓度低于0.42mg·L~(-1),完全能够满足《城镇污水处理厂污染物排放标准》(GB18918-2002)一级A标准。不同温度环境下,系统对COD的去除效果很好,TN与NH_4~+-N的去除效果正相关性良好,当工艺稳定运行之后,总体上出水水质较好。中温环境,工艺出水水质良好。高温环境,TN去除率稳定在70%左右,出水浓度为9mg·L~(-1)左右;TP去除率为73%左右,出水浓度为0.8mg·L~(-1)左右。而低温环境,TN去除率仅为57%,出水浓度为15mg·L~(-1)左右;TP去除率稳定在67%左右,出水浓度为1mg·L~(-1)左右。故为取得较好的脱氮除磷效果,系统应该采取保温措施。另外,间歇抽吸出水、水力反冲是减缓膜污染和延长膜组件使用寿命的重要措施,但长期运行则需化学药洗以彻底清除微生物代谢产物等不可逆污染物。膜污染与污泥浓度、膜通量、曝气量三种因素密切相关。
     (5)采用聚合酶链式反应-变性梯度凝胶电泳(polymerase chain reaction withdenaturing gradient gel electrophoresis, PCR-DGGE)和荧光原位杂交(fluorescence in situhybridization, FISH)技术,对CAMBR工艺整个运行过程中系统内的微生物菌群结构动态变化和各区内优势种群进行分析,结果表明:整个试验过程,系统内菌群呈多样性分布,同时优势菌群突出。在同一时期内,各个反应池菌群相似性较高,微生物菌群结构在相对较短的时间内改变不明显,各个隔室通过各自不同的微环境改变微生物的生理状态,使得微生物在不同反应池中能够发挥不同的作用。反应器内硝化菌群和聚磷菌随试验的运行而逐渐增加,有效保证了系统的脱氮除磷效果。在系统最佳运行条件下(HRT为7.5h,R为200%,DO为3mg·L~(-1)),系统内三种菌得到了富集,并且占全菌的比例较高,是CAMBR工艺高效脱氮除磷的直接原因。
Eutrophication is one of serious environmental problems in LakeTaihu. It is known thatcontrolling nutrient input is the most effective way of reducing the risk of blooms. However,domestic sewage contains abundant phosphorus and nitrogen pollutants that causeeutrophication of water bodies, and it is therefore necessary to identify the optimumbioreactor to treat municipal wastewater effectively. In order to explore a new and efficientwastewater treatment process, the combined ABR-MBR process (CAMBR) with thecharacteristics and advantages of both reactors was optimized and the shortcomings of bothreactors were overcome. It delayed the process of membrane fouling and improved theefficiency of nutrient removal. The studies have theoretical and practical significance onimproving the quality of effluent and its application. The main research results of thisdissertation were shown as follows:
     (1) During the72days start-up of the system, granular sludge was observed in the ABRand MBR with the diameters of3mm and2mm respectively at the end of start-up. Theaverage MLSS in ABR and MBR were28g·L~(-1)and6g·L~(-1), respectively. The system couldacquire stable removal efficiencies of COD, NH_4~+-N, TN and TP about91%,92%,72%and70%respectively, correspondingly with an average effluent of32,2.3,13.3and1.22mg·L~(-1).
     (2) In order to ensure the good effluent quality and consider the performance of theprocess, optimal operation conditions with a hydraulic retention time of7.5h at a recycle ratioof200%and dissolved oxygen of3mg·L~(-1)was shown to achieve higher quality effluent withchemical oxygen demand, ammonium, total nitrogen and total phosphorus of26,0.5,10.5and0.4mg·L~(-1), respectively. The effluent quality met the Level-one A criteria specified inDischarge Standard of Pollutants for Municipal Wastewater Treatment Plant (GB18918-2002).
     (3) The whole process achieved an effective separation of microorganism’s phases, suchas anaerobic denitrification, anaerobic phosphorus release, anoxic denitrification andphosphorus removal, aerobic nitrification and phosphorus uptake. The average removal ratesof COD, NH_4~+-N, TN and TP reached93%,99%,79%and92%, respectively,correspondingly with the COD, NH_4~+-N, TN and TP effluent of24,0.4,10.6and0.31mg·L~(-1)with a HRT of7.5h at a recycle ratio of200%and DO of3mg·L~(-1). The MBR enhancedNH_4~+-N, TN and TP removal rates of14%,11%and18%, respectively. The process was ableto maintain a stable performance with high quality effluent during the period. The process haslarge biomass and is efficient on pollutants removal. In addition, it satisfies the requirementsof new, efficient and integrated process. Therefore, it is suitable to apply in small-scalemunicipal wastewater treatment plant.
     (4) The process had a good ability to adapt to the influent shift, and was able to achieve the simultaneous nutrient removal of both two kinds of municipal wastewaters effectivelywith the high quality effluent chemical oxygen demand, ammonium, total nitrogen and totalphosphorus of lower than28,0.6,12.6, and0.4mg L~(-1), respectively. The CAMBR had goodremoval efficiencies of COD under different temperature conditions, the removal efficienciesof TN had a positive correlation to NH_4~+-N, and the effluent quality is good in the stableoperation of the system. Furthermore, the effluent quality of the middle temperature conditionwas the best. In addition, TN removal efficiencies were stabilized around70%with theeffluent concentration about9mg·L~(-1), and TP removal efficiency was about73%with theeffluent concentration about0.8mg·L~(-1)in high temperature environments. While the processoperated in low temperature environment, TN removal efficiency was only57%with theeffluent concentration of5mg·L~(-1), and TP removal efficiency of67%with the effluentconcentration about1mg·L~(-1). Thus, in order to achieve better nitrogen and phosphorusremoval efficiencies, insulation measures should be taken to keep the process warm.Intermittent pumping water, hydraulic recoil can effectively reduce the degree of membranefouling, but chemical clean is necessary to completely remove irreversible pollutants.Membrane fouling is closely related to three factors of sludge concentration, membrane fluxand aeration rate. Intermittent suction, scouring aeration, regular drug-wash, and on-linehydraulic backwash as a mean of inhibiting membrane fouling, ensure the sustainable runningof the CAMBR system.
     (5) The polymerase chain reaction with denaturing gradient gel electrophoresis andfluorescence in situ hybridization were used to analyze the structure of microbial communitythroughout the whole experient and the dominant bacterial composition of the activatedsludge in each compartment of the CAMBR. Throughout the process, the microbialpopulation within the system maintained diversity in distribution, while the dominant florawas prominent. During the same period, microbial population in each compartment had highsimilarity, and the structure of microbial community had no significant changes within arelatively short period. The physiological state of the each compartment was changed throughrespective different microenvironments. Thus, microorganisms were able to play a differentrole in the different compartments. The nitrifying bacteria and phosphorus accumulatingorganisms gradually increased with the running of the experiment, guaranteeing the efficiencyof nitrogen and phosphorus removal in the system. The specialized microorganisms, includingnitrifying bacteria (ammonia-oxidizing bacteria and nitrite-oxidizing bacteria), andphosphorus accumulating organisms, were enriched in this process. The enrichedmicroorganisms in the system were the underlying reason why the CAMBR was efficient fornitrogen and phosphorus removal.
引文
[1] Castilla P, Meraz M, Monroy O, et al. Anaerobic treatment of low concentration wastewater in aninverse fluidized bed reactor[J]. Water Sci Technol,2000,41(4-5):245-251.
    [2]韩苗苗,孔令炜.生物流化床处理废水的研究进展与展望[J].地下水,2005,325-328.
    [3] Lettinga G, van der Geest A T, Hobma S, et al. Anaerobic treatment of methanolic wastes[J]. WaterRes,1979,13:725-738.
    [4] Lettinga G, van Velsen A F M, Hobma S W, et al. Use of the upflow sludge blanket reactor conceptfor biological waste water treatment, especially for anaerobic treatment[J]. Biotechnol Bioeng,1980,22:699-734.
    [5] Lettinga G, van Velsen A F M, ded Zeeuw W, et al. Feasibility of the upflow anaerobic sludgeblanket process[C]. American Society of Civil Engineers, New York,1979.
    [6] Lettinga G, Pette K C, de Vletter R, et al. Anaerobic treatment of sugarbeet waste water in a6m3pilot plant (in Dutch)[C]. H2O,1977.
    [7] Lettinga G, van der Ben J, van der Sar J. Anaerobic treatment of sugarbeet waste water (in Dutch)
    [C]. H2O,1976.
    [8] van Velsen A F M, Lettinga G, den Ottelander D. Anaerobic digestion of piggery waste:3.Influence of temperature[J]. Netherlands J Agric Sci,1979,27:255-267.
    [9] Hwu C S, van Lier J B, Lettinga G. Anaerobic toxicity and degradability of oleic acidundermesophilic and thermophilic conditions[J]. Mededelingen Faculteit Landbouwkundige enToegepaste Biologische Wetenschappen Universiteit Gent,1997,62:1825-1832.
    [10] Hwu C S, van Beek B, van Lier J B, et al. Thermophilic high-rate anaerobic treatment ofwastewater containing long-chain fatty acids: Impact of reactor hydrodynamics[J]. Biotechnol Lett,1997,19:447-451.
    [11] Hwu C S, van Beek B, van Lier J B, et al. Thermophilic high-rate anaerobic treatment ofwastewater containing long-chain fatty acids: effect of washed out biomass recirculation[J].Biotechnol Lett,1997,19:453-456.
    [12] Ten-Brummeler E, Pol L W H, Dolfing J, et al. Zehnder A J B. Methanogenesis in an upflowanaerobic sludge blanket reactor at pH6on an acetate-propionate mixture[J]. Appl EnvironMicrobiol,1985,49:1472-1477.
    [13] Sayed S, van der Zanden J, Lettinga G, et al. Anaerobic degradation of the various fractions ofslaughterhouse wastewater[J]. Biol Wastes,1988,23:117-142.
    [14] Sayed S, van Campen L, Lettinga G. Anaerobic treatment of slaughterhouse waste using a granularsludge uasb reactor[J]. Biol Wastes,1987,21:11-28.
    [15] Field J A, Lettinga G, Geurts M. Methanogenic toxicity and anaerobic degradability of potato starchphenolic amino acids[J]. Biol Wastes,1987,21(1):37-54.
    [16] Petruy R, Lettinga G. Digestion of a milk-fat emulsion[J]. Bioresour Technol,1997,61:141-149.
    [17] Petruy R, Field J A, Lettinga G. Anaerobic biodegradation of a milk-fat emulsion in an expandedgranular sludge bed reactor[J]. Mededelingen Faculteit Landbouwkundige en ToegepasteBiologische Wetenschappen Universiteit Gent,1997,62:1833-1840.
    [18] Lettinga G, Field J A, Sierra-Alvarez R, et al. Future perspectives for the anaerobic treatment offorest industry wastewaters[J]. Water Sci Technol,1991,24(3-4):91-102.
    [19] Sierra-Alvarez R, Harbrecht J, Lettinga G, et al. The continuous anaerobic treatment of pulpingwastewaters[J]. J Ferment Bioeng,1990,70:119-127.
    [20] Rintala J, Sanz Martin J L, Lettinga G. Thermophilic anaerobic treatment of sulfate-rich pulp andpaper integrate process water[J]. Water Sci Technol,1991,24(3-4):149-160.
    [21] Droste R L, Kennedy K J, Lu J G, et al. Removal of chlorinated phenols in upflow anaerobic sludgeblanket reactors[J]. Water Sci Technol,1998,38(8-9):359-367.
    [22] Fang H H P. Performance and granule characteristics of UASB process treating wastewater withhydrolyzed proteins[J].Water Sci Technol,1994,30(8):55-63.
    [23] Tilche A, Bortone G, Forner G, et al. Combination of anaerobic digestion and denitrification in ahybrid upflow anaerobic filter integrated in a nutrient removal treatment plant[J]. Water Sci Technol,1994,30(12):405-414.
    [24] Hua J F,Li Fang H,et al. Effects of temperature and hydraulic residence time (HRT) on treatmentof dilute wastewater in carrier anaerobic baffled reactor[J].Biomedical and environmental sciences,2008,21(6):460-466.
    [25] Guti S, Hern A, Vi M. Mechanism of degradation of wool wax in the anaerobic treatment ofwoolscouring wastewater[J]. Water Sci Technol,1999,40(8):17-24.
    [26] Fox P, Venkatasubbiah V. Coupled anaerobic/aerobic treatment of high-sulfate wastewater withsulfate reduction and biological sulfide oxidation[J]. Water Sci Technol,1996,34(5-6):359-366.
    [27] Uyanik S, Sallis P J, Anderson G K. Improved split feed anaerobic baffled reactor (SFABR) forshorter start-up period and higher process performance[J]. Water Sci Technol,2002,46(4-5):223-230.
    [28] van Lier J B, Rebac S, Lettinga G. High-rate anaerobic wastewater treatment under psychrophilicand thermophilic conditions[J]. Water Sci Technol,1997,35(10):199-206.
    [29] Rebac S, van Lier J B, Lettinga G, et al. Psychrophilic anaerobic treatment of low strengthwastewaters[J]. Water Sci Technol,1999,39(5):203-210.
    [30] Jeison D, Chamy R. Comparison of the behaviour of expanded granular sludge bed (EGSB) andupflow anaerobic sludge blanket (UASB) reactors in dilute and concentrated wastewatertreatment[J]. Water Sci Technol,1999,40(8):91-98.
    [31] Zoutberg G R, Frankin R. Anaerobic treatment of chemical and brewery wastewater with a newtype of anaerobic reactor: the Biobed EGSB reactor[J]. Water Sci Technol,1996,35(5-6):375-381.
    [32] Zoutberg G R, de Been P. The Biobed EGSB (Expanded Granular Sludge Blanket) system coversshortcomings of the UASB reactor in the chemical industry[J]. Water Sci Technol,1997,35(10):183-188.
    [33] Chen G H, Ozaki H, Terashima Y. Modelling containing simultaneous removal of trichlorfon andglucose in a hybrid bioreactor magnetically immobilized biomass[J]. Water Sci Technol,1998,38(4-5):179-186.
    [34] Imai T, Ukita M, Sekine M, et al. Treatment characteristics of high strength fermentationwastewater consisting of high sulfate and ammonia by UAHB process[J]. Water Sci Technol,1998,38(8-9):377-384.
    [35] Greben H A, Maree J P, Singmin Y, et al. Biological sulfate removal from acid mine effluent usingethanol as carbon and energy source[J]. Water Sci Technol,2000,42(3-4):339-344.
    [36] Young J C, Kim I S, Page I C, et al. Two-stage anaerobic treatment of purified terephthalic acidproduction wastewaters[J]. Water Sci Technol,2000,42(5-6):277-282.
    [37] Yeoh B G. Two-phase anaerobic treatment of cane-molasses alcohol stillage[J]. Water Sci Technol,1997,36(6-7):441-448.
    [38] Yang P Y, Kuroshima M. A simple design and operation for the anaerobic treatment of highlyconcentrated swine waste in the tropics[J]. Water Sci Technol,1995,32(12):91-97.
    [39] Frankin R J. Full-scale experienceswith anaerobic treatment of industrial wastewater[J]. Water SciTechnol,2001,44(8):1-6.
    [40] van Lier J B, van der Zee F P, Tan N C G, et al. Advances in high rate anaerobic treatment: stagingof reactor systems[J]. Water Sci Technol,2001,44(8):15-25.
    [41] Lettinga G, van Lier J, Zeeman G, et al. Advanced anaerobic wastewater treatment in the nearfuture[J]. Water Sci Technol,1997,35(10):5-12.
    [42] Liew Abdullah A G, Idris A, Ahmadun F R, et al. A kinetic study of a membrane anaerobic reactor(MAR) for treatment of sewage sludge[J]. Desalination,2005,183(1-3):439-445.
    [43] Lettinga G, Field J, Van Lier J, et al. Advanced anaerobic wastewater treatment in the near future [J].Wat Sci Tech,200l,35(10):5-12.
    [44] Langenhoff A A M, Intrachandra N, Stuckey D C. Treatment of diluted soluble and colloidalwastewater using an anaerobic baffled reactor: influence of hydraulic retention time[J]. Water Res,2000,34:3867-3875.
    [45] Sarathai Y, Koottatep T, Morel A. Hydraulic characteristics of an anaerobic baffled reactor as onsitewastewater treatment system[J]. Journal of Environmental Sciences,2010,22(9):1319-1326.
    [46] Lu J, Ma Y F, Liu Y R, et al. Treatment of hypersaline wastewater by a combinedneutralization–precipitation with ABR-SBR technique[J]. Desalination,2011,277(1-3):321-324.
    [47]胡志强,储茵,马友华. ABR-SBR组合工艺系统处理餐饮废水的试验研究[J].水处理技术,2011,37(3):72-75.
    [48] Gopala Krishna G V T, Kumar P, Kumar P. Treatment of low-strength soluble wastewater using ananaerobic baffled reactor (ABR)[J]. Journal of Environmental Management,2009,90(1):166-176.
    [49] Nasr F A, Doma H S, Nassar H F. Treatment of domestic wastewater using an anaerobic baffledreactor followed by a duckweed pond for agricultural purposes[J]. Environmentalist,2009,29(3):270-279.
    [50] Marin J, Kennedy K J, Eskicioglu C. Characterization of an anaerobic baffled reactor treating diluteaircraft de-icing fluid and long term effects of operation on granular biomass[J]. Bioresour Technol,2010,101(7):2217-2223.
    [51] Pillay S, Foxon K M, Buckley C A. An anaerobic baffled reactor/membrane bioreactor (ABR/MBR)for on-site sanitation in low income areas[J]. Desalination,2008,231(1-3):91-98.
    [52] Torabian A, Abtahi S M, Amin M M, et al. Treatment of low-strength industrial wastewater usinganaerobic baffled reactor[J]. Iranian Journal of Environmental Health Science&Engineering,2010,7(3):229-240.
    [53]王建芳,沈耀良,宋小康.改进型厌氧折流板反应器预处理农村生活污水效能研究[J].水处理技术,2012,38(8):69-72.
    [54] Dama P, Bell J, Foxon M, et al. Pilot-scale study of an anaerobic baffled reactor for the treatment ofdomestic wastewater[C]. In:3rd International Conference on Ecological Sanitation, Durban, SouthAfrica, Kennedy and Barriault,2005.
    [55] Kennedy K and Barriault M. Effect of recycle on treatment of aircraft deicing fluid in an anaerobicbaffled reactor[J]. Water SA,2005,31(3):377-384.
    [56] She Z L, Zheng X L, Yang B R, et al. Granule development and performance in sucrose fedanaerobic baffled reactors[J]. J Biotechnol,2006,122(2):198-208.
    [57] Foxon K M, Buckley C A, Brouckaert C J, et al. Evaluation of the Anaerobic Baffled Reactor forDense Peri-Urban Settlements[C]. WRC Report No.1248/1/06,2005.
    [58] Bodkhe S Y. A modified anaerobic baffled reactor for municipal wastewater treatment[J]. Journalof Environmental Management,2009,90(8):2488-2493.
    [59] Chalor J and Gary A. Role of soluble microbial products (SMP) in membrane fouling and fluxdecline[J]. Environ Sci Technol,2006,40(3):969-974.
    [60] Barker D, Salvi S M L, Langenhoff A A M. Soluble microbial products in ABR treatinglow-strength wastewater[J]. Jour Environ Eng,2000,126(3):239-240.
    [61] Foxon K M and Buckley C A. Analysis of a pilot-scale anaerobic baffled reactor[C]. Proceedings:IWA11th Congress on Anaerobic Digestion2007, Brisbane.
    [62] Morel A and Diener S. Greywater management in low and middle-income countries. review ofdifferent treatment systems for households or neighbourhoods[M]. Duebendorf: Swiss FederalInstitute of Aquatic Science and Technology (Eawag),2006.
    [63] Tilley E, Luethi C, Morel A, et al. Compendium of sanitation systems and technologies[M].Duebendorf and Geneva: Swiss Federal Institute of Aquatic Science (EAWAG)&Water Supplyand Sanitation Collaborative Council (WSSCC),2008.
    [64] Dama P, Bell J, Foxon K M, et al. Pilot-scale study of an anaerobic baffled reactor for the treatmentof domestic wastewater[J]. Water Sci Techno,2002,46(9):263-270.
    [65] Foxon K M, Pillay S, Lalbahadur T, et al. The anaerobic baffled reactor (ABR): An appropriatetechnology for on-site sanitation[J]. Water SA,2004,30(5):44-50.
    [66] Howell J A. Future of membranes and membrane600carbasalate calcium reactors in greentechnologies and for water reuse[J]. Desalination,2004,162: l-11.
    [67] Koros W J, Ma Y H, Shimizu T. Terminology for membranes and membrane processes—IUPACrecommendations[J]. Journal of Membrane Science,1996,120(2):149-159.
    [68] Delgado S, Villarroel R, Gonzalez E. Effect of the shear intensity on fouling in submergedmembrane bioreactor for wastewater treatment[J]. Journal of Membrane Science,2008,31l(1/2):173-181.
    [69] Mehrez R, Ernst M, Jekel M. Development of a continuous protein and polysaccharidemeasurement method by sequential injection analysis for application in membrane bioreactorsystems[J]. Water Sci Technol,2007,56(6):163-171.
    [70] Fan Y B, Li G, Wu L L, et al. Treatment and reuse of toilet wastewater by an airlift externalcirculation membrane bioreactor[J]. Process Biochemistry (Amsterdam,Netherlands),2006,41(6):1364-1370.
    [71]刘锐,黄霞,钱易,等.一体式膜生物反应器处理生活污水的中试研究[J].城市给排水,1999,25(1):1-5
    [72] Thamer A Mohammed, Ahmed H Birima, Megat Johari Megat Mohd Noor, et al. Evaluation ofusing membrane bioreactor for treating municipal wastewater at different operating conditions [J].Desalination,2008,221(1-3):502-510.
    [73]汪力,王长生,傅金祥,等. IMBR法处理生活污水的实验研究[J].沈阳建筑工程学院学报,2003,19(1):50-52.
    [74]吴剑,王世和,杨小丽,等. MBR(A2/O)反应器处理城市污水[J].东南大学学报:自然科学版,2007,37(1):144-147.
    [75]曹斌,黄霞,北中敦,等. A2/O-膜生物反应器强化生物脱氮除磷中试研究[J].中国给水排水,2007,23(3):22-26.
    [76]林琳,黄瑾,白海龙,等. A2/O型膜生物反应器污水处理工艺设计要点[J].中国市政工程,2009,3:61-63
    [77] Kurniawan T A, Lo W H, Chan G Y S. Physico-chemical treatments for removal of recalcitrantcontaminants from landfill leachate[J]. J Hazard Mater,2006,129:80-100.
    [78] Laitinen N, Luonsi A, Vilen J. Landfill leachate treatment with sequencing batch reactor andmembrane bioreactor[J]. Desalination,2006,191:86-91.
    [79] Akkaya E, Demir A, Karadag D, et al. Post-treatment of anaerobically treated medium-age landfillleachate[J]. Environ. Prog. Sustainable Energy,2010,29:78-84.
    [80] Hua J, Zhang L, Li Y. Application of UASB-MBR system for landfill leachate treatment[C].2009International Conference on Energy and Environment Technology, ICEET,2009,3:203-206.
    [81]赵由才,龙燕,张华.生活垃圾卫生填埋技术[M].北京:化学工业出版社,2004.
    [82] Li G, Wang W, Du Q. Applicability of nanofiltration for the advanced treatment of landfillleachate[J]. Appl Polym Sci,2010,116:2343-2347.
    [83] Chiemchaisri C, Chiemchaisri W, Nindee P, et al. Treatment performance and microbialcharacteristics in two-stage membrane bioreactor applied to partially stabilized leachate[J]. WaterSci Technol,2011,64:1064-1072.
    [84] Puszcza o E, Bohdziewicz J, wierczyńska A. The influence of percentage share of municipallandfil leachates in a mixture with synthetic wastewater on the effectiveness of a treatment processwith use of membrane bioreactor, Desalination[J]. Water Treat,2010,14:16-20.
    [85] Aloui F, Fki F, Loukil S, et al. Application of combined membrane biological reactor andelectro-oxidation processes for the treatment of landfill leachates[J]. Water Sci Technol,2009,60:605-614.
    [86] Tsilogeorgis J, Zouboulis A, Samaras P, et al. Application of a membrane sequencing batch reactorfor landfill leachate treatment[J]. Desalination,2008,221:483-493.
    [87] Hasar H, Unsal S A, Ipek U, et al. Stripping/flocculation/membrane bioreactor/reverse osmosistreatment of municipal landfill leachate[J]. J Hazard Mater,2009,171:309-317.
    [88] Ahn W Y, Kang M S, Yim S K, et al. Advanced landfill leachate treatment using an integratedmembrane process[J]. Desalination,2002,149:109-114.
    [89] Yamamoto T, Yasuhara A, Shiraishi H, et al. Bisphenol A in hazardous waste landfill leachates[J].Chemosphere,2001,42:415-418.
    [90] Yasuhara A, Shiraishi H, Nishikawa M, et al. Determination of organic components in leachatesfrom hazardous waste disposal sites in Japan by gas chromatography-mass spectrometry[J].Chromatogr A,1997,774:321-332.
    [91] Yamamoto T, Yasuhara A. Quantities of bisphenol A leached from plastic waste samples[J].Chemosphere,1999,38:2569-2576.
    [92] Svojitka J, Wintgens T, Melin T. Treatment of landfill leachate in a bench scale MBR[J],Desalination,2009,9:136-141.
    [93] Xu Y, Zhou Y, Wang D, et al. Occurrence and removal of organic micropollutants in the treatmentof landfill leachate by combined anaerobic membrane bioreactor technology[J]. Environ Sci,2008,20:1281-1287.
    [94] Mato i M, Terzi S, Jakopovi K K, et al. Treatment of a landfill leachate containing compoundsof pharmaceutical origin[J]. Water Sci Technol,2008,58:597-602.
    [95] Radjenovi J, Petrovi M, BarcelóD. Fate and distribution of pharmaceuticals in wastewater andsewage sludge of the conventional activated sludge (CAS) and advanced membrane bioreactor(MBR) treatment[J]. Water Res,2009,43:831-841.
    [96] Wichitsathian B, Sindhuja S, Visvanathan C, et al. Landfill leachate treatment by yeast and bacteriabased membrane bioreactors[J]. Environ Sci Health,2004,39:2391-2404.
    [97] Chen S, Liu J. Landfill leachate treatment by MBR: Performance and molecular weight distributionof organic contaminant[J]. Chin Sci Bull,2006,51:2831-2838.
    [98] Ince M, Senturk E, Onkal Engin G, et al. Further treatment of landfill leachate by nanofiltration andmicrofiltration-PAC hybrid process[J]. Desalination,2010,255:52-60.
    [99] Zhiguo Yuan, Adrian Oehmen, Yongzhen Peng, et al. Sludge population optimisation in biologicalnutrient removal wastewater treatment systems through on-line process control: are/view[J]. Reviews in Environmental Science and Bio/Technology,2008,7(3):243-254.
    [100]王琳,王宝贞.水污染治理新技术[M].北京:科学教育出版社,2004.
    [101] Yuan Z, Blackall LL. Sludge population optimisation: a new dimension for the control of biologicalwastewater treatment systems. Water Res,2002,36(2):482-490.
    [102] Khin T, Annachhatre A P. Novel microbial nitrogen removal processes[J]. Biotechnol Adv,2004,22(7):519-532.
    [103]苏彩丽,余泳昌,季宝杰.短程硝化-厌氧氨氧化生物脱氮研究进展[J].环境科学与技术,2009,32(4):92-96.
    [104]郑赞永,胡龙兴.低溶解氧下生物膜反应器的亚硝化研究[J].环境科学与技术,2006,29(9):29-31.
    [105] Laanbroek H J, Gerards S. Competition for limiting amounts of oxygen between Nitrosomonaseuropaea and Nitrobacter winogradskyi grown in mixed continuous cultures[J]. Archives ofMicrobiology,1993,159(5):453-459.
    [106] Zeng W, Zhang Y, Li L, et al. Control and optimization of nitrifying communities for nitritationfrom domestic wastewater at room temperatures[J]. Enzyme and Microbial Technology,2009,45(3):226-232.
    [107]郑雅楠,滝川哲夫,郭建华,等. SBR法常、低温下生活污水短程硝化的实现及特性[J].中国环境科学,2009,29(9):935-940.
    [108] Park H D and Noguera D R. Evaluating the effect of dissolved oxygen on ammonia-oxidizingbacterial communities in activated sludge[J]. Water Res,2004,38(14-15):3275-3286.
    [109]雒怀庆,胡勇有.影响亚硝化过程和硝化过程因素的动力学模型分析[J].环境科学学报,2006,26(4):561-566.
    [110]张巍,赵军,郎咸明,等.硝化细菌在不同温度下对氮素的去除效能研究[J].环境科学与管理,2010,35(6):83-87.
    [111]朱洪山,吕斌.短程硝化反硝化理论及工艺研究进展[J].山西建筑,2010,36(11):180-181.
    [112]高大文,彭永臻,王淑莹.短程硝化生物脱氮工艺的稳定性[J].环境科学,2005,26(1):63-67.
    [113]刘海滨,李亚峰,田西满.短程硝化控制条件研究现状与应用分析[J].工业安全与环保,2009,35(7):20-22.
    [114] Kim D J, Chang J S, Lee D I, et al. Nitrification of high strength ammonia wastewater and nitriteaccumulation characteristics[J]. Water Sci Technol,2003,47(11):45-51.
    [115] Pambrun V, Paul E, Spérandio M. Modeling the partial nitrification in sequencing batch reactor forbiomass adapted to high ammonia concentrations[J]. Biotechnol Bioeng,2006,95(1):120-31.
    [116] ChenY G, Randall A A, McCue T. The efficiency of enhanced biological phosphorus removal fromreal wastewater affected by different ratios of acetic to propionic acid[J]. Water Res,2004,38(1):27-36.
    [117] Oehmen A, Vives M T, Lu H B, et al. The effect of pH on the competition betweenpolyphosphate-accumulating organisms and glycogen-accumulating organisms[J]. Water Res,2005,39(15):3727-3737.
    [118] Lu H, Oehmen A, Virdis B, et al. Obtaining highly enriched cultures of Candidatus Accumulibacterphosphates through alternating carbon sources[J]. Water Res,2006,40(20):3838-3848.
    [119] Meyer R L, Saunders A M, Blackall L L. Putative glycogen-accumulating organisms belonging tothe Alphaproteobacteria identified through rRNA-based stable isotope probing[J]. Microbiology,2006,152(2):419-29.
    [120] Jobbágy A, Literáthy B, Wong T, et al. Proliferation of glycogen accumulating organisms inducedby Fe(III) dosing in a domestic wastewater treatment plant[J]. Water Sci Technol,2006,54(1):101-109.
    [121] Saito T, Brdjanovic D, van Loosdrecht M C. Effect of nitrite on phosphate uptake by phosphateaccumulating organisms[J]. Water Res,2004,38(17):3760-3768.
    [122] Adrian Oehmen, Aaron M. Saunders, M. Teresa Vives, et al. Competition between polyphosphateand glycogen accumulating organisms in enhanced biological phosphorus removal systems withacetate and propionate as carbon sources[J]. Journal of Biotechnology,2006,123(1):22-32.
    [123] Filipe C D, Daigger G T, Grady C P J. pH as a key factor in the competition betweenglycogen-accumulating organisms and phosphorus-accumulating organisms[J]. Water Environ Res,2001,73(2):223-232.
    [124]徐伟锋,顾国维.生物除磷系统中聚磷菌与聚糖菌代谢模型比较[J].中国给水排水,2006,22(14):5-9.
    [125] Seviour R J, Mino T, Onuki M. The microbiology of biological phosphorus removal in activatedsludge systems[J]. FEMS Microbiol Rev,2003,27(1):99-127.
    [126] Lopez-Vazquez C M, Song Y I, Hooijmans C M, et al. Short-term temperature effects on theanaerobic metabolism of glycogen accumulating organisms[J]. Biotechnol Bioeng,2007,97(3):483-495.
    [127] Bortone G, Libelli S M, Tilche A, et al. Anoxic phosphate uptake in the dephanox process[J]. WaterSci Technol,1999,40(4-5):177-185.
    [128]郑兴灿,李亚新.污水脱氮除磷技术[M].北京:中国建筑工业出版社,1998.
    [129]曹长青,雷中方,胡志荣,等.反硝化除磷过程中的影响因素探讨[J].中国给水排水,2005,21(7):22-25.
    [130] Ahn J, Daidou T, Tsuneda S, et al. Selection and dominance mechanisms of denitrifyingphosphate-accumulating organisms in biological phosphate removal process[J]. BiotechnologyLetters,2001,23(24):2005-2008.
    [131] Merzouki M, Bernet N, Delgenès J P, et al. Effect of prefermentation on denitrifying phosphorusremoval in slaughterhouse wastewater[J]. Bioresour Technol,2005,96(12):1317-1322.
    [132]方茜,张可方.硝酸盐对反硝化聚磷菌除磷性能的影响[J].中国给水排水,2010,26(15):64-68
    [133] Boopathy R and Tilche A. Pelletization of biomass in a hybrid anaerobic baffled reactor (HABR)treating acidified wastewater[J]. Bioresour Technol,1992,40(2):101-107.
    [134] Sallis P J and Uyanik S. Granule development in a split-feed anaerobic baffled reactor[J]. BioresourTechnol,2003,89(3):255-265.
    [135]李莹,张宏伟,朱文亭.厌氧-好氧工艺处理制药废水的中试研究[J].环境工程学报,2007,1(9):50-53.
    [136]麻娟. ABR反应器-生物接触氧化系统短程硝化反硝化脱氮除磷性能研究[J].广西农业科学,2009,40(11):1461-1465.
    [137] Huang X, Xiao K, Shen Y X. Recent advances in membrane bioreactor technology for wastewatertreatment in China[J]. Frontiers of Environ Sci&Eng in China,2010,4(3):245-270.
    [138] Marco Ferraris, Carolina Innella, Alessandro Spagni. Start-up of a pilot-scale membrane bioreactorto treat municipal wastewater[J]. Desalination,2009,(237):190-200.
    [139] Ying Wang, Xia Huang, Qipeng Yuan. Nitrogen and carbon removals from food processingwastewater by an anoxic/aerobic membrane bioreactor[J]. Process Biochem,2005,(40):1733-1739
    [140] Fu Z M, Yang F L, An Y Y, et al. Simultaneous nitrification and denitrification coupled withphosphorus removal in an modified anoxic/oxic-membrane bioreactor (A/O-MBR)[J]. BiochemicalEngineering Journal,2009,(43):191-196.
    [141]张杰. A/O工艺的固有欠缺和对策研究[J].给水排水,2003,29(3):22-25.
    [142]朱宁伟,李激,郑晓英,等. A2O-MBR组合工艺处理城市污水的试验研究[J].中国给水排水,2010,26(15):1-4.
    [143]黄霞,左名景,薛涛,等.膜生物反应器脱氮除磷工艺处理城市污水的工程应用[J].膜科学与技术,2011,31(3):223-227.
    [144] Galil N I, Malachi K B D, Sheindorf C. Biological Nutrient Removal in Membrane BiologicalReactors[J]. Environmental Engineering Science,2009,26(4):817-824.
    [145] Monclús H, Sipma J, Ferrero G, et al. Optimization of biological nutrient removal in a pilot plantUCT-MBR treating municipal wastewater during start-up[J]. Desalination,2010,250:592-597.
    [146] Zhang H M, Wang X L, Xiao J N, et al. Enhanced biological nutrient removal using MUCT-MBRsystem[J]. Bioresour Technol,2009,100:1048-1054.
    [147] Zhang S H, Huang Y, Hua Y M. Denitrifying dephosphatation over nitrite: effects of nitriteconcentration, organic carbon, and pH[J]. Bioresour Technol,2010,101:3870-3875.
    [148]金建华,刘建广,孙书洪,等.低温下一体式膜生物反应器处理城市污水研究[J].中国给水排水,2008,24(17):28-30.
    [149] Hu S W, Yang F L, Liu S T, et al. The development of a novel hybrid aerating membrane-anaerobicbaffled reactor for the simultaneous nitrogen and organic carbon removal from wastewater[J]. WaterRes,2009,43:381-388.
    [150] Holman J B, Wareham D G. COD, ammonia and dissolved oxygen time profiles in the simultaneousnitrification/denitrification process[J]. Biochemical Engineering Journal,2005,22(2):125-133.
    [151] Boopathy R and Tilche A. Pelletization of biomass in a hybrid anaerobic baffled reactor (HABR)treating acidified wastewater[J]. Bioresour Technol,1992,40(2):101-107.
    [152] Wang J, Huang Y, Zhao X. performance and charaeteristics of anaerobic baffled reactor[J].Bioresour Technol,2004,93(2):205-208.
    [153] Chu L B,Zhang X W,Yang F L et al. Treatment of domestic Wastewater by using a micro aerobicMembrane bioreactor[J]. Desalination,2006,189(1-3):181-192.
    [154] Gong Z, Liu S, Yang F et al. Charaeterization of functional microbial community in amembrane-aerated biofilm reactor operated for completely autotrophic nitrogen removal. BioresourTechnol,2008,99(8):2749-2756.
    [155]国家环境保护总局编委会.水和废水监测分析方法(第四版增补版)[M].北京:中国环境科学出版社,2006.
    [156] Satoshi O, Hisashi S, Yoshimasa W. In situ analysis of nitrifying biofilms as determined by in situhybridization and the use of microelectrodes[J]. Appl Environ Microbiol,1999,65(7):3182-3191
    [157] Yuichi S, Tsuneo S, Hiroki T, et al. Single-stage, single sludge nitrogen-moval by activated sludgeprocess with cross-flow filtration[J]. Water Res,1992,26(9):1149-1157.
    [158] Takao Y, Jader L, Shingo U, et al. Simultaneous removal of phenol and ammonia by an activatedsludge process with cross-flow filtration[J]. Water Res,200l,35(13):3089-3096.
    [159] Fan X J, Urbain V, Qian Y, et al. Nitrification and mass balance with a membrane bioreactor formunicipal wastewater treatment [J]. Water Sci Technol,1996,34(1-2):129-136.
    [160] Kim H G, Jang H N, Kim H M, et al. Enhancing nutrient removal efficiency by changing theinternal recycling ratio and position in a pilot-scale MBR process[J]. Desalination,2010,262:50-56.
    [161] Chen Y Z, Peng C Y, Wang J H, et al. Effect of nitrate recycling ratio on simultaneous biologicalnutrient removal in a novel anaerobic/anoxic/oxic (A2/O)-biological aerated filter (BAF) system[J].Bioresour Technol,2011,102:5722-5727.
    [162]金兆丰,许竟成.城市污水回用技术手册[M].北京:化学工业出版社,2004.
    [163] Peng Y Z and Ge S J. Enhanced nutrient removal in three types of step feeding process frommunicipal wastewater[J]. Bioresour Technol,2011,102:6405-6413.
    [164] Meng F G, Zhou Z B, Li L, et al. A novel nearly plug-flow membrane bioreactor for enhancedbiological nutrient removal[J]. AIChE Journal (2012):DOI10.1002/aic.13799.
    [165] Guerrero J, Guisasola A, Baeza J A. The nature of the carbon source rules the competition betweenPAO and denitrifiers in systems for simultaneous biological nitrogen and phosphorus removal[J].Water Res,2011,45:4793-4802.
    [166] Zeng W, Li L, Yang Y Y, et al. Denitrifying phosphorus removal and impact of nitrite accumulationon phosphorus removal in a continuous anaerobic-anoxic-aerobic (A2O) process treating domesticwastewater[J]. Enzyme Microb Technol,2011,48:134-142.
    [167] Ge S J, Peng Y Z, Wang S Y, et al. Enhanced nutrient removal in a modied step feed processtreating municipal wastewater with different in flow distribution ratios and nutrient ratios[J].Bioresour Technol,2010,101:9012-9019.
    [168] Yoon T I, Lee H s, Kim C G. Comparison of pilot scale performance between membrane bioreactorand hybrid conventional wa8tewater treatment systems[J]. Journal of Membrane Science,2004,242:5-12.
    [169] Ahn K H, Song K G, Choa E, et al. Enhanced biological phosphorus and nitrogen removal using asequencing anoxic/anaerobic membrane bioreactor(SAM) process[J]. Desalination,2003,157:345-352.
    [170] Monclús H, Sipma J, Ferrero G, et al. Biological nutrients removal in an MBR treating municipalwastewater with special focus on biological phosphorus removal[J]. Bioresour Technol,2010,101:3984-3991.
    [171] Tang S J, Wang Z W, Wu Z C, et al. Role of dissolved organic matters (DOM) in membrane foulingof membrane bioreactors for municipal wastewater treatment[J]. J Hazard Mater,2010,178:377-384.
    [172] Rahimi Y, Torabian A, Mehrdadi N, et al. Optimizing aeration rates for minimizing membranefouling and its effect on sludge characteristics in a moving bed membrane bioreactor[J]. J HazardMater,2011,186:1097-1102.
    [173] Jarusutthirak C and Amy G. Understanding soluble microbial products (SMP) as a component ofeffluent organic matter (EfOM)[J]. Water Res,2007,41(12):2787-2793.
    [174] Okamura D, Mori Y, Hashimoto T, et al. Identification of biofoulant of membrane bioreactors insoluble microbial products[J]. Water Res,2009,43(17):4356-4362.
    [175] Kuba T, van Loosdrecht M C M, Heunen J J. Phosphorus and nitrogen removal with minimal CODrequirement by integration of denitrifying dephosphatation and nitrification in a two-sludgesystem[J]. Water Res,1996,30(7):1702-1710.
    [176] Aguilera J, Petit T, de Winde J H, et al. Physiological and genome-wide transcriptional responses ofSaccharomyces cerevisiae to high carbon dioxide concentrations[J]. FEMS Yeast Research,2005,5(6-7):579-593.
    [177] McCarty P L. kinetics of waste assimilation in anaerobic treatment[M]. In Developments inIndustrial Microbial Sciences. Washington: American Institute of Biological Sciences,1966.
    [178]178Ruiz G, Jeison D, Rubilar O, et al. Nitrifieation-denitrification via nitrite accumulation fornitrogen removal from wastewaters[J]. Bioresour Technol,2006,97(2):330-335.
    [179] EI-Mahrouki I M L and Watson-Craik I A. The effeets of nitrate and nitrate-supplemented leachateAddition on methanogenesis from Municipal Solid Waste[J]. J Chem Technol Biotechnol,2004,79(8):842-850.
    [180] Baikun L, Shannon I, Katherine B. The variation of nitrifying bacterial population sizes in asequencing batch reactor (SBR) treating low, mid, high concentrated synthetic wastewater[J]. JEnviron Eng Sci,2007,6:651-663.
    [181] Chen R D and LaPara T M. Enrichment of dense nitrifying bacterial communities inmembrane-coupled bioreactors[J]. Process Biochem,2008,43:33-41.
    [182] Lesjean B, Gnirss R, Adam C. Process configurations adapted to membrane bioreactors forenhanced biological phosphorous and nitrogen removal [J]. Desalination,2002,149:217-224.
    [183]杨奇.MBR对含典型PPCPs生活污水的去除效果及影响因素研究[D]:[硕士学位论文].上海:上海交通大学环境科学与工程学院,2011.
    [184]付婉霞,张璐璐,吕柏超.三种一体式MBR的膜污染趋势比较[J].中国给水排水,2005,21(2):50-52.
    [185] Katayon S, Megat Mohd Noor M J, Abroad J, et al. Effects of mixed liquor suspended solidconcentrations on membrane bioreactor efficiency for treatment of food industry wastewater[J].Desalination,2004,167(15):153-158.
    [186]唐旭光,王淑莹,张婧倩.温度变化对生物除磷系统的影响[J].化工学报,2011,62(4):1103-1109.
    [187]王爱杰,任南琪.环境中的分子生物学诊断技术[M].北京:化学工业出版社,2004:253-258.
    [188]任南琪,李连政.环境污染防冶中的生物技术[M].北京:化学工业出版社,2004:258-262.
    [189]呼庆,齐鸿雁,张洪勋.荧光原位杂交技术及其在微生物生态学中的应用[J].生态学报,2004,24(5):1048-l054.
    [190]李华芝,李秀艳,徐亚同.荧光原位杂交技术在微生物群落结构研究中的应用[J].净水技术,2006,25(1):16-20.
    [191] Yang Z H, Xiao Y, Zeng GM, et al. Comparison of methods for total community DNA extractionand purification from compost[J]. Appl Microbiol Biotech,2007,74:918-925.
    [192]王冬波. SBR单级好氧生物除磷机理研究[D]:[湖南大学博士论文].长沙:湖南大学环境科学与工程学院,2011.
    [193]张洪军,朱彤. A/O工艺膜生物反应器处理生活污水的脱氮特性及硝化菌群的分子检测[J].环境污染与防治,2009,31:47-50.
    [194]胡绍伟.厌氧折流板反应器与膜曝气生物膜反应器的耦合作用研究[D].[大连理工大学博士论文].大连:大连理工大学环境学院,2008.
    [195] Amann, R I. In situ identification of micro-organisms by whole cell hybridization withrRNA-targeted nucleic acid probes[M]. Mol Microb Ecol Manual,1995,1-15.
    [196] Coskuner G, Ballinger S J, Davenport R J, et al. Agreement between theory and measurement inquantification of ammonia-oxidizing bacteria[J], App Environ Microbiol,2005,71:6325-6334.
    [197] Crocetti G R, Hugenholtz P, Bond P L, et al. Identification of Polyphosphate-AccumulatingOrganisms and Design of16S rRNA-Directed Probes for Their Detection and Quantitation[J]. ApplEnviron Microbiol,2000,66(3):1175-1182.
    [198]赵志伟,赵贞,刘杰,等.腐殖土活性污泥法的除臭效果及其微生物相分析[J].环境科学与技术,2010,33:128-131.
    [199] Daims H, Nielsen P H, Nielsen J L, et a1. Novel Nitrospira-1ike bacteria aS dominantnitrite-oxidizers in biofilms from wastewater treatment plants: diversity and in situphysiology[J]. Water Sci Technol,2000,41(4-5):85-90.
    [200]罗固源,豆俊峰,吉芳英,等.螺旋升流式反应器脱氮除磷效果及其特性的研究[J].环境科学学报,2004,24(1):15-19.
    [201] Liu Y, zhang T, Fang E H. Microbial community analysis and performance of aphosphate-removing activated sludge[J]. Bioresour Technol,2005,96(11):1205-1214.
    [202] Barker P S, Dold P L. Denitrification behaviour in biological excess phosphorus removal activatedsludge systems[J]. Water Res,1996,30:769-780.
    [203] Morgan· Sagastume F, Larsen P, Nielsen J L, et al. Characterization of the loosely attached fractionof activated sludge bacteria[J]. Water Res,2008,42:843-854.
    [204] Wong M T, Mino T, Seviour R J, et al. In situ identification and characterization of the microbialcommunity structure of full-scale enhanced biological phosphorous removal plants in Japan[J].Water Res,2005,39:2901-2914.
    [205] Miller D N, Smith R L. Microbial characterization of nitrification in a shallow,nitrogen-contaminated aquifer, Cape Cod, Massachusetts and detection of a novel cluster associatedwith nitrifying Betaproteobacteria[J]. J Contam Hydrol,2009,103:182-193.
    [206] Lozada M, Itria R F, Figuerola E L M, et al. Bacterial community shifts in nonylphenolpolyethoxylates-enriched activated sludge[J]. Water Res,2004,38:2077-2086.
    [207] Kraigher B, Kosjek T, Heath E, et al. Influence of pharmaceutical residues on the structure ofactivated sludge bacterial communities in wastewater treatment bioreactors[J]. Water Res,42:4578-4588.
    [208] Rivière D, Desvignes V, Pelletier E, et al. Towards the definition of a core of microorganismsinvolved in anaerobic digestion of sludge[J]. ISME J,2009,3: l-15.
    [209] Hagman M, Nielsen J L, Nielsen P H, et al. Mixed carbon sources for nitrate reduction in activatedsludge-identification of bacteria and process activity studies[J]. Water Res,2008,42:1539-1546.
    [210] Martins A M P, Heijnen J J, van Loosdrecht M C M. Effect of feeding pattern and storage on thesludge settleability under aerobic conditions[J]. Water Res,2003,37:2555-2570.
    [211] Adav S S, Lee D, Lai J. Functional consortium from aerobic granules under high organic loadingrates[J]. Bioresour Technol,2009,100:3465-3470.
    [212] Mullan A, Quinn J P, McGrath J W. Enhanced phosphate uptake and polyphosphate accumulationin Burkholderia cepacia grown under low-pH conditions[J]. Mierob Ecol,2002,44:69-77.
    [213] Dabert P, Sialve B, Delgen6s J P, et al. Characterisation of the microbial16S rDNA diversity of anaerobic phosphorus-removal ecosystem and monitoring of its transition to nitrate respiration[J].Appl Microbiol Biotech,2001,55,500-509.
    [214] Atkinson B W, Mudaly D D, Bux F. Contribution of Pseudomonas spp to phosphorus uptake in theanoxic zone of an anaerobic-anoxic-aerobic continuous activated sludge system[J]. Water SciTechnol,2001,43(1):139-146.
    [215] Jeon C O, Lee D S, Park J M. Microbial communities in activated sludge performing enhancedbiological phosphorus removal in a sequencing batch reactor[J]. Water Res,2003,37:2195-2205
    [216] Wagner M, Rath G, Amann R, et al. In situ identification of ammonia-oxidizing bacteria[J].Systematic and Applied Microbiology,1995,18(2):251-264.
    [217] Mobarry B K, Wagner M, UrbainV et al. Phylogenetic probes for analyzing abundance and spatialorganization of nitrifying bacteria[J]. Applied and Environmental Microbiology,1996,62(6):2156-2162.
    [218] Zeng H J, Saunders A M, Yuan Z G, et al. Identification and comparison of Aerobic anddenitrifying polyphosphate-accumulating organisms[J]. Biotechnol Bioeng,2003,83(2):140-148
    [219] Bae W, Baek S, Chung J, et al. Optimal operational factors for nitrite accumulation in batchreactors[J], Biodegradation,2001,12:359-366.
    [220] Zilles J L, Peccia J, Kim M W, et al. Involvement of Rhodocyclus-related organisms in phosphorusremoval in full-scale wastewater treatment plants[J], Appl Environ Microbiol,2002,68:2763-2769.
    [221] Saunders A M, Oehmen A, Blackall L L, et al. The effect of GAOs (glycogen accumulatingorganisms) on anaerobic carbon requirements in full-scale Australian EBPR (enhanced biologicalphosphorus removal) plants[J]. Water Sci Technol,2003,47:37-43.
    [222] Kong Y H, Nielsen J L, Nielsen P H. Microautoradiographic study of Rhodocyclus-Relatedpolyphosphate-accumulating bacteria in full-scale enhanced biological phosphorus removalplants[J]. Appl Environ Microbiol,2004,70:5383-5390.
    [223] Gu A Z, Saunders, A M, Neethling J B, et al. In: WEF (Ed.) Investigation of PAOs and GAOs andtheir effects on EBPR performance at full-scale wastewater treatment plants in US, October29-November2,(2005) WEFTEC, Washington, DC, USA.
    [224] He S, Gu A Z, McMahon K D. The role of Rhodocyclus-like organisms in biological phosphorusremoval: factors influencing population structure and activity, In: Water Environment FederationTechnical Exhibition and Conference (WEFTEC), October29-November2,(2005) Washington,DC, USA.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700