马铃薯液泡酸性转化酶基因的表达调控机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
马铃薯(Solanum tuberosum L.)是世界第四大粮食作物。中国是马铃薯第一生产大国,马铃薯消费正由鲜食为主逐渐向高附加值产品转变。为了延长市场供应期,通常将收获后的马铃薯块茎贮藏在低温条件下,而低温贮藏过程中块茎还原糖含量上升,造成马铃薯加工品质下降。因此,明确低温糖化的调控机制是马铃薯品质研究的难点与热点。前人研究显示,低温条件下转化酶活性上升是造成低温糖化的主要因素。但关于转化酶基因(StvacINV1)在马铃薯块茎低温贮藏中的表达调控机制还不完全明确。
     本研究基于本实验室前期的工作,通过克隆分析StvacINV1基因的启动子,同时通过分析miRNA及其靶基因,以明确StvacINV1的转录调控和转录后调控机制。主要研究结果如下:
     1. StvacINV1基因在抗低温糖化和低温糖化敏感型基因型中的表达模式
     研究选用6个马铃薯基因型作为材料,分析不同基因型的低温糖化敏感程度和StvacINV1表达模式。结果显示,20℃条件下所有基因型在整个贮藏期间的炸片色泽、还原糖含量和蔗糖含量变化幅度较小,但在4℃条件下贮藏的块茎,所有基因型炸片色泽随贮藏时间的延长而逐渐加深,还原糖含量和蔗糖含量上升。色泽指数分析显示,抗低温糖化基因型ND860-2、10908-06、CW2-1薯片色泽指数上升幅度较小;而低温糖化敏感基因型11059-01、ED25和E3薯片色泽指数上升幅度较大。可溶性酸性转化酶活性和StvacINV1转录本丰度分析显示,可溶性酸性转化酶活性在4℃贮藏5d-15d之间上升,而StvacINV1转录本丰度则在4℃贮藏8h-16h即开始上升。低温贮藏后,StvacINV1转录本丰度均高于20℃贮藏的水平,且在栽培种中抗低温糖化基因型和低温糖化敏感基因型间StvacINV1基因的表达模式无规律性的差异。但野生种S. berthaultii (CW2-1)的StvacINV1基因表达水平在低温贮藏5d时明显低于栽培种,暗示该基因型中StvacINV1基因在转录水平的调控可能影响其低温糖化性状。
     2. StvacINV1基因启动子克隆与功能分析
     为了明确StvacINV1基因在不同基因型中的表达是否与启动子结构有关,实验选用10个马铃薯基因型,采用高效热不对称PCR技术克隆了StvacINV1基因的启动子。测序结果显示,来自马铃薯不同基因型的启动子序列一致性为94.1%-99.9%,其结构上没有规律性的差异。生物信息学分析显示,StvacINV1基因启动子序列上有9个糖抑制元件、8个赤霉素应答元件。进一步转基因分析表明,该启动子可驱动报告基因在根、茎、叶以及块茎中表达,蔗糖、葡萄糖、果糖抑制启动子活性,而赤霉素和生长素可促进启动子活性。启动子缺失实验证明,该启动子应答蔗糖/葡萄糖、赤霉素、生长素的启动子区域分别为-118至-551、-551至-1021,以及-1021至-1521。在本研究中,低温能够抑制StvacINV1基因启动子活性,与该基因的表达模式存在明显的差异,暗示该基因的表达水平可能受到其它因素的影响,如转录后调节。
     3.低温糖化相关的miRNA及其靶基因分析
     研究以抗低温糖化基因型10908-06为材料,分别构建了块茎4℃和20℃贮藏条件下的small RNA文库和降解组文库。通过高通量测序和分析,共获得53个known miRNA、60个novel miRNA、70个miRNA*以及70个靶基因。以测序信息为基础的分析结果表明,36个miRNA/miRNA*在不同贮藏温度条件下呈现差异表达。进一步选择了24个miRNA/miRNA*和55个靶基因通过RT-qPCR进行表达分析,结果显示,共有12miRNA/miRNA*和11个靶基因在4℃和20℃以及抗低温糖化和低温糖化敏感型基因型间表达水平差异显著。
     12个表达差异显著的miRNA/miRNA*与已进行RT-qPCR分析的靶基因比较分析,有6个miRNA/miRNA*可以匹配上11个靶基因。这11个靶基因中,有3个靶基因在在两个温度及两个基因型间的表达差异达到显著水平,3个靶基因涉及1个miRNA (miR172)和1个miRNA*(miR396a-3p)。miRNA/miRNA*及其靶基因的对比分析证明,miR172在抗低温糖化基因型中,块茎低温贮藏2d显著上调表达,其匹配的靶基因在同一处理的时间内下调表达,靶基因呈现明显的miRNA调控关系。miR396a-3p与其靶基因未呈现明显的调控表达模式。
     在本研究中,miRNA/miRNA*未发现转化酶靶基因,同时,StvacINV1拘转录本水平与马铃薯低温糖化无显著相关,表明该酶的活性可能是其调控低温糖化的关键因素。这一结论由本实验室最近发现的StvacINV1的翻译后调节机制所证实。但是,本研究所发现的差异表达的miRNA/miRNA*及其靶基因可能为全面了解马铃薯低温糖化的调控机制提供新的线索。
Potato (Solalnum tuberosum L.) is the fourth most important food crop in the wold and China ranks the first with its potato production. The global consumption of potato is shifting from staple food to value-added processed products. Potato tubers are often stored at low temperature to prevent sprouting and minimize disease losses. However, low temperature leads to accumulation of reducing sugars in potato tubers, a process known as the cold-induced sweetening (CIS). Reducing sugars react with free amino acids during frying for potato chips or French fries, resulting in unacceptable color change and acrylamide formation, which cause major economic and healthy concerns. Potato vacuolar acid invertase that hydrolyzes sucrose into glucose and fructose has been confirmed to play an important role in CIS. StvacINVl, which encods a potato vacuolar acid invertase, is induced by low temperature in potato tubers and is a main contributor to invertase activity. However, its expression regulatory mechanismemains to be elucidated.
     To disclose the factors that regulating the StvacINVl transcription, the promoter of StvacINV1was cloned and analyzed. Futhermore, the microRNAs (miRNA) in connection with CIS were analyzed by deep sequencing of small RNA libraries and degradomes. The main results are as follows:
     1. Six potato genotypes with distint CIS resistance were selected for dynamic analysis of sugar accumulation and invertase expression patterns in tubers during one month of low temperature storage. The significant increase of sucrose content was found to occur earlier than the raise of reducing sugar content in all the genotypes tested. The activity of soluble acid invertase increased accompanied with sugar accumulation, and the transcripts of StvacINV1increased rapidly in tubers exposed to cold treatment. However, no distinct StvacINVl expression pattern could be clarified between the CIS-resistant and the CIS-sensitive genotypes.
     2. The5'-flanking sequence of StvacINV1was cloned and the cis-acting elements were predicted. Histochemical assay showed that the StvacINVl promoter governed β-glucuronidase (GUS) expression in potato leaves, stems, roots and tubers. Quantitative analysis of GUS expression suggested that the activity of StvacINVl promoter was suppressed by sucrose, glucose, fructose and cold, while it was enhanced by indole-3-acetic acid (IAA) and giberellic acid (GA3). Further deletion analysis clarified that the promoter regions from-118to-551,-551to-1021, and-1021to-1521were responsive to stimuli of sucrose/glucose, GA3and IAA, respectively. The events of reduction in the promoter activity under low temperature implied other regulatory mechanisms for StvacINV1expression, such as post-trnascriptional regulation.
     3. Two small RNA and two degradomes libraries were constructed from the potato (10908-06) tubers stored at20℃or4℃for deep sequencing. A total of53known miRNAs,60novel miRNAs and70miRNA*s were identified by small RNA sequencing, and70miRNA-targeted genes were predicted by degradome sequencing. The expression level of36miRNAs/miRNA*s showed significant changes in response to cold. Twenty-four miRNAs/miRNA*s and55targets were selected for the expression profiling. The results showed that12miRNAs/miiRNA*s were differencially expressed between20℃and4℃, and between CIS-resistant and the CIS-sensitive genotypes. Among them,11targets were matched by six miRNA/miRNA*, including three genes whose expressions were significantly different between the temperature treatments and between the potato genotypes. Of these three genes, a gene encoding APETALA2is the target of miR172, and the other two genes are the target of miR396a-3p. miR172was induced by2d-cold-storage in the tubers of10908-06along with a down-regulation of its target, indicating the expression of the APETALA2gene is possibly modulated by miR172. Since no miRNAs were identified to match the StvacINV1gene, and the aboundance of StvacINV1mRNAs was not significantly related to CIS, present results suggest that the StvacINV1activity may be essential for potato CIS. This conclusion reinforces the finding that a post-translational regulation of StvacINVl plays key roles in the process of potato CIS. However, the identified miRNA/miRNA*s, as well as their target genes, may provide new clues for approaching a full understanding of the regulatory mechanisms of potato CIS.
引文
1.陈霞.马铃薯野生种Solanum berthaultii抗低温糖化基因的分离及表达特征分析.[博士学位论文].武汉:华中农业大学图书馆,2012
    2.成娟,张金文,王蒂.低温条件下转AcInv反义基因马铃薯品系的干物质,淀粉和还原糖含量变化.植物生理学通讯,2006,42(4):651-656
    3.成善汉,宋波涛,谢从华,李竟才,柳俊.烟草液泡转化酶抑制子基因调控马铃薯块茎低温还原糖累积的研究.中国农业科学,2007,40(1):140-146
    4.成善汉.马铃薯块茎低温糖化机理及转化酶抑制子基因的克隆与功能鉴定.[博士学位论文].武汉:华中农业大学图书馆,2004
    5.崔文娟,张金文,孟亚雄,王旺田,俞丽娟.转AcInv反义基因马铃薯品系的生理特性及POD同工酶变化分析.甘肃农业大学学报,2008,43(4):55-58
    6.何天久.SbTRXh1和Sb14-3-1基因对马铃薯块茎低温糖化的作用.[博士学位论文].武汉:华中农业大学图书馆,2012
    7.金黎平.二倍体马铃薯加工品质及重要农艺性状的遗传分析.[博士学位论文].北京:中国农业科学院图书馆,2006
    8.李合生.现代植物生理学.第2版.北京:高等教育出版社,2006.171-181
    9.刘勋.马铃薯转化酶及其抑制子基因家族分析及与低温糖化关系研究.[博士学位论文].武汉:华中农业大学图书馆,2010
    10.欧庸彬,姚春光,柳寒,任俊岭,何钦,宋波涛.马铃薯高代系炸片色泽分析与加工品质评价.中国马铃薯,2008,22(5):274-277
    11.石伟平.二倍体马铃薯遗传群体构建和抗低温糖化分析.[硕士学位论文].武汉:华中农业大学图书馆,2010
    12.宋波涛.马铃薯腺苷二磷酸葡萄糖焦磷酸化酶小亚基基因的克隆与功能研究.[博士学位论文].武汉:华中农业大学图书馆,2005
    13.王清,黄惠英,张金文,李学才.反义酸性转化酶基因对低温贮藏马铃薯块茎还原糖和淀粉含量的影响.植物生理与分子生物学学报,2005,31(5):533-538
    14.王镜岩,朱圣庚,徐长法.生物化学.第3版.北京:高等教育出版社,2002.15-17
    15.谢从华.马铃薯产业的现状与发展.华中农业大学学报(社会科学版),2012, 97(1):1-4
    16.杨建文.马铃薯抗低温糖化相关基因差减文库的构建.[硕士学位论文].武汉:华中农业大学图书馆,2006
    17.张迟,谢从华,柳俊,宋波涛,刘勋.RNA干涉对马铃薯内源酸性转化酶活性的影响.农业生物技术学报,2008,16(1):108-101
    18.张迟.抑制马铃薯Acid invertase表达对块茎淀粉-糖代谢的影响研究.[博士学位论文].武汉:华中农业大学图书馆,2007
    19.郑用琏.基础分子生物学.北京:高等教育出版社,2007.277-306
    20.朱青.低温诱导的马铃薯块茎特异融合启动子的构建及低温调控因子St-CBF的鉴定.[博士学位论文].武汉:华中农业大学图书馆,2007
    21. Addo-Quaye C, Eshoo TW, Bartel DP, Axtell MJ. Endogenous siRNA and miRNA targets identified by sequencing of the Arabidopsis degradome. Curr Biol,2008, 18(10):758-762
    22. Addo-Quaye C, Snyder JA, Park YB, Li Y-F, Sunkar R, Axtell MJ. Sliced microRNA targets and precise loop-first processing of MIR319 hairpins revealed by analysis of the Physcomitrella patens degradome. RNA,2009,15(12): 2112-2121
    23. Adhikari S, Turner M, Subramanian S. Hairpin priming is better suited than in vitro polyadenylation to generate cDNA for plant miRNA qPCR. Mol Plant,2013,6(1): 229-231
    24. Bagnaresi P, Moschella A, Beretta O, Vitulli F, Ranalli P, Perata P. Heterologous microarray experiments allow the identification of the early events associated with potato tuber cold sweetening. BMC Genomics,2008,9:176
    25. Baldwin S, Dodds K, Auvray B, Genet R, Macknight R, Jacobs J. Association mapping of cold-induced sweetening in potato using historical phenotypic data. Ann Appl Biol,2011,158(3):248-256
    26. Barichello V, Yada RY, Coffin RH, Stanley DW. Low temperature sweetening in susceptible and resistant potatoes:starch structure and composition. J Food Sci, 1990,55(4):1054-1059
    27. Barratt DHP, Derbyshire P, Findlay K, Pike M, Wellner N, Lunn J, Feil R, Simpson C, Maule AJ, Smith AM. Normal growth of Arabidopsis requires cytosolic invertase but not sucrose synthase. Proc Natl Acad Sci USA,2009,106(31): 13124-13129
    28. Bartel DP. MicroRNAs:genomics, biogenesis, mechanism, and function. Cell, 2004,116(2):281-297
    29. Beltrao P, Albanese V, Kenner Lillian R, Swaney Danielle L, Burlingame A, Villen J, Lim Wendell A, Fraser James S, Frydman J, Krogan Nevan J. Systematic functional prioritization of protein posttranslational modifications. Cell,2012, 150(2):413-25
    30. Bhaskar PB, Wu L, Busse JS, Whitty BR, Hamernik AJ, Jansky SH, Buell CR, Bethke PC, Jiang J. Suppression of the vacuolar invertase gene prevents cold-induced sweetening in potato. Plant Physiol,2010,154(2):939-948
    31. Bizimungu B, Lynch D, Kawchuk L, Chen Q, Konschuh M, Schaupmeyer C, Wahab J, Waterer D, Driedger D, Wolfe H. Northstar:A high-yielding, white cold-storage chipping potato cultivar with attractive oval tubers resistant to late blight. Am J Potato Res,2007,84(6):437-445
    32. Blenkinsop RW, Copp LJ, Yada RY, Marangoni AG. A proposed role for the anaerobic pathway during low-temperature sweetening in tubers of Solanum tuberosum. Physiol Plantarum,2003,118(2):206-212
    33. Blenkinsop RW, Copp LJ, Yada RY, Marangoni AG. Effect of chlorpropham (CIPC) on carbohydrate metabolism of potato tubers during storage. Food Res Int, 2002,35(7):651-655
    34. Bournay AS, Hedley PE, Maddison A, Waugh R, Machray GC. Exon skipping induced by cold stress in a potato invertase gene transcript. Nucleic Acids Res,1996, 24(12):2347-2351
    35. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem, 1976,72(1):248-254
    36. Bradshaw JE, Hackett CA, Pande B, Waugh R, Bryan GJ. QTL mapping of yield, agronomic and quality traits in tetraploid potato (Solanum tuberosum subsp. tuberosum). Theor Appl Genet,2008,116(2):193-211
    37. Chen C, Ridzon DA, Broomer AJ, Zhou Z, Lee DH, Nguyen JT, Barbisin M, Xu NL, Mahuvakar VR, Andersen MR. Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res,2005,33(20):el79-e179
    38. Chen C-YA, Shyu A-B. AU-rich elements:characterization and importance in mRNA degradation. Trends Biochem Sci,1995,20(11):465-470
    39. Chen S, Hajirezaei MR, Zanor M-I, Hornyik C, Debast S, Lacomme C, Fernie AR, Sonnewald UWE, BORnke F. RNA interference-mediated repression of sucrose-phosphatase in transgenic potato tubers(Solanum tuberosum) strongly affects the hexose-to-sucrose ratio upon cold storage wim only minor effects on total soluble carbohydrate accumulation. Plant Cell Environ,2008,31(1):165-176
    40. Chen X, Salamini F, Gebhardt C. A potato molecular-function map for carbohydrate metabolism and transport. Theor Appl Genet,2001,102(2-3): 284-295
    41. Chen X, Song B, Liu J, Yang J, He T, Lin Y, Zhang H, Xie C. Modulation of gene expression in cold-induced sweetening resistant potato species Solanum berthaultii exposed to low temperature. Mol Genet Genomics,2012,287(5):411-421
    42. Chinnusamy V, Zhu J-K. Epigenetic regulation of stress responses in plants. Curr Opin Plant Biol,2009,12(2):133-139
    43. Claassen PA, Budde MA, Van Calker MH. Increase in phosphorylase activity during cold-induced sugar accumulation in potato tubers. Potato Res,1993,36(3): 205-217
    44. Cochrane MP, Duffus CM, Allison M, Mackay G. Amylolytic activity in stored potato tubers.2. The effect of low-temperature storage on the activities of a-and β-amylase and a-glucosidase in potato tubers. Potato Res,1991,34(3):333-341
    45. Conesa A, Gotz S, Garcia-Gomez JM, Terol J, Talon M, Robles M. Blast2GO:a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics,2005,21(18):3674-3676
    46. Cottrell JE, Duffus CM, Paterson L, Mackay GR, Allison MJ, Bain H. The effect of storage temperature on reducing sugar concentration and the activities of three amylolytic enzymes in tubers of the cultivated potato, Solanum tuberosum L. Potato Res,1993,36(2):107-117
    47. Cutler SR, Rodriguez PL, Finkelstein RR, Abrams SR. Abscisic acid:emergence of a core signaling network. Annu Rev Plant Biol,2010,61:651-679
    48. D'hoop B, Paulo M, Mank R, Eck H, Eeuwijk F. Association mapping of quality traits in potato(Solanum tuberosum L.). Euphytica,2008,161(1-2):47-60
    49. Dai X, Zhao PX. psRNATarget. a plant small RNA target analysis server. Nucleic Acids Res,2011,39(Web Server issue):W155-159
    50. Deiting U, Zrenner R, Stitt M. Similar temperature requirement for sugar accumulation and for the induction of new forms of sucrose phosphate synthase and amylase in cold-stored potato tubers. Plant Cell Environ,1998,21(2):127-138
    51. Dixon WL, ap Rees T. Carbohydrate metabolism during cold-induced sweetening of potato tubers. Phytochemistry,1980,19(8):1653-1656
    52. Douches DS, Freyre R. Identification of genetic factors influencing chip color in diploid potato (Solanum spp.). Am J Potato Res 1994,71(9):581-590
    53. Draffehn AM, Meller S, Li L, Gebhardt C. Natural diversity of potato (Solanum tuberosum) invertases. BMC Plant Biol,2010,10:271
    54. Eveland AL, Jackson DP. Sugars, signalling, and plant development. J Exp Bot, 2012,63(9):3367-3377
    55. Fang L, Jiang W, Bae W, Inouye M. Promoter-independent cold-shock induction of cspA and its derepression at 37℃ by mRNA stabilization. Mol Microbiol,1997, 23(2):355-364
    56. Farnham PJ. Insights from genomic profiling of transcription factors. Nat Rev Genet,2009,10(9):605-616
    57. Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature,1998,391(6669):806-811
    58. Finkelstein RR, Li Wang M, Lynch TJ, Rao S, Goodman HM. The Arabidopsis abscisic acid response locus ABI4 encodes an APETALA2 domain protein. Plant Cell,1998,10(6):1043-1054
    59. Flinn B, Rothwell C, Griffiths R, Lague M, DeKoeyer D, Sardana R, Audy P, Goyer C, Li X-Q, Wang-Pruski G, Regan S. Potato expressed sequence tag generation and analysis using standard and unique cDNA libraries. Plant Mol Biol, 2005,59(3):407-433
    60. Geigenberger P, Stitt M. Diurnal changes in sucrose, nucleotides, starch synthesis and AGPS transcript in growing potato tubers that are suppressed by decreased expression of sucrose phosphate synthase. Plant J,2000,23(6):795-806
    61. Geigenberger P. Regulation of sucrose to starch conversion in growing potato tubers. JExp Bot,2003,54(382):457-465
    62. German MA, Pillay M, Jeong D-H, Hetawal A, Luo S, Janardhanan P, Kannan V, Rymarquis LA, Nobuta K, German R. Global identification of microRNA-target RNA pairs by parallel analysis of RNA ends. Nature Biotechnol,2008,26(8): 941-946
    63. Gichohi E, Pritchard M. Storage temperature and maleic hydrazide effects on sprouting, sugars, and fry color of Shepody potatoes. Am J Potato Res,1995, 72(12):737-747
    64. Giuliodori AM, Di Pietro F, Marzi S, Masquida B, Wagner R, Romby P, Gualerzi CO, Pon CL. The cspA mRNA is a thermosensor that modulates translation of the cold-shock protein CspA. Mol Cell,2010,37(1):21-33
    65. Goetz M, Godt DE, Guivarc'h A, Kahmann U, Chriqui D, Roitsch T. Induction of male sterility in plants by metabolic engineering of the carbohydrate supply. Proc Natl Acad Sci USA,2001,98(11):6522-6527
    66. Gregory BD, O'Malley RC, Lister R, Urich MA, Tonti-Filippini J, Chen H, Millar AH, Ecker JR. A link between RNA metabolism and silencing affecting Arabidopsis development. Dev Cell,2008,14(6):854-866
    67. Greiner S, Rausch T, Sonnewald U, Herbers K. Ectopic expression of a tobacco invertase inhibitor homolog prevents cold-induced sweetening of potato tubers. Nat Biotechnol,1999,17(7):708-711
    68. Guan Q, Wu J, Zhang Y, Jiang C, Liu R, Chai C, Zhu J. A DEAD box RNA helicase is critical for pre-mRNA splicing, cold-responsive gene regulation, and cold tolerance in Arabidopsis. Plant Cell,2013,25(1):342-356
    69. Guilfoyle T, Hagen G, Ulmasov T, Murfett J. How does auxin turn on genes? Plant Physiol,1998,118(2):341-347
    70. Hafner M, Landgraf P, Ludwig J, Rice A, Ojo T, Lin C, Holoch D, Lim C, Tuschl T. Identification of microRNAs and other small regulatory RNAs using cDNA library sequencing. Methods,2008,44(1):3-12
    71. Hajirezaei M, Sonnewald U, Viola R, Carlisle S, Dennis D, Stitt M. Transgenic potato plants with strongly decreased expression of pyrophosphate: fructose-6-phosphate phosphotransferase show no visible phenotype and only minor changes in metabolic fluxes in their tubers. Planta,1993,192(1):16-30
    72. Hajirezaei MR, Takahata Y, Trethewey RN, Willmitzer L, Sonnewald U. Impact of elevated cytosolic and apoplastic invertase activity on carbon metabolism during potato tuber development. JExp Bot,2000,51:439-445
    73. Hamernik A, Hanneman R, Jansky S. Introgression of wild species germplasm with extreme resistance to cold sweetening into the cultivated potato. Crop Sci,2009, 49(2):529-542
    74. Hammond SM, Bernstein E, Beach D, Hannon GJ. An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature,2000, 404(6775):293-296
    75. He T, Song B, Liu J, Chen X, Ou Y, Lin Y, Zhang H, Xie C. A new isoform of thioredoxin h group in potato, SbTRXhl, regulates cold-induced sweetening of potato tubers by adjusting sucrose content. Plant Cell Rep,2012,31(8):1463-1471
    76. Hedley PE, Machray GC, Davies HV, Burch L, Waugh R. cDNA cloning and expression of a potato(Solanum tuberosum) invertase. Plant Mol Biol,1993,22(5): 917-922
    77. Hedley PE, Machray GC, Davies HV, Burch L, Waugh R. Potato(Solanum tuberosum) invertase-encoding cDNAs and their differential expression. Gene, 1994,145(2):211-214
    78. Hedley PE, Maddison AL, Davidson D, Machray GC. Differential expression of invertase genes in internal and external phloem tissues of potato(Solanum tuberosum L.). JExp Bot,2000,51(345):817-821
    79. Herrman TJ, Love SL, Shafii B, Dwelle RB. Chipping performance of three processing potato cultivars during long-term storage at two temperature regimes. Am JPotato Res,1996,73(9):411-425
    80. Higo K, Ugawa Y, Iwamoto M, Higo H. PLACE:a database of plant cis-acting regulatory DNA elements. Nucleic Acids Res,1998,26(1):358-359
    81. Hill L, Reimholz R, Schroder R, Nielsen TH, Stitt M. The onset of sucrose accumulation in cold-stored potato tubers is caused by an increased rate of sucrose synthesis and coincides with low levels of hexose-phosphates, an activation of sucrose phosphate synthase and the appearance of a new form of amylase. Plant Cell Environ,1996,19(11):1223-1237
    82. Hoover R, Sosulski F. Studies on the functional characteristics and digestibility of starches from phaseolus vulgaris biotypes. Starch-Starke,1985,37(6):181-191
    83. Hsieh T-F, Shin J, Uzawa R, Silva P, Cohen S, Bauer MJ, Hashimoto M, Kirkbride RC, Harada JJ, Zilberman D, Fischer RL. Regulation of imprinted gene expression in Arabidopsis endosperm. Proc Natl Acad Sci USA,2011,108(5):1755-1762
    84. Huang L-F, Bocock PN, Davis JM, Koch KE. Regulation of invertase:a 'suite' of transcriptional and post-transcriptional mechanisms. Func Plant Biol,2007,34(6): 499-507
    85. Huber SC, Hardin SC. Numerous posttranslational modifications provide opportunities for the intricate regulation of metabolic enzymes at multiple levels. Curr Opin Plant Biol,2004,7(3):318-322
    86. Isherwood FA. Starch-sugar interconversion in Solanum tuberosum. Phytochemistry,1973,12(11):2579-2591
    87. Jansky S, Jin L, Xie K, Xie C, Spooner D. Potato production and breeding in China. Potato Res,2009,52(1):57-65.
    88. Jansky SH, Hamernik A, Bethke PC. Germplasm release:Tetraploid clones with resistance to cold-induced sweetening. Am J Potato Res 2011,88(3):218-225
    89. Jefferson RA, Kavanagh TA, Bevan MW. GUS fusions:beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J,1987,6(13): 3901-3907
    90. Jia L, Zhang B, Mao C, Li J, Wu Y, Wu P, Wu Z. OsCYT-INV1 for alkaline/neutral invertase is involved in root cell development and reproductivity in rice (Oryza sativa L.). Planta,2008,228(1):51-59
    91. Jin Y, Ni D-A, Ruan Y-L. Posttranslational elevation of cell wall invertase activity by silencing its inhibitor in tomato delays leaf senescence and increases seed weight and fruit hexose level. Plant Cell,2009,21(7):2072-2089
    92. Johansen R, Schulz J, Huguelet J. Norchip, a new early maturing chipping variety with high total solids. Am J Potato Res,1969,46(7):254-258
    93. Jones-Rhoades MW, Bartel DP, Bartel B. MicroRNAs and their regulatory roles in plants. Annu Rev Plant Biol,2006,57:19-53
    94. Joshi CP. An inspection of the domain between putative TATA box and translation start site in 79 plant genes. Nucleic Acids Res,1987,15(16):6643-6653
    95. Junker BH, Wuttke R, Nunes-Nesi A, Steinhauser D, Schauer N, Bussis D, Willmitzer L, Fernie AR. Enhancing vacuolar sucrose cleavage within the developing potato tuber has only minor effects on metabolism. Plant Cell Physiol, 2006,47(2):277-289
    96. Karlova R, van Haarst JC, Maliepaard C, van de Geest H, Bovy AG, Lammers M, Angenent GC, de Maagd RA. Identification of microRNA targets in tomato fruit development using high-throughput sequencing and degradome analysis. J Exp Bot, 2013, doi:10.1093/jxb/ert049
    97. Kastle J, Clark M. On the occurrence of invertase in plants. Amer J Chem,1903,30: 241-245
    98. Khraiwesh B, Zhu J-K, Zhu J. Role of miRNAs and siRNAs in biotic and abiotic stress responses of plants. BBA-Gene Regul Mech,2012,1819(2):137-148
    99. Kim J-M, To TK, Nishioka T, Seki M. Chromatin regulation functions in plant abiotic stress responses. Plant Cell Environ,2010,33(4):604-611
    100. Klann EM, Chetelat RT, Bennett AB. Expression of acid invertase gene controls sugar composition in tomato (Lycopersicon) fruit. Plant Physiol,1993,103(3): 863-870
    101. Klann EM, Hall B, Bennett AB. Antisense acid invertase (TIV1) gene alters soluble sugar composition and size in transgenic tomato fruit. Plant Physiol,1996,112(3): 1321-1330
    102. Koch KE. Carbohydrate-modulated gene expression in plants. Annu Rev Plant Physiol Plant MolBiol,1996,47:509-540
    103. Kotting O, Kossmann J, Zeeman SC, Lloyd JR. Regulation of starch metabolism: the age of enlightenment? Curr Opin Plant Biol,2010,13(3):320-328
    104. Kozomara A, Griffiths-Jones S. miRBase:integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res,2011,39(Database issue):D152-157
    105. Krause KP, Hill L, Reimholz R, Hamborg Nielsen T, Sonnewald U, Stitt M. Sucrose metabolism in cold-stored potato tubers with decreased expression of sucrose phosphate synthase. Plant Cell Environ,1998,21(3):285-299
    106. Kruszka K, Pieczynski M, Windels D, Bielewicz D, Jarmolowski A, Szweykowska-Kulinska Z, Vazquez F. Role of microRNAs and other sRNAs of plants in their changing environments. J Plant Physiol,2012,169:1664-1672
    107. Lao K, Xu NL, Yeung V, Chen C, Livak KJ, Straus NA. Multiplexing RT-PCR for the detection of multiple miRNA species in small samples. Biochem Biophys Res Commun,2006,343(1):85-89
    108. Lee HS, Sturm A. Purification and characterization of neutral and alkaline invertase from carrot. Plant Physiol,1996,112(4):1513-1522
    109. Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell,1993,75(5): 843-854
    110. Lescot M, Dehais P, Thijs G, Marchal K, Moreau Y, Van de Peer Y, Rouze P, Rombauts S. PlantCARE, a database of plant cw-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res,2002, 30(1):325-327
    111. Leszkowiat MJ, Yada RY, Coffin RH, Stanley DW. Starch gelatinization in cold temperature sweetening resistant potatoes. JFood Sci,1990,55(5):1338-1340
    112. Li F, Pignatta D, Bendix C, Brunkard JO, Cohn MM, Tung J, Sun H, Kumar P, Baker B. MicroRNA regulation of plant innate immune receptors. Proc Natl Acad Sci USA,2012,109(5):1790-1795
    113. Li L, Paulo MJ, Strahwald J, Lubeck J, Hofferbert HR, Tacke E, Junghans H, Wunder J, Draffehn A, van Eeuwijk F, Gebhardt C. Natural DNA variation at candidate loci is associated with potato chip color, tuber starch content, yield and starch yield. Theor Appl Genet,2008,116(8):1167-1181
    114. Li L, Strahwald J, Hofferbert HR, Lubeck J, Tacke E, Junghans H, Wunder J, Gebhardt C. DNA variation at the invertase locus invGE/GF is associated with tuber quality traits in populations of potato breeding clones. Genetics,2005,170(2): 813-821
    115. Li M, Song B, Zhang Q, Liu X, Lin Y, Ou Y, Zhang H, Liu J. A synthetic tuber-specific and cold-induced promoter is applicable in controlling potato cold-induced sweetening. Plant Physiol Bioch,2013,67:41-47
    116. Li R, Li Y, Kristiansen K, Wang J. SOAP:short oligonucleotide alignment program. Bioinformatics,2008,24(5):713-714
    117. Liu H-H, Tian X, Li Y-J, Wu C-A, Zheng C-C. Microarray-based analysis of stress-regulated microRNAs in Arabidopsis thaliana. RNA,2008,14(5):836-843
    118. Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Yamaguchi-Shinozaki K, Shinozaki K. Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought-and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell,1998,10(8):1391-1406
    119. Liu X, Lin Y, Liu J, Song B, Ou Y, Zhang H, Li M, Xie C. StInvInh2 as an inhibitor of StvacINV1 regulates the cold-induced sweetening of potato tubers by specifically capping vacuolar invertase activity. Plant Biotechnol J,2013,11(5): 640-647
    120. Liu X, Song B, Zhang H, Li XQ, Xie C, Liu J. Cloning and molecular characterization of putative invertase inhibitor genes and their possible contributions to cold-induced sweetening of potato tubers. Mol Genet Genomics, 2010,284(3):147-159
    121. Liu X, Zhang C, Ou Y, Lin Y, Song B, Xie C, Liu J, Li XQ, Systematic analysis of potato acid invertase genes reveals that a cold-responsive member, StvacINVl, regulates cold-induced sweetening of tubers. Mol Genet Genomics,2011,286(2): 109-118
    122. Liu YG, Chen Y. High-efficiency thermal asymmetric interlaced PCR for amplification of unknown flanking sequences. Biotechniques,2007,43(5):649-650, 652,654 passim
    123. Long X, Miano JM. Remote control of gene expression. J Biol Chem,2007, 282(22):15941-15945
    124. Lorberth R, Ritte G, Willmitzer L, Kossmann J. Inhibition of a starch-granule-bound protein leads to modified starch and repression of cold sweetening. Nat Biotechnol,1998,16(5):473-477
    125. Lu CA, Ho TH, Ho SL, Yu SM. Three novel MYB proteins with one DNA binding repeat mediate sugar and hormone regulation of alpha-amylase gene expression. Plant Cell,2002,14(8):1963-1980
    126. Lu CA, Lim EK, Yu SM. Sugar response sequence in the promoter of a rice alpha-amylase gene serves as a transcriptional enhancer. J Biol Chem,1998, 273(17):10120-10131
    127. Lu S, Sun YH, Chiang VL. Stress-responsive microRNAs in Populus. Plant J,2008, 55(1):131-151
    128. Lum HK, Lee KL. The human HMGB1 promoter is modulated by a silencer and an enhancer-containing intron. Biochim Biophys Acta,2001,1520(1):79-84
    129. Lv D-K, Bai X, Li Y, Ding X-D, Ge Y, Cai H, Ji W, Wu N, Zhu Y-M. Profiling of cold-stress-responsive miRNAs in rice by microarrays. Gene,2010,459(1):39-47
    130. Maddison AL, Hedley PE, Meyer RC, Aziz N, Davidson D, Machray GC. Expression of tandem invertase genes associated with sexual and vegetative growth cycles in potato. Plant Mol Biol,1999,41(6):741-751
    131. Maillard L. Action of amino acids on sugars. Formation of melanoidins in a methodical way. Compt Rend,1912,154:66-68
    132. Malone JG, Mittova V, Ratcliffe RG, Kruger NJ. The response of carbohydrate metabolism in potato tubers to low temperature. Plant Cell Physiol,2006,47(9): 1309-1322
    133. Martin A, Adam H, Diaz-Mendoza M, Zurczak M, Gonzalez-Schain ND, Suarez-L6pez P. Graft-transmissible induction of potato tuberization by the microRNA miR172. Development,2009,136(17):2873-2881
    134. Martin M, Lechner L, Zabaleta E, Salerno G. A mitochondrial alkaline/neutral invertase isoform (A/N-InvC) functions in developmental energy-demanding processes in Arabidopsis. Planta,2013,237(3):813-822
    135. Matsuura-Endo C, Kobayashi A, Noda T, Takigawa S, Yamauchi H, Mori M. Changes in sugar content and activity of vacuolar acid invertase during low-temperature storage of potato tubers from six Japanese cultivars. J Plant Res, 2004,117(2):131-137
    136. McKenzie MJ, Chen RK, Harris JC, Ashworth MJ, Brummell DA, Post-translational regulation of acid invertase activity by vacuolar invertase inhibitor affects resistance to cold-induced sweetening of potato tubers. Plant Cell Environ,2013,36(1):176-185
    137. Menendez CM, Ritter E, Schafer-Pregl R, Walkemeier B, Kalde A, Salamini F, Gebhardt C. Cold sweetening in diploid potato:mapping quantitative trait loci and candidate genes. Genetics,2002,162(3):1423-1434
    138. Meyers BC, Axtell MJ, Bartel B, Bartel DP, Baulcombe D, Bowman JL, Cao X, Carrington JC, Chen X, Green PJ. Criteria for annotation of plant MicroRNAs. Plant Cell,2008,20(12):3186-3190
    139. Miller ME, Chourey PS. The maize invertase-deficient miniature-1 seed mutation is associated with aberrant pedicel and endosperm development. Plant Cell,1992, 4(3):297-305
    140. Mishra BS, Singh M, Aggrawal P, Laxmi A. Glucose and auxin signaling interaction in controlling Arabidopsis thaliana seedlings root growth and development. PLoS One,2009,4(2):e4502
    141. Morrell S, Rees TA. Control of the hexose content of potato tubers. Phytochemistry, 1986,25(5):1073-1076
    142. Mottram DS, Wedzicha BL, Dodson AT, Acrylamide is formed in the Maillard reaction. Nature,2002,419(6906):448-449
    143. Muller-Rober B, Sonnewald U, Willmitzer L. Inhibition of the ADP-glucose pyrophosphorylase in transgenic potatoes leads to sugar-storing tubers and influences tuber formation and expression of tuber storage protein genes. EMBO J, 1992,11(4):1229
    144. Muller-Thurgau H. Ueber zuckeranhaufung in pflanzentheilen in folge niederer temperatur.Landwirtsch Jahrb,1882,11:751-828
    145. Murayama S, Handa H. Genes for alkaline/neutral invertase in rice:alkaline/neutral invertases are located in plant mitochondria and also in plastids. Planta,2007, 225(5):1193-1203
    146. Muttucumaru N, Elmore JS, Curtis T, Mottram DS, Parry MA, Halford NG. Reducing acrylamide precursors in raw materials derived from wheat and potato. J Agr Food Chem,2008,56(15):6167-6172
    147. Nicot N, Hausman JF, Hoffmann L, Evers D. Housekeeping gene selection for real-time RT-PCR normalization in potato during biotic and abiotic stress. J Exp Bot,2005,56(421):2907-2914
    148. Nielsen TH, Deiting U, Stitt M. A beta-amylase in potato tubers is induced by storage at low temperature. Plant Physiol,1997,113(2):503-510
    149. Novy R, Love S, Corsini D, Pavek J, Whitworth J, Mosley A, James S, Hane D, Shock C, Rykbost K. Defender:A high-yielding, processing potato cultivar with foliar and tuber resistance to late blight. Am J Potato Res,2006,83(1):9-19
    150. Novy RG, Secor GA, Farnsworth BL, Lorenzen JH, Holm ET, Preston DA, Gudmestad NC, Sowokinos JR. NorValley:A white-skinned chipping cultivar with cold-sweetening resistance. Am J Potato Res 1998,75(2):101-105
    151. Park S-H, Chung PJ, Juntawong P, Bailey-Serres J, Kim YS, Jung H, Bang SW, Kim Y-K, Do Choi Y, Kim J-K. Posttranscriptional control of photosynthetic mRNA decay under stress conditions requires 3'and 5'untranslated regions and correlates with differential polysome association in rice. Plant Physiol,2012, 159(3):1111-1124
    152. Pereira AdS, Coffin R, Yada R, Machado VS. Inheritance patterns of reducing sugars in potato tubers after storage at 12℃ and 4℃ followed by reconditioning. Am J Potato Res,1993,70(1):71-76
    153. Pereira AdS, Tai G, Yada R, Coffin R, Souza-Machado V. Potential for improvement by selection for reducing sugar content after cold storage for three potato populations. Theor Appl Genet,1994,88(6-7):678-684
    154. Pichon X, Wilson LA, Stoneley M, Bastide A, King HA, Somers J, Willis AE. RNA binding protein/RNA element interactions and the control of translation. Curr Protein Pept Sci,2012,13(4):294
    155. Pinhero R, Pazhekattu R, Marangoni A, Liu Q, Yada R. Alleviation of low temperature sweetening in potato by expressing Arabidopsis pyruvate decarboxylase gene and stress-inducible rd29A:A preliminary study. Physiol Mol Biol Plants,2011,17(2):105-114
    156. Pinhero RG, Copp LJ, Amaya C-L, Marangoni AG, Yada RY. Roles of alcohol dehydrogenase, lactate dehydrogenase and pyruvate decarboxylase in low-temperature sweetening in tolerant and susceptible varieties of potato (Solanum tuberosum). Physiol Plantarum,2007,130(2):230-239
    157. Pino MT, Skinner JS, Park EJ, Jeknic Z, Hayes PM, Thomashow MF, Chen TH. Use of a stress inducible promoter to drive ectopic AtCBF expression improves potato freezing tolerance while minimizing negative effects on tuber yield. Plant Biotechnol J,2007,5(5):591-604
    158. Pressey R, Shaw R. Effect of temperature on invertase, invertase inhibitor, and sugars in potato tubers. Plant Physiol,1966,41(10):1657-1661
    159. Qi X, Wu Z, Li J, Mo X, Wu S, Chu J, Wu P. AtCYT-INV1, a neutral invertase, is involved in osmotic stress-induced inhibition on lateral root growth in Arabidopsis. Plant Mol Biol,2007,64(5):575-587
    160. Rausch T, Greiner S. Plant protein inhibitors of invertases. Biochim Biophys Acta, 2004,1696(2):253-261
    161. Reimholz R, Geiger M, Haake V, Deiting U, Krause KP, Sonnewald U, Stitt M. Potato plants contain multiple forms of sucrose phosphate synthase, which differ in their tissue distributions, their levels during development, and their responses to low temperature. Plant Cell Environ,1997,20(3):291-305
    162. Rensink W, Hart A, Liu J, Ouyang S, Zismann V, Buell CR. Analyzing the potato abiotic stress transcriptome using expressed sequence tags. Genome,2005,48(4): 598-605
    163. Ruan YL, Jin Y, Yang YJ, Li GJ, Boyer JS. Sugar input, metabolism, and signaling mediated by invertase:roles in development, yield potential, and response to drought and heat. Mol Plant,2010,3(6):942-955
    164. Saeed A, Sharov V, White J, Li J, Liang W, Bhagabati N, Braisted J, Klapa M, Currier T, Thiagarajan M. TM4:a free, open-source system for microarray data management and analysis. Biotechniques,2003,34(2):374
    165. Sagai T, Hosoya M, Mizushina Y, Tamura M, Shiroishi T. Elimination of a long-range cis-regulatory module causes complete loss of limb-specific Shh expression and truncation of the mouse limb. Development,2005,132(4):797-803
    166. Sanny M, Jinap S, Bakker E, van Boekel M, Luning P. Is lowering reducing sugars concentration in French fries an effective measure to reduce acrylamide concentration in food service establishments? Food Chem,2012b,135(1): 2012-2020
    167. Sanny M, Jinap S, Bakker E, van Boekel M, Luning P. Possible causes of variation in acrylamide concentration in French fries prepared in food service establishments: An observational study. Food Chem,2012a,132(1):134-143
    168. Schoenberg DR, Maquat LE. Regulation of cytoplasmic mRNA decay. Nat Rev Genet,2012,13(4):246-259
    169. Schott K, Borchert S, Muller-Rober B, Walter Heldt H. Transport of inorganic phosphate and C3-and C6-sugar phosphates across the envelope membranes of potato tuber amyloplasts. Planta,1995,196(4):647-652
    170. Schwimmer S, Makower RU, Rorem ES. Invertase & invertase inhibitor in potato. Plant Physiol,1961,36(3):313-316
    171. Scott GJ, Suarez V. From Mao to McDonald's:emerging markets for potatoes and potato products in China 1961-2007. Am J Potato Res,2012,89(3):216-231
    172. Sergeeva LI, Keurentjes JJB, Bentsink L, Vonk J, van der Plas LHW, Koornneef M, Vreugdenhil D. Vacuolar invertase regulates elongation of Arabidopsis thaliana roots as revealed by QTL and mutant analysis. Proc Natl Acad Sci USA,2006, 103(8):2994-2999
    173. Shahmuradov IA, Gammerman AJ, Hancock JM, Bramley PM, Solovyev VV. PlantProm:a database of plant promoter sequences. Nucleic Acids Res,2003,31(1): 114-117
    174. Shallenberger R, Smith O, Treadway R. Food color changes, role of the sugars in the browning reaction in potato chips. JAgr Food Chem,1959,7(4):274-277
    175. Shepherd L, Bradshaw J, Dale M, McNicol J, Pont S, Mottram DS, Davies H: Variation in acrylamide producing potential in potato:Segregation of the trait in a breeding population. Food Chem,2010,123(3):568-573
    176. Si H, Xie C, Liu J. An efficient protocol for Agrobacterium-mediated transformation with microtuber and the induction of an antisense class I patatin gene into potato. Acta Agro Sin,2003,29(6):801-805
    177. Skriver K, Olsen FL, Rogers JC, Mundy J. cis-acting DNA elements responsive to gibberellin and its antagonist abscisic acid. Proc Natl Acad Sci USA,1991,88(16): 7266-7270
    178. Smith AM, Denyer K, Martin C. The synthesis of the starch granule. Annu Rev Plant Physiol Plant Mol Biol,1997,48(1):67-87
    179. Smith AM, Zeeman SC, Smith SM. Starch degradation. Annu Rev Plant Biol,2005, 56:73-98
    180. Sonnewald U, Hajirezaei MR, Kossmann J, Heyer A, Trethewey RN, Willmitzer L. Increased potato tuber size resulting from apoplastic expression of a yeast invertase. Nat Biotechnol,1997,15(8):794-797
    181. Sowokinos JR, Preiss J. Pyrophosphorylases in Solanum tuberosum III. Purification, physical, and catalytic properties of ADPglucose pyrophosphorylase in potatoes. Plant Physiol,1982,69(6):1459-1466
    182. Sowokinos JR, Vigdorovich V, Abrahamsen M. Molecular cloning and sequence variation of UDP-glucose pyrophosphorylase cDNAs from potatoes sensitive and resistant to cold sweetening. JPlant physiol,2004,161(8):947-955
    183. Sowokinos JR. Biochemical and molecular control of cold-induced sweetening in potatoes. Am J Potato Res,2001,78(3):221-236
    184. Spychalla JP, Scheffler BE, Sowokinos JR, Bevan MW. Cloning, antisense RNA inhibition, and the coordinated expression of UDP-Glucose pyrophosphorylase with starch biosynthetic genes in potato tubers. J Plant physiol,1994,144(4-5):444-453
    185. Stadler RH, Blank I, Varga N, Robert F, Hau J, Guy PA, Robert MC, Riediker S. Acrylamide from Maillard reaction products. Nature,2002,419(6906):449-450
    186. Stalberg K, Ellerstom M, Ezcurra I, Ablov S, Rask L. Disruption of an overlapping E-box/ABRE motif abolished high transcription of the napA storage-protein promoter in transgenic Brassica napus seeds. Planta,1996,199(4):515-519
    187. Stockinger EJ, Gilmour SJ, Thomashow MF. Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proc Natl Acad Sci USA,1997,94(3): 1035-1040
    188. Storey JD, Tibshirani R. Statistical significance for genomewide studies. Proc Natl Acad Sci USA,2003,100(16):9440-9445
    189. Sturm A. Invertases. Primary structures, functions, and roles in plant development and sucrose partitioning. Plant Physiol,1999,121(1):1-8
    190. Sullivan ML, Green PJ. Mutational analysis of the DST element in tobacco cells and transgenic plants:identification of residues critical for mRNA instability. RNA, 1996,2(4):308-315
    191. Sunkar R, Li Y-F, Jagadeeswaran G. Functions of microRNAs in plant stress responses. Trends Plant Sci,2012,17(4):196-203
    192. Sunkar R, Zhu JK. Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. Plant Cell,2004,16(8):2001-2019
    193. Tang G-Q, Luscher M, Sturm A. Antisense repression of vacuolar and cell wall invertase in transgenic carrot alters early plant development and sucrose partitioning. Plant Cell,1999,11(2):177-189
    194. Tang S, Wang Y, Li Z, Gui Y, Xiao B, Xie J, Zhu Q-H, Fan L. Identification of wounding and topping responsive small RNAs in tobacco (Nicotiana tabacum). BMC Plant Biol,2012,12(1):28
    195. Tang Z, Zhang L, Xu C, Yuan S, Zhang F, Zheng Y, Zhao C. Uncovering small RNA-mediated responses to cold stress in a wheat thermosensitive genie male-sterile line by deep sequencing. Plant Physiol,2012,159(2):721-738
    196. Tatematsu K, Ward S, Leyser O, Kamiya Y, Nambara E. Identification of cis-elements that regulate gene expression during initiation of axillary bud outgrowth in Arabidopsis. Plant Physiol,2005,138(2):757-766
    197. The Potato Genome Sequencing Consortium. Genome sequence and analysis of the tuber crop potato. Nature,2011,475(7355):189-195
    198. Theocharis A, Clement C, Barka EA. Physiological and molecular changes in plants grown at low temperatures. Planta,2012,235(6):1091-1105
    199. Thompson A, Farnsworth B, Gudmestad N, Secor G, Preston D, Sowokinos J, Glynn M, Hatterman-Valenti H. Dakota Diamond:An exceptionally high yielding, cold chipping potato cultivar with long-term storage potential. Am J Potato Res, 2008,85(3):171-182
    200. Thompson A, Novy R, Farnsworth B, Secor G, Gudmestad N, Sowokinos J, Holm E, Lorenzen J, Preston D. Dakota Pearl:An attractive, bright white-skinned, cold-chipping cultivar with tablestock potential. Am J Potato Res,2005,82(6): 481-488
    201. Thompson AL, Farnsworth BL, Secor GA, Gudmestad NC, Preston D, Sowokinos JR, Glynn M, Hatterman-Valenti H. Dakota crisp:A new high-yielding, cold-chipping potato cultivar with tablestock potential. Am J Potato Res,2007, 84(6):477-486
    202. Trethewey RN, Geigenberger P, Riedel K, Hajirezaei MR, Sonnewald U, Stitt M, Riesmeier JW, Willmitzer L. Combined expression of glucokinase and invertase in potato tubers leads to a dramatic reduction in starch accumulation and a stimulation of glycolysis.Plant.J,1998,15(1):109-118
    203. Trethewey RN, Riesmeier JW, Willmitzer L, Stitt M, Geigenberger P. Tuber-specific expression of a yeast invertase and a bacterial glucokinase in potato leads to an activation of sucrose phosphate synthase and the creation of a sucrose futile cycle. Planta,1999,208(2):227-238
    204. van Berkel J, Salamini F, Gebhardt C. Transcripts accumulating during cold storage of potato (Solanum tuberosum L.) tubers are sequence related to stress-responsive genes. Plant Physiol,1994,104(2):445-452
    205. Vargas W, Cumino A, Salerno G. Cyanobacterial alkaline/neutral invertases. Origin of sucrose hydrolysis in the plant cytosol? Planta,2003,216(6):951-960
    206. Vargas W, Pontis H, Salerno G. New insights on sucrose metabolism:evidence for an active A/N-Inv in chloroplasts uncovers a novel component of the intracellular carbon trafficking. Planta,2008,227(4):795-807
    207. Varkonyi-Gasic E, Wu R, Wood M, Walton EF, Hellens RP. Protocol:a highly sensitive RT-PCR method for detection and quantification of microRNAs. Plant Methods,2007,3:12
    208. Viola R, Roberts AG, Haupt S, Gazzani S, Hancock RD, Marmiroli N, Machray GC, Oparka KJ. Tuberization in potato involves a switch from apoplastic to symplastic phloem unloading. Plant Cell,2001,13(2):385-398
    209. Wang E, Wang J, Zhu X, Hao W, Wang L, Li Q, Zhang L, He W, Lu B, Lin H, Ma H, Zhang G, He Z. Control of rice grain-filling and yield by a gene with a potential signature of domestication. Nat Genet,2008,40(11):1370-1374
    210. Wang L, Li X-R, Lian H, Ni D-A, He Y-k, Chen X-Y, Ruan Y-L. Evidence that high activity of vacuolar invertase is required for cotton fiber and Arabidopsis root elongation through osmotic dependent and independent pathways, respectively. Plant Physiol,2010,154(2):744-756
    211. Wang Q, Zhang W. An economic analysis of potato demand in China. Am J Potato Res,2010,87(3):245-252.
    212. Weake VM, Workman JL. Inducible gene expression:diverse regulatory mechanisms. Nat Rev Genet,2010,11(6):426-437
    213. Webb R, Wilson D, Shumaker J, Graves B, Henninger M, Watts J, Frank J, Murphy H. Atlantic:A new potato variety with high solids, good processing quality, and resistance to pests. Am JPotato Res,1978,55(3):141-145
    214. Welham T, Pike J, Horst I, Flemetakis E, Katinakis P, Kaneko T, Sato S, Tabata S, Perry J, Parniske M, Wang TL. A cytosolic invertase is required for normal growth and cell development in the model legume, Lotus japonicus. J Exp Bot,2009, 60(12):3353-3365
    215. Wu L, Bhaskar PB, Busse JS, Zhang RF, Bethke PC, Jiang JM. Developing cold-chipping potato varieties by silencing the vacuolar invertase gene. Crop Sci, 2011,51(3):981-990
    216. Xiang L, Le Roy K, Bolouri-Moghaddam M-R, Vanhaecke M, Lammens W, Rolland F, Van den Ende W. Exploring the neutral invertase-oxidative stress defence connection in Arabidopsis thaliana. JExp Bot,2011,62(11):3849-3862
    217. Xie F, Frazier TP, Zhang B. Identification, characterization and expression analysis of MicroRNAs and their targets in the potato (Solanum tuberosum). Gene,2011, 473(1):8-22
    218. Yang J, Song B, Li Y, Liu J. A simple and efficient method for RNA extraction from potato tuber. JAgric Biotechnol,2006,14(2):297-298
    219. Yang W, Liu X, Zhang J, Feng J, Li C, Chen J. Prediction and validation of conservative microRNAs of Solanum tuberosum L. Mol Biol Rep,2010,37(7): 3081-3087
    220. Yang Y, Qiang X, Owsiany K, Zhang S, Thannhauser TW, Li L. Evaluation of different multidimensional LC-MS/MS pipelines for isobaric tags for relative and absolute quantitation (iTRAQ)-based proteomic analysis of potato tubers in response to cold storage. JProteome Res,2011,10(10):4647-4660
    221. Ye J, Shaky a R, Shrestha P, Rommens CM. Tuber-specific silencing of the acid invertase gene substantially lowers the acrylamide-forming potential of potato. J Agric Food Chem,2010
    222. Young D, Tarn T, Davies H. Shepody:A long, smooth, white-skinned potato of medium maturity with excellent French fry quality. Am J Potato Res,1983,60(2): 109-114
    223. Yu X, Wang X, Zhang W, Qian T, Tang G, Guo Y, Zheng C. Antisense suppression of an acid invertase gene (MA11) in muskmelon alters plant growth and fruit development. JExp Bot,2008,59(11):2969-2977
    224. Zanor MI, Osorio S, Nunes-Nesi A, Carrari F, Lohse M, Usadel B, Kiihn C, Bleiss W, Giavalisco P, Willmitzer L, Sulpice R, Zhou Y-H, Fernie AR. RNA interference of LIN5 in tomato confirms its role in controlling brix content, uncovers the influence of sugars on the levels of fruit hormones, and demonstrates the importance of sucrose cleavage for normal fruit development and fertility. Plant Physiol,2009,150(3):1204-1218
    225. Zhang H, Liu X, Liu J, Ou Y, Lin Y, Li M, Song B, Xie C. A novel RING finger gene, SbRFPl, increases resistance to cold-induced sweetening of potato tubers. FEBS Lett,2013,587(6):749-755
    226. Zhang J, Xu Y, Huan Q, Chong K. Deep sequencing of Brachypodium small RNAs at the global genome level identifies microRNAs involved in cold stress response. BMC Genomics,2009,10:449
    227. Zhang R, Marshall D, Bryan GJ, Hornyik C. Identification and characterization of miRNA transcriptome in potato by high-throughput sequencing. PLoS One,2013, 8(2):e57233
    228. Zhang W, Luo Y, Gong X, Zeng W, Li S. Computational identification of 48 potato microRNAs and their targets. Comp Biol Chem,2009,33(1):84-93
    229. Zhou D, Mattoo A, Li N, Imaseki H, Solomos T. Complete nucleotide sequence of potato tuber acid invertase cDNA. Plant Physiol,1994,106(1):397-398
    230. Zhou X, Wang G, Sutoh K, Zhu J-K, Zhang W. Identification of cold-inducible microRNAs in plants by transcriptome analysis. BBA-Gene Regul Mech,2008, 1779(11):780-788
    231. Zrenner R, Schuler K, Sonnewald U. Soluble acid invertase determines the hexose-to-sucrose ratio in cold-stored potato tubers. Planta,1996,198(2):246-252
    232. Zrenner R, Willmitzer L, Sonnewald U. Analysis of the expression of potato uridinediphosphate-glucose pyrophosphorylase and its inhibition by antisense RNA. Planta,1993,190(2):247-252

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700