胸阻抗信号监测心肺复苏质量的方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
心脏骤停(cardiac arrest, CA),又称心源性猝死(sudden cardiac death,SCD)是指心脏的机械活动停止,同时左心室收缩不足或停止收缩。心脏骤停80%以上都发生在院外,又称院外心脏骤停(Out-of-hospital cardiac arrest,OHCA)。据统计,在美国每年约有33万人发生OHCA,在欧洲每年约有35万人,而在中国这一数字则高达55.4万人。
     心肺复苏(cardiopulmonary resuscitation,CPR)作为全球医学界研究的热点之一,是抢救心脏骤停患者的唯一有效途径。CPR包括胸外按压、人工通气和体外电除颤等。美国心脏协会(American heart association, AHA)在2010年复苏指南中进一步强调,及早进行高质量的胸外按压是提高CPR成功率的关键措施。
     胸外按压(chest compression,CC)的质量包括按压深度、按压频率和胸廓的回弹程度等。尤其是足够的按压深度,它是保持一定冠状动脉灌注压(coronary perfusionpressure, CPP)的关键。CPP被证实是目前预测能否恢复自主循环(return of spontaneouscirculation,ROSC)的最直接的指标。但是,研究表明许多心脏骤停患者在CPR过程中没有得到有效的胸外按压,主要表现在按压深度不足、按压频率较低以及没有保持适当的循环血流。由于OHCA病人的第一目击者绝大多数是非专业人员,使得院外CPR的质量更加得不到保障,调查显示目前全球总体CPR成功率不到10%。
     目前监测心肺复苏质量的手段主要有监测CPR实施过程的CPP、按压深度、按压频率等参数。CPP能很好预测心肺复苏成功率,但是由于它需要进行有创监测而无法得到广泛应用。按压深度和频率可以通过在患者胸口上方放置加速度传感器或位移传感器来获得,但需要额外增加器件是它存在的固有缺陷。尽管经胸阻抗(Transthoracicimpedance,TTI)在心肺复苏领域应用广泛,但利用TTI实时监测胸外按压质量的研究仍未见报道,且目前尚未建立TTI变化与CPP和按压深度之间的关系。如何利用TTI信号对心肺复苏质量进行监测并实时反馈,是一项具有重要意义的研究课题。
     针对上述问题,本论文对以下两个方面内容开展了研究:
     1.建立动物实验模型并研究TTI变化值与CPP和按压深度之间的关系。我们通过实验建立了家猪心跳骤停(6分钟室颤)与不同人工心肺复苏质量模型,并通过高质量按压组和低质量按压组进行对照研究。在本实验中,高质量按压组的按压深度不低于胸部前后径幅度的25%(即50mm),低质量按压组的按压深度为高质量按压组的70%(即35mm)。实验结果显示,高质量按压组所有动物均获得ROSC,低质量按压组仅2头动物获得ROSC(100%vs.28.57%, p=0.021)。TTI变化值和按压深度的相关系数为0.89(P<0.001),TTI变化值和CPP的相关系数为0.83(P<0.001),均具有很好的线性相关性。
     2.利用TTI信号监测心肺复苏质量并进行实时反馈。为准确获取TTI信号中包含的TTI变化值、按压频率、按压通气比、按压时间比等反映心肺复苏质量的指标并进行实时反馈,我们设计了基于TTI信号的检测算法。算法主要包括三个部分:(1)通过极值搜索法来检测胸外按压和人工通气的波形,并去除干扰信号。(2)通过特征提取和线性判别式分类,将检测到的信号分为按压波和通气波。(3)计算阻抗变化值、按压频率、按压通气比、按压时间比等参数,评价心肺复苏质量,通过实时显示和反馈以更好地指导救援。
     我们通过心肺复苏模型的建立,研究并证实了TTI变化值与CPP和按压深度具有显著的正相关性。同时,利用基于TTI信号的检测算法,准确计算出评价心肺复苏质量参数并实时显示,对于指导心肺复苏具有重要意义。由于TTI信号可以通过除颤器的除颤电极来获取,所以不需要额外增加电子器件。因此,基于TTI信号监测心肺复苏质量的方法在心肺复苏领域具有广阔的应用前景。
Cardiac arrest(CA),which also be called sudden cardiac death (CSD),is a medicalemergency with absent or inadequate contraction of the left ventricle of the heart thatimmediately causes body wide circulatory failure. More than80%cardiac arrests haveoccurred out of the hospital, which also is called out-of-hospital cardiac arrest (OHCA).According to statistics, an estimated330,000victims in USA,350,000in Europe and544,000in China experience OHCA each year.
     Cardiopulmonary resuscitation (CPR), which has been a focus research in the field ofmedicine all over the world, is the only effective methods to rescue the patients whoexperience CA. CPR consist of chest compression, ventilation and electrical shock and soon. The2010guidelines, therefore, emphasized the importance of performing optimal chestcompression.
     The quality of chest compressions including adequate depth, frequency and full chestrecoil between compressions. Adequate depth, in particular, is the key to keeping certaincoronary perfusion pressure (CPP). CPP has been proved to be the most direct indicator toforecast the return of spontaneous circulation (ROSC). However, studies have shown thatmany patients experience CA have not get effective chest compression during CPR, mainlyshowing the lack of compression depth, low frequency and inadequate blood flow to thecirculatory system. A large quantity of investigations has confirmed that immediate andeffective CPR initiated by layperson can dramatically improve survival rate of OHCAvictims. It is report that the overall success rate of CPR is lower than10%.
     The current method for monitoring the quality of chest CPR includes CPP,compression depth and frequency during CPR. CPP is a highly predictive indicator of thelikelihood of ROSC, yet it is an invasive measurement and its application is restricted. Compression depth and frequency can be obtained by placing acceleration sensors ordisplacement sensors above the chest of patients, but this method require additional sensorsand devices. Although transthoracic impedance (TTI) has been widely applied during CPR,the research that TTI for monitoring the quality of chest compressions and giving real-timedisplay has not been reported. And then, the relationship between TTI changes, CPP andcompression depth has not been established. Thus, it is a significant research topic that howto make use of the TTI signal to evaluate the quality of CPR and give a real-time feedback.
     According to the above problems, in this thesis, the following two aspects of contentswere studied:
     1. Building an animal experimental model and studying the relationship between TTIchanges, CPP and compression depth. In this porcine model, CA (6minutes VF) anddifferent quality of CPR model were established. Contrast study was carried out betweenhigh quality and low quality groups. Optimal depth of manual compression in high qualitygroup was defined as a decrease of25%(50mm) in anterior posterior diameter of the chest,while suboptimal compression was defined as70%of the optimal depth (35mm). Allanimals had ROSC after optimal compressions; this contrasted with suboptimalcompressions, after which only2of the animals had ROSC (100%vs.28.57%, p=0.021).The correlation coefficient was0.89between TTI amplitude and compression depth (p <0.001),0.83between TTI amplitude and CPP (p <0.001).
     2. Monitoring the quality of CPR via TTI signal and giving a real-time feedback. Toaccurately get the indexes, such as TTI changes, compression frequency, compression/ventilation ratio, chest compression fraction etc, we have designed a detection algorithmbased on TTI signal, which is mainly consist of three parts:(1) detecting the peaks andtroughs of the TTI signals through the extremum search method, and then removing falsedetection.(2) Dividing the detected signal into ventilation waves and compression wavesthrough feature extraction and automatic classification.(3)Calculating the parameters suchas TTI changes, compression frequency, compression/ventilation ratio, compressionfraction to evaluate the quality of CPR and giving a real-time feedback to the rescuer.
     In thesis, through the establishment of CPR model, we have studied and confirmed thatthere are significant positive correlation between the TTI changes, CPP and thecompression depth. And it has shown important meaning for guiding CPR by using TTI signals for evaluating and monitoring the quality of CPR. Because the TTI signal can beobtained from the defibrillation electrodes, there are no additional electronic devices areneeded. Therefore, the method which based on TTI for monitoring the quality of CPR andgiving a real-time feedback has a broad application prospect during CPR.
引文
1. World Health Organization. The World Health Report2002’reduding risks andpromoting healthy life’. Geneva: World Health Organization,2002.
    2. Richard OC, Douglas C, Mary FH et al. Recommended guidelines for reviewing,reporting and conducting research on in-hospital resuscitation. Circulation,1997,95:2213-2239.
    3. Langhelle A, Nolan J, Herlitz J et al.2003Utstein Consensus Symposium.Recommended guidelines for reviewing, reporting, and conducting research onpost-resuscitation care: the Utstein style. Resuscitation,2005,66(3):271-283.
    4. Nichol G, Thomas E, Callaway CW, et al. Regional variation in out-of-hospital cardiacarrest incidence and outcome. JAMA,2008;300:1423-1431.
    5. Atwood C, Eisenberg MS, Herlitz J, et al. Incidence of EMS-treated out-ofhospitalcardiac arrest in Europe. Resuscitation,2005;67:75-80.
    6. Hua W, Zhang LF, Wu YF, et al. Incidence of sudden cardiac death in China: analysisof4regional populations. J Am Coll Cardiol,2009;54:1110-1118.
    7. Callans DJ. Out-of-hospital cardiac arrest-the solution is shocking. N Engl J Med,2004;351:632-634.
    8. Sans S, Kesteloot H, Kromhout D. The burden of cardiovascular diseasesmortality inEurope. Task Force of the European Society of Cardiology on Cardio-vascularMortality and Morbidity Statistics in Europe. Eur Heart J,1997;18:1231-1248.
    9. Cobb LA, Fahrenbruch CE, Walsh TR, et al. Influence of cardiopulmonary resuscitationprior to defibrillation in patients with out-of-hospital ventricular fibrillation. JAMA,1999;281:1182-1188.
    10. Herlitz J, Bang A, Alsen B, et al. Characteristics and outcome among patients sufferingfrom in hospital cardiac arrest in relation to the interval between collapse and start ofCPR. Resuscitation,2002;53:21-27.
    11. Wik L, Hansen TB, Fylling F, et al. Delaying defibrillation to give basiccardiopulmonary resuscitation to patients with out-of-hospital ventricular fibrillation: arandomized trial. JAMA,2003;289:1389-1395.
    12.朴镇恩.实用心肺复苏术[M].北京:人民军医出版社,2012:1-2.
    13. Dana P. Edelson. Effects of compression depth and pre-shock pauses predictdefibrillation failure during cardiac arrest. Resuscitation,2006,71:137-145.
    14. Stiell IG, Brown SP, Christenson J, et al. What is the role of chest compression depthduring out-of-hospital cardiac arrest resuscitation? Crit Care Med,2012;40:1-7.
    15. Fried DA, Leary M, Smith DA, et al. The prevalence of chest compression leaningduring in-hospital cardiopulmonary resuscitation. Resuscitation,2011;82:1019-1024.
    16. Brown TB, Dias JA, Saini D, et al. Relationship between knowledge of cardio-pulmonary resuscitation guidelines and performance. Resuscitation,2006;69:253–261.
    17. Wik L, Kramer-Johansen J, Myklebust H, et al. Quality of cardiopulmonaryresuscitation during out-of-hospital cardiac arrest. JAMA2005;293:299–304.
    18. Paradis NA, Martin GB, Rivers EP, et al. Coronary perfusion pressure and the return ofspontaneous circulation in human cardiopulmonary resuscitation. JAMA,1990;263:1106-1113.
    19. Kette F, Weil MH, Gazmuri RJ. Buffer solutions may compromise cardiac resuscitationby reducing coronary perfusion pressure. JAMA,991;266:2121–2126.
    20. Tang W, Weil MH, Sun S, et al. Progressive myocardial dysfunction after cardiacresuscitation. Crit Care Med,1993;21:1046-1050.
    21. Tang W, Weil MH, Sun RJ, et al. The effects of biphasic and conventional monophasicdefibrillation on post resuscitation myocardial function. J Am Coll Cardiol,1999;4:815-822.
    22. Gazmuri RJ, Weil MH, Bisera J, et al. Myocardial dysfunction after successfulresuscitation from cardiac arrest. Crit Care Med,1996;24:992-1000.
    23. Van Hoeyweghen RJ, Bossaert LL, Mullie A, et al. Quality and efficiency of bystanderCPR. Belgian Cerebral Resuscitation Study Group. Resuscitation,1993;26:47-52.
    24. Wik L, Steen PA, Bircher NG. Quality of bystander cardiopulmonary resuscitationinfluences outcome after prehospital cardiac arrest. Resuscitation,1994;28:195-203.
    25. Gallagher EJ, Lombardi G, Gennis P. Effectiveness of bystander cardiopulmonaryresuscitation and survival following out-of-hospital cardiac arrest. JAMA,1995;274:1922-1925.
    26. Bobrow BJ, Spaite DW, Berg RA, et al. Chest compression–only CPR by lay rescuersand survival from out-of-hospital cardiac arrest.JAMA,2010;304:1447–1454.
    27. Sasson C, Rogers MA, Dahl J, et al. Predictors of survival from out-of hospital cardiacarrest: a systematic review and meta-analysis. Circ Cardiovasc Qual Outcomes,2010;3:63-81.
    28.李恒,黄子通.胸外按压质量与心肺复苏效果的研究进展[J].中华急诊医学杂志,2012,21(8):923-925.
    29.杨正飞.高质量胸外按压对CPR操作者与复苏效果的相关影响研究[D].广州:中山大学,2012.
    30. Soar J, Mancini ME, Bhanji F, et al. Part12: Education, implementation, and teams:2010international consensus on cardiopulmonary resuscitation and emergencycardiovascular care science with treatment recommendations. Resuscitation,2010;81:e288–330.
    31. Kette F, Weil MH, Gazmuri RJ. Buffer solutions may compromise cardiacresuscitationby reducing coronary perfusion pressure.JAMA,1991;266:2121–2126.
    32. Tang W, Weil MH, Sun S, et al. Progressivemyocardial dysfunction after cardiacresuscitation. Crit Care Med,1993;21:1046–1050.
    33. Tang W, Weil MH, Sun RJ, et al. The effectsof biphasic and conventional monophasicdefibrillation on post resuscitation myocardialfunction. J Am Coll Cardiol,1999;4:815–822.
    34. Kern KB, Ewy GA, Voorhees WD, et al. Myocardial perfusion pressure: A predictor of24hour survival during prolonged cardiac arrest in dogs. Resuscitation,1988;16:241-250.
    35. Weil MH, Bisera J, Trevino RP, et al. Cardiac output and end-tidal carbon dioxide. CritCare Med,1985;13:907–909.
    36. Gudipati CV, Weil MH, Bisera J, et al. Expired carbon dioxide: A noninvasive monitorof cardiopulmonary resuscitation. Circulation,1988;77:234–239.
    37. Idris AH, Staples ED, O’Brien DJ, et al. Effect of ventilation on acid-base balance andoxygenation in low blood flow states. Crit Care Med,1994;22:1827-1834.
    38. Kern KB, Sanders AB, Voorhees WD, et al. Changes in expired end-tidal carbondioxide during cardiopulmonary resuscitation in dogs: A prognostic guide forresuscitation efforts. J Am Coll Cardiol,1989;13:1184–1189.
    39. Chase PB, Kern KB, Sanders AB, et al. Effects of graded doses of epinephrine on bothnoninvasive and invasive measures of myocardial perfusion and blood flow duringcardiopulmonary resuscitation. Crit Care Med,1993;21:413–419.
    40. Aase SO, Myklebust H. Compression depth estimation for CPR quality assessmentusing DSP on accelerometer signals. IEEE Trans Biomed Eng,2002;49:263-268.
    41. Gruben KG, Romlein J, Halperin HR, et al. System for mechanical measurementsduring cardiopulmonary resuscitation in humans. IEEE Trans Biomed Eng,1990;37:204-210.
    42.李永勤.心肺复苏自动化过程中的关键算法研究[D].广州:南方医科大学,2004.
    43. Kinnen E, Duff C. Cardiac output from transthoracic impedance records usingdiscriminant analysis. J Assoc Adv Med Instrum,1970;4:73-78.
    44. Ito H, Yamakoshi KI, Togawa T. Transthoracic admittance plethysmograph formeasuring cardiac output. J Appl Physiol,1976;40:451-454.
    45. Losert H, Risdal M, Sterz F, et al. Thoracic impedance changes measured viadefibrillator pads can monitor ventilation in critically ill patients and duringcardiopulmonary resuscitation. Crit Care Med,2006;34:2399-2405.
    46. Roberts K, Srinivasan V, Niles DE, et al. Does changein thoracic impedance measuredvia defibrillator electrode pads accurately detectventilation breaths in children?Resuscitation,2010;81(11):1544-1549.
    47. Pellis T, Bisera J, Tang W, et al. Expanding automatic externaldefibrillators to includeautomated detection of cardiac, respiratory, andcardiorespiratory arrest. Crit Care Med,2002Apr;30(4Suppl):S176-8.
    48. Losert H, Risdal M, Sterz F, et al. Thoracic-impedance changes measured viadefibrillator pads can monitor signs of circulation. Resuscitation,2007;73(2):221-228.
    49. Stecher FS, Olsen JA, Stickney RE, et al. Transthoracic impedance used toevaluateperformance of cardiopulmonary resuscitation during out of hospitalcardiac arrest.Resuscitation,2008;79(3):432-437.
    50. Aramendi E, Ayala U, Irusta U, et al. Suppression of the cardiopulmonary resuscitationartefacts using theinstantaneous chest compression rate extracted from the thoracicimpedance.Resuscitation,2012;83(6):692-698.
    51. Idris AH, Becker LB, Ornato JP, et al. Utstein-style guidelines for uniform reporting oflaboratory CPR research. Circulation.1996;94(9):2324-2336.
    52.何明丰.参附注射液对豚鼠缺氧型心脏骤停模型心肺复苏的影响.广东医学.2004;25(3):251-252.
    53.陈蒙华.小鼠心脏骤停动物模型的建立.中国急救医学.2005;25(12):897-898.
    54.申颖.猪窒息性心跳骤停动物模型的建立.广西医科大学学报.2008;25(3):344-346.
    55.黄浙勇.猪急性心肌梗死模型发生心室颤动的相关因素分析.中国实验动物学报.2007;15(5):351-354.
    56. Maxwell MP, Hearse DJ, Yellon DM. Species variation in thecoronary collateral-circulation during regional myocardial ischaemia: acritical determinant of the rate ofevolution and extent of myocardialinfarction [J]. Cardiovasc Res.1987,21(10):737-7461.
    57. Weil MH, Tang W, Bisera J. Cardiopulmonary resuscitation: one size does not fit all.Circulation,2003,107(6):794.
    58.尚游,姚尚龙,袁世荧.心肺脑复苏的动物模型.国外医学:麻醉学与复苏分册,2004,25(3):135-137.
    59.黄唯佳,李章平,陈寿权.心肺脑复苏动物模型.中华急诊医学杂志,2002,11(6):419-420.
    60. Hightower D, Thomas SH, Stone CK, et al. Decay in quality of closedchestcompressions over time. Ann Emerg Med,1995;26:300-303.
    61. Heidenreich JW, Berg RA, Higdon TA, et al. Rescuer fatigue: standard versuscontinuous chest-compression cardiopulmonary resuscita-tion.Acad Emerg Med,2006;13:1020–1026.
    62. Sugerman NT, Edelson DP, Leary M, et al. Rescuer fatigue during actual in-hospitalcardiopulmonary resuscitation with audiovisual feedback: aprospective multicenterstudy. Resuscitation,2009;80:981-984.
    63. Perkins GD, Woollard M, Cooke MW,et al. Prehospital randomised assessment of amechanical compression device in cardiac arrest (PaRAMeDIC) trial protocol.Scand JTrauma Resusc Emerg Med,2010;18:58.
    64. Kramer-Johansen J, Myklebust H, Wik L, et al. Quality of out-of-hospitalcardiopulmonary resuscitation with real time automated feedback: a prospectiveinterventional study. Resuscitation,2006;71:283–292.
    65. Peberdy MA, Silver A, Ornato JP. Effect of caregiver gender, age, and feedbackprompts on chest compression rate and depth. Resuscitation,2009;80:1169–1174.
    66. Pozner CN, Almozlino A, Elmer J, et al. Cardiopulmonary resuscitation feedbackimproves the quality of chest compression provided by hospital health careprofessionals. Am J Emerg Med,2011;29(6):618–625.
    67. Hostler D, Everson-Stewart S, Rea TD, et al. Effect of real-time feedback duringcardiopulmonary resuscitation outside hospital: prospective, clusterrandomised trial.BMJ,2011;4:d512.
    68. Yeung J, Meeks R, Edelson D, et al. The use of CPR feedback/prompt devices duringtraining and CPR performance: a systematic review.Resuscitation,2009;80:743–751.
    69. Baubin M, Haid C, Hamm P, et al. Measuring forces and frequency during activecompression decompression cardiopulmonary resuscitation: a device for training,research, and real CPR. Resuscitation,1999;43:17-24.
    70. Aase SO, Myklebust H. Compression depth estimation for CPR quality assessmentusing DSP on accelerometer signals. IEEE Trans Biomed Eng,2002;49:263–268.
    71. Johnston PW, Imam Z, Dempsey G, et al. The transthoracic impedance cardiogram is apotential haemodynamic sensor for an automated external defibrillator. European HeartJournal1998;19:1879-1888.
    72. Zhang H, Yang Z, Huang Z, et al. Transthoracic impedance for the monitoring ofquality of manual chest compression during cardiopulmonary resuscitation.Resuscitation,2012;83(10):1281-1286.
    1. World Health Organization. The World Health Report2002’reduding risks andpromoting healthy life’. Geneva: World Health Organization,2002.
    2. Richard OC, et al. Recommended guidelines for reviewing, reporting and conductingresearch on in-hospital resuscitation. Circulation,1997,95:2213-2239.
    3. Langhelle A, et al.2003Utstein Consensus Symposium. Recommended guidelines forreviewing, reporting, and conducting research on post-resuscitation care: the Utsteinstyle. Resuscitation,2005,66(3):271-283.
    4. Nichol G, et al. Regional variation in out-of-hospital cardiac arrest incidence andoutcome. JAMA,2008;300:1423–1431.
    5. Atwood C, et al. Incidence of EMS-treated out-ofhospital cardiac arrest in Europe.Resuscitation,2005;67:75–80.
    6. Hua W, et al. Incidence of sudden cardiac death in China: analysis of4regionalpopulations. J Am Coll Cardiol,2009;54:1110–1118.
    7. Callans DJ. Out-of-hospital cardiac arrest-the solution is shocking. N Engl J Med,2004;351:632–634.
    8. Sans S, et al. The burden of cardiovascular diseasesmortality in Europe. Task Force ofthe European Society of Cardiology on Cardio-vascular Mortality and MorbidityStatistics in Europe. Eur Heart J,1997;18:1231–1248.
    9. Cobb LA, et al. Influence of cardiopulmonary resuscitation prior to defibrillation inpatients with out-of-hospital ventricular fibrillation. JAMA,1999;281:1182-1188.
    10. Herlitz J, et al. Characteristics and outcome among patients suffering from in hospitalcardiac arrest in relation to the interval between collapse and start of CPR.Resuscitation,2002;53:21-27.
    11. Wik L, et al. Delaying defibrillation to give basic cardio-pulmonary resuscitation topatients with out-of-hospital ventricular fibrillation: a randomized trial. JAMA,2003;289:1389-1395.
    12. Weil MH, et al. Cardiopulmonary resuscitation: one size does not fit all. Circulation,2003,107(6):794.
    13.李永勤.心肺复苏自动化过程中的关键算法研究[D].广州:南方医科大学,2004.
    14.朴镇恩.实用心肺复苏术[M].北京:人民军医出版社,2012:1-2.
    15. Soar J, et al. Part12: Education, implementation, and teams:2010internationalconsensus on cardiopulmonary resuscitation and emergency cardiovascular carescience with treatment recommendations. Resuscitation,2010;81:e288-330.
    16.李恒等.胸外按压质量与心肺复苏效果的研究进展[J].中华急诊医学杂志,2012,21(8):923-925.
    17. Edelson DP, et al. Effects of compression depth and pre-shock pauses predictdefibrillation failure during cardiac arrest. Resuscitation,2006,71:137-145.
    18. Babbs CF. Relationship of blood pressure and flow during CPR to chest compressionamplitude: Evidence for an effective compression threshold. Annals of EmergencyMedicine,1983,12:527-532.
    19. Jo KJ. Quality of out-of-hospital cardiopulmonary resuscitation with real timeautomated feedback: A prospective interventional study. Resuscitation,2006,71:283-292.
    20. Wik L, et al. Quality of Cardiopulmonary Resuscitation during Out-of-Hospital CardiacArrest. JAMA,2005,293:299-304.
    21. Mirza M, et al. Instructions to “push as hard as you can” improve average chestcompression depth in dispatcher-assisted Cardiopulmonary Resuscitation.Resuscitation,2008,79:97-102.
    22.唐万春等.心肺脑复苏及心脑血管急诊—从基础科学到临床实践.北京科学技术出版社,2008:8.
    23. Kern KB, et al. A Study of Chest Compression Rates during CardiopulmonaryResuscitation in Humans: The Importance of Rate-Directed Chest Compressions. ArchIntern Med,1992,152:145-149.
    24. Abella BS, et al. Chest Compression Rates During Cardiopulmonary Resuscitation AreSuboptimal: A Prospective Study During In-Hospital Cardiac Arrest. Circulation,2005,111:428-434.
    25. Christenson J, et al. Chest compression fraction determines survival in patients without-of-hospital ventricular fibrillation. Circulation,2009,120:1241-1247.
    26. Halperin HR, et al. Determinants of blood flow to vital organs during cardiopulmonaryresuscitation in dogs. Circulation,1986,73:539-550.
    27. Field RA, et al. The impact of chest compression rates on quality of chest compressions–A manikin study.Resuscitation,2011[Epub].
    28. Berg RA, et al. Adverse hemodynamic effects of interrupting chest compressions forrescue breathing during cardiopulmonary resuscitation for ventricular fibrillationcardiac arrest. Circulation,2001,104:2465-2470.
    29. Ewy GA, et al. Improved neurological outcome with continuous chest compressionscompared with30-2compressions-to-ventilations cardiopulmonary resuscitation in arealistic swine model of out-of-hospital cardiac arrest. Circulation,2007,116:2525-2530.
    30. Wang S, et al. Effect of continuous compressions and30-2cardiopulmonaryresuscitation on global ventilation-perfusion values during resuscitation in a porcinemodel. Critical Care Med,2010,38:2024-2030.
    31. Nolan JP. Cardiopulmonary resuscitation-so many controversies. Current Opinion inCritical Care2011,17:211–213.
    32. Mader TJ, et al. A randomized comparison of cardiocerebral and cardiopulmonaryresuscitation using a swine model of prolonged ventricular fibrillation. Resuscitation,2010,81:596-602.
    33. Garza AG, et al. Improved patient survival using a modified resuscitation protocol forout-of-hospital cardiac arrest. Circulation,2009,119:2597-2605.
    34. Edelson DP, et al. Safety and efficacy of defibrillator charging during ongoing chestcompressions-a multi-center study. Resuscitation,2010,81:1521-1526.
    35. Sell RE, et al. Minimizing pre-and post-defibrillation pauses increases the likelihood ofreturn of spontaneous circulation (ROSC). Resuscitation,2010,81:822–825.
    36. Cheskes S, et al. Perishock Pause-An Independent Predictor of Survival fromOut-of-Hospital shockable cardiac arrest. Circulation,2011,124:58-66.
    37. Kern KB. Cardiopulmonary resuscitation without ventilation. Crit Care Med,2000,28:N186-N189.
    38. SOS-KANTO study group. Cardiopulmonary resuscitation by bystanders with chestcompression only (SOS-KANTO): an observational study. Lancet,2007,369:920-926.
    39. Kitamura T, et al. Conventional and chest-compression-only cardiopulmonaryresuscitation by bystanders for children who have out-of-hospital cardiac arrests---aprospective, nationwide, population-based cohort study. Lancet,2010,375:1347-1354.
    40. Kitamura T, et al. Time-dependent effectiveness of chest compression-only andconventional cardiopulmonary resuscitation for out-of-hospital cardiac arrest of cardiacorigin. Resuscitation,2011,82:3–9.
    41. Nishiyama C, et al. Quality of chest compressions during continuous CPR; comparisonbetween chest compression-only CPR and conventional CPR. Resuscitation,2010,81:1152–1155.
    42. Babbs CF. Effects of an impedance threshold valve upon hemodynamics in StandardCPR-Studies in a refined computational model. Resuscitation,2005,66:335-345.
    43. Aufderheide TP, et al. Incomplete chest wall decompression: a clinical evaluation ofCPR performance by EMS personnel and assessment of alternative manual chestcompression–decompression techniques. Resuscitation,2005,64:353-362.
    44. Yannopoulos D, et al. Effects of incomplete chest wall decompression duringcardiopulmonary resuscitation on coronary and cerebral perfusion pressures in aporcine model of cardiac arrest. Resuscitation,2005,64:363–372.
    45. Zuercher M, et al. Leaning during chest compressions impairs cardiac output and leftventricular myocardial blood flow in piglet cardiac arrest. Crit Care Med2010,38:1141-1146.
    46. Niles D, et al. Leaning is common during in-hospital pediatric CPR, and decreased withautomated corrective feedback. Resuscitation,2009,80:553–557.
    47. Sutton RM, et al. Quantitative analysis of chest compression interruptions duringin-hospital resuscitation of older children and adolescents. Resuscitation,2009,80:1259–1263.
    48. Fried DA, et al. The prevalence of chest compression leaning during in-hospitalcardiopulmonary resuscitation. Resuscitation,2011,82:1019-1024.
    49. Chang MW, et al. Active compression-decompression CPR improves vital organperfusion in a dog model of ventricular fibrillation. Chest,1994,106:1250-1259.
    50. Lindner KH, et al. Effects of active compression-decompression resuscitation onmyocardial and cerebral blood flow in pigs. Circulation,1993,88:1254-1263
    51. Plaisance P, et al. Benefit of active compression-decompression cardiopulmonaryresuscitation as a prehospital advanced cardiac life support. A randomized multicenterstudy. Circulation,1997,95:955-61.
    52. Aufderheide TP, et al. Standard cardiopulmonary resuscitation versus activecompression-decompression cardiopulmonary resuscitation with augmentation ofnegative intrathoracic pressure for out-of-hospital cardiac arrest-a randomised trial.Lancet,2011,377:301-311.
    53. Smekal D, et al. A pilot study of mechanical chest compressions with the LUCASdevice in cardiopulmonary resuscitation. Resuscitation,2011,82:702-706.
    54. Lafuente C, et al. Active chest compression-decompression for cardiopulmonaryresuscitation. Cochrane Database Syst Rev.2004; CD002751.
    55. Aufderheide TP, et al. Clinical evaluation of an inspiratory impedance threshold deviceduring standard cardiopulmonary resuscitation in patients with out-of-hospital cardiacarrest. Crit Care Med,2005,33:734-740.
    56. Yannopoulos D, et al. Hemodynamic and respiratory effects of negative trachealpressure during CPR in pigs. Resuscitation,2006,69:487-494.
    57. Ochoa FJ. The effect of rescuer fatigue on the quality of chest compressions.Resuscitation,1998,37:149-152.
    58. Sugerman NT, et al. Rescuer fatigue during actual in-hospital cardiopulmonaryresuscitation with audiovisual feedback-a prospective multicenter study. Resuscitation,2009,80:981–984.
    59. Trowbridge C, et al. A randomized cross-over study of the quality of cardiopulmonaryresuscitation among females performing30-2and hands-only cardiopulmonaryresuscitation. BMC Nursing,2009,8:6.
    60. Steen S, et al. Evaluation of LUCAS, a new device for automatic mechanicalcompression and active decompression resuscitation. Resuscitation,2002,55:285-299.
    61. Kette F, et al. Buffer solutions may compromise cardiac resuscitationby reducingcoronary perfusion pressure.JAMA,1991;266:2121–2126.
    62. Tang W, et al. Progressivemyocardial dysfunction after cardiac resuscitation. Crit CareMed,1993;21:1046-1050.
    63. Tang W, et al. The effectsof biphasic and conventional monophasic defibrillation onpost resuscitation myocardialfunction. J Am Coll Cardiol,1999;4:815–822.
    64. Kern KB, et al. Myocardial perfusion pressure: A predictor of24hour survival duringprolonged cardiac arrest in dogs. Resuscitation,1988;16:241–250.
    65. Weil MH, et al.Cardiac output and end-tidal carbon dioxide. Crit Care Med,1985;13:907-909.
    66. Kette F, et al. Buffer solutions may compromise cardiac resuscitation by reducingcoronary perfusion pressure. JAMA,991;266:2121-2126.
    67. Tang W, et al. Progressive myocardial dysfunction after cardiac resuscitation. Crit CareMed,1993;21:1046-1050.
    68. Kern KB, et al. Changes in expired end-tidal carbon dioxide during cardiopulmonaryresuscitation in dogs: A prognostic guide for resuscitation efforts. J Am Coll Cardiol,1989;13:1184-1189.
    69. Chase PB, et al. Effects of graded doses of epinephrine on both noninvasive andinvasive measures of myocardial perfusion and blood flow during cardiopulmonaryresuscitation. Crit Care Med,1993;21:413-419.
    70. Aase SO, et al. Compression depth estimation for CPR quality assessment using DSPon accelerometer signals. IEEE Trans Biomed Eng,2002;49:263-268.
    71. Gruben KG, et al. System for mechanical measurements during cardiopulmonaryresuscitation in humans. IEEE Trans Biomed Eng,1990;37:204-210.
    72. Gallagher EJ, et al. Effectiveness of bystander cardiopulmonary resuscitation andsurvival following out-of-hospital cardiac arrest. JAMA,1995;274:1922–1925.
    73. VanHoeyweghen RJ, et al. Belgian cerebral resuscitation study group. Quality andefficiency of bystander CPR. Resuscitation,1993;26:47–52.
    74. Wik L, et al. Quality ofbystander cardiopulmonary resuscitation influences outcomeafter prehospital cardiac arrest. Resuscitation,1994;28:195–203.
    75. Valenzuela TD, et al. Estimating effectiveness of cardiacarrest interventions: a logisticregression survival model. Circulation,1997;96:3308–3313.
    76. Larsen MP, et al. Predicting survival from out-of-hospital cardiac arrest: a graphicmodel. Ann Emerg Med,1993;22:1652–1658.
    77. Stiell IG, et al. Advanced cardiac life support in out-of-hospitalcardiacarrest. N Engl JMed,2004;351:647–656.
    78. Hollenberg J, et al. Improved survivalafter out-of-hospitalcar-diac arrest is associatedwith an increase in proportion of emergencycrew-witnessed cases and bystandercardiopulmonary resuscitation. Circulation,2008;118:389–396.
    79. Vaillancourt C, et al. A survey of attitudes and factors associated with successfulcardiopulmonary resuscitation (CPR) knowledgetransfer in an older population mostlikely to witness cardiac arrest: design andmethodology. BMC Emerg Med,2008;8:13.
    80. Vaillancourt C, et al. Understanding and improving low bystander CPR rates: asystematic review of the literature. Can J Emerg Med,2008;10:51–65.
    81. Axelsson A, et al. Attitudes of trainedSwedish layrescuers toward CPR performance inan emergency. A survey of1012recentlytrained CPR rescuers. Resuscitation,2000;44:27–36.
    82. Eftest l T, et al. Effects of cardiopulmonary resuscitation on predictors of ventricularfibrillation defibrillation success during out-of-hospital cardiac arrest. Circulation,2004;110:10-15.
    83. Kramer-Johansen J, et al. Quality of out-of-hospital cardiopul-monary resuscitationwith real time automated feedback: prospective interventional study. Resuscitation,2006;71:283-92.
    84. Edelson DP, et al. Effects of compression depth and pre-shock pauses predictdefibrillation failure during cardiac arrest. Resuscitation,2006;71:137-45.
    85. Valenzuela TD, et al. Interruptions of chest compressions during emergency medicalsystems resuscitation. Circulation,2005;112:1259-1265.
    86. Li Y, et al. Electrocardiogram waveforms for monitoring effectiveness of chestcompression during cardiopulmonary resuscitation.Crit Care Med,2008;36(1):211-5.
    87. Ventura-Clapier R, et al. Myocardial ischemic contracture. Metabolites affect rigortension development and stiffness. Circ Res,1994;74(5):920-929.
    88. Zuercher M, et al. Leaning during chest compressions impairs cardiac output and leftventricular myocardial blood flow in piglet cardiac arrest. Crit Care Med,2010;38(4):1141-1146.
    89. Link MS, et al. Part6: electrical therapies: automated external defibrillators,defibrillation, cardioversion, and pacing:2010American Heart Associ-ationGuidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care.Circulation,2010;122(18Suppl3):S706-719.
    90. Chase PB, et al. Effects of graded doses of epinephrine on both noninvasive andinvasive measures of myocardial perfusion and blood flow during cardiopulmonaryresuscitation. Crit Care Med,1993;21(3):413-419.
    91. Yakaitis RW, et al. Influence of time and therapy on ventricular defibrillation in dogs.Crit Care Med,1980;8(3):157-163.
    92. Stiell IG, et al. What is the role of chest compression depth during out-of-hospitalcardiac arrest resuscitation? Crit Care Med,2012;40(4):1192-1198.
    93. Wu JY, et al. A comparison of2types of chest compressions in a porcine model ofcardiac arrest. Am J Emerg Med,2009;27(7):823-829.
    94. Weisfeldt ML, et al. Resuscitation after cardiac arrest: a3-phase time-sensitive model.JAMA,2002;288(23):3035-3038.
    95.覃成杜.《2010年美国心脏协会心肺复苏与心血管急救指南》的亮点.柳钢科技,2011,1:43-45.
    96.郭星君.心肺脑复苏进展.实用医药杂志,2010,27(5):463-465.
    97. Xie J, et al. High-energy defibrillation increases the severity of postresuscitationmyocardial dysfunction. Circulation,1997,96(2):683–688.
    98. Eftestol T, et al. The effects of interrupting precordial compressions on the calculatedprobability of defibrillation success during out-of-hospital cardiac arrest. Circulation,2002,105:2270-2273.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700