空间群(组)目标相似关系及计算模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
空间关系是空间物体之间由空间物体的几何特性(位置、形状)所决定的关系,包括距离关系、拓扑关系、方向关系和相似关系,是空间信息科学(GeoSciences)的理论基础之一,一直是空间信息科学理论研究的“重中之重”.作为空间关系的一种,对空间相似关系进行研究,可以完善空间关系理论,提升地理空间认知,促进地理空间信息的应用,以及为地图制图综合提供支持等重要意义和作用。但在对空间关系的研究中,一方面由于空间相似关系的可计算性差,且研究相似关系的目的是揭示较深层次上的信息,需要复杂分析,另一方面,由于地理空间的复杂性,导致空间相似关系的计算要考虑的因素很多,比如空间关系、空间分布、几何特征、语义特征等,从而导致空间相似关系的研究一直以来被人们关注的较少。针对这一现状,论文以空间群(组)目标为研究对象,对空间群(组)目标之间的相似关系及其计算模型进行了探讨,具体研究内容包括:
     (1)空间相似关系的基本理论。对空间相似关系理论的一些理论基础进行了阐述,如空间认知科学理论和格式塔心理学。同时论述了空间相似关系的定义、性质、分类,以及影响空间群(组)目标之间相似关系及相似度的主要因子等。引用前人的研究成果,采用集合学的方法对空间相似关系进行了定义;结合空间数据本身的特点和相关研究,定义了空间群(组)目标相似特征集合元素及本文研究的重点元素{空间关系集合,几何特征集合},构成了论文研究和论述的基础;从不同角度对空间相似关系进行了分类,并对空间相似关系的相关性质进行了简单描述。
     (2)对空间点群目标相似关系进行了研究。顾及到视觉认知的Gestalt原则,论文提出一种综合考虑到点群的空间关系、空间分布和几何特征,注重空间点群的整体描述的相似度计算模型。利用点的拓扑邻居,定义了点群的拓扑关系及相似度计算模型;引入标准差椭圆,利用点群的标准差椭圆的长轴与x轴的夹角及标准差椭圆的短长轴之比分别定义了点群的方向和距离关系及相似度计算公式;利用“剥皮法”生成点群的分布范围,利用范围多边形的相似度定义了点群的分布范围相似度;生成点群的加权Voronoi图,将点的密度定义为该点所生成的V图的面积的倒数,建立点密度与灰度的线性关系,生成点密度分布的灰度图像,利用图像相似度定义了点密度相似度。最后结合点群的空间关系相似度和几何特征相似度,对空间点群的相似度进行了整体度量。
     (3)对空间线群目标相似关系进行了研究。以线群目标的空间统计特征为基础,对线群目标的空间关系和几何特征进行了描述。利用拓扑关系概念领域图及对应的概念领域差异矩阵定义了线群目标之间的拓扑相似关系及计算模型,利用方向均值定义了线群目标之间的方向相似关系及计算模型,利用“环形方差”定义了线群目标之间的距离相似关系及计算模型,结合线群目标的长度和平均长度、线群密度及线群曲折度,建立了线群目标总体相似度计算模型,对线群目标相似度进行整体度量。
     (4)对空间面群目标相似关系进行了研究。利用改进了的拓扑关系概念领域图及概念领域差异矩阵,定义了面群目标的拓扑相似关系及计算模型;针对不同的面群目标采用不同的“降维”技术(规则的面群目标采用其最小面积MBR的最长边代替描述原面状目标,不规则的面状目标采用其“骨架线”来代替描述原面状目标),将二维的面状目标“降维”为一维的线状目标,利用已经讨论过的线群目标的方向相似关系和距离相似关系计算方法来处理和描述面状目标的方向相似及距离相似关系;结合前人研究文献,给出了面状目标的几何特征描述参数及几何相似度计算模型。最后综合考虑面状目标的空间关系和几何特征,对空间面群目标的相似度进行了整体度量。
     (5)对于空间场景之间的相似关系及相似度计算,主要借鉴了Bruns-Egenhofer模型和Li-Fonseca提出的TDD模型,并做了一些改进。利用改进了的拓扑关系概念领域图来计算空间场景之间的拓扑关系相似度,利用方向关系概念领域图来计算空间场景之间的方向关系相似度,利用距离关系概念领域图来计算空间场景之间的距离关系相似度,最后结合三种空间关系相似度,对空间场景之间的相似度进行了整体度量。
     (6)实验部分,以地理学第一定律为基础,分别将地理学第一定律中的“距离”理解为“尺度距离”、“空间邻近度”和“时间邻近度”,从而得到多尺度空间下、不同空间邻近度环境下和不同时间分布的情况下,空间群(组)目标相似关系的不同表现,并分别以多尺度下的点群目标实验、基于空间邻近度的线群目标实验和基于时间邻近度的面群目标实验,利用论文所提算法模型进行了计算和检验,并指出空间相似关系及其计算模型潜在的应用方向。
Spatial relationship is the relationship which determined by the geometric properties (location, shape, etc) between spatial objects, includs topological relationship, directional relationship, distance relationship and similarity relationship. As one of the basis theory of Geosciences, Spatial relationship has been pay highly attention by scholars. As one kind of spatial relationship, spatial similarity relationship plays a very important role. Do research on spatial similarity relationship is a complement to spatial relationship theory, can promote the spatial cognition, can help boost the application of spatial information, and can serve for the map generalization etc. However, in current researches, for one reason the similarity between spatial objects is difficult to assess due to the purpose of research on spatial similarity relationship is to reveal the deep-seated information and require complex analysis; for another, there are many factors need to be take into account in the assessment of similarity between spatial objects because of the complexity of the Geo-space, such as spatial relationship, spatial distribution, geometric features, semantic features and so on, result in very few researches on spatial similarity relationship. In response to this situation, take the spatial group objects as study targets, the spatial similarity relationship and the assess model between spatial group objects were studied in this paper, the specific studies include:
     (1) The basic theories of spatial similarity relationship were studied, include its definition, its characteristics, its classifications, and the factors which influence the spatial similarity relationship and similarity degree between spatial group objects. Based on related researches, the set theory was used to define the spatial similarity relationship; Combined with the characteristics of spatial data, the elements of spatial similarity feature sets and the key elements of this paper {spatial relationship sets, geometric feature sets} were defined, constituted the basis of this paper. Also the spatial similarity relationship's classification was described from different aspects; some related characters of the spatial similarity relationship were also described.
     (2) The spatial similarity relationship of spatial point cluster was researched. Point cluster object contains much structured information in spatial distribution, which is interested for the research of spatial analysis. With the consideration of Gestalt principles in visual cognition, this paper proposed a similarity assessment model which has a comprehensive consideration of point cluster's spatial relationships, spatial distribution and geometry attributes. The topology relationship of point cluster was defined using point cluster's topology neighbour, the direction relationship and distance relationship was defined using point cluster's standard deviation ellipse, and then the computation method of point cluster's topology, direction and distance similarity assessment was given out on this basis. Also the distribution range and the distribution density of point cluster and their similarity assessment method was put forward. Finally the formal five factors were combined to do a whole assessment of point clusters similarity.
     (3) The spatial similarity relationship of spatial line group was researched. Based on Spatial statistical characters, the spatial relationships and geometry features of line group were described. The conceptual neighborhood network of topological relationships between lines was used to define topology similarity between line groups, the directional mean was used to define direction similarity between line groups, their circular variance was used to define distance similarity between line groups; Combined with the length, average length, density and tortuosity of line group, a computation model for similarity assessment between line groups was established. The factors mentioned earlier were combined to do a whole assessment of line group similarity.
     (4) The spatial similarity relationship of spatial polygon group was researched. The conceptual neighborhood network of topological relations between polygons was used to define topology similarity between polygon groups; A proper "dimensionality reduction" treatment was used for polygons of different types to change polygon groups to line groups, then the directional mean was used to define direction relations between line groups namely direction similarity of polygon groups, their circular variance was used to define distance relations between line groups namely distance similarity of polygon groups; Combined with the length, average length, area, average area, density and compactness of polygon group, a computation model for similarity assessment between polygon groups was established.
     (5) The spatial similarity relationship of spatial scene was researched. Some improvements were made based on Bruns-Egehnoefr Model and Li-Fonseca (TDD) Model. An improved Conceptual neighborhood of topological relations was used to compute the topological similarity between spatial scenes, the conceptual neighborhoods of directional relations was used to compute the directional similarity between spatial scenes, the conceptual neighborhoods of distance relations was used to compute the distance similarity between spatial scenes, finally the 3 factors were combined together to do a whole assessment of spatial scenes.
     (6) In the experiment section, based on the first law of geography, the "distance" was interpreted as "scale distance" "spatial proximity" and "temporal proximity" respectively, we can get the different performance of spatial group objects in different scale, different spatial proximity and different temporal proximity. The experiments of point cluster in multi-scale, line group in different space proximity and polygon group in different temporal proximity were carried out to verify the similarity assessment model proposed by this paper, and the potential application was also proposed.
引文
[1].陈述彭、鲁学军、周成虎.地理信息系统导论[M].北京:科学出版社.2003年第7版
    [2].胡鹏、黄杏元、华一新.地理信息系统教程[M].武汉:武汉大学出版社.2004年第2版
    [3]. Goodchild M.F. A spatial analytical perspective of geographical information system [J]. International Journal of Geographical Information Systems.1987,4:327-334
    [4]. Openshaw S.,Openshaw C. Artificial intelligence in geography. Chichester.UK:John Wiley &Sons.1997
    [5]. Bailey T C, Gatrell A C. Interactive spatial data analysis. New York, John Wiley&Sons Inc..1995
    [6]. Robert Haining. Spatial Data Analysis:Theory and Practice[M]. Cambridge University Press.2003
    [7].郭仁忠.空间分析[M].武汉:武汉测绘科技大学出版社.2001第2版
    [8].刘湘南、黄方、王平.GIS空间分析原理与方法[M].北京:科学出版社.2008.08第二版:14-18
    [9]. Egenhofer M. and Mark D. Naive Geography. Spatial Information Theory—A Theoretical Basis for GIS. International Conference COSIT'95.Semmering. Austria. A. Frank and W. Kuhn. Eds. Lecture Notes in Computer Science.988:1-15.1995
    [10].李德仁.关于地理信息理论的若干思考[J].武汉测绘科技大学学报.1997年第2期
    [11]. Goodchild M.F. The law in geography. Technical report in GIS the GIS Institute. University of Zurich.2006.1
    [12].王家耀著.空间信息系统原理[M].北京:科学出版社.2001年5月第一版
    [13].陈军、赵仁亮.GIS空间关系的基本问题与研究进展[J].测绘学报.28(2).1999:95-102
    [14].Li.Bonan.F.T. Fonseca. TDD-A Comprehensive Model for Qualitative Spatial Similarity Assessment [J]. Spatial Cognition and Computation.6(1).2006:31-62
    [15].郭庆胜、黄远林、郑春燕、蔡永香.空间推理与渐进式地图综合[M].武汉:武汉大学出版社.2007:73-76
    [16].Alec Holt. Spatial similarity and GIS:the grouping of spatial kinds[J]. Presented at SIRC 99-The 11th Annual Colloquium of the Spatial Information Research Centre University of Otago. Dunedin. New Zealand 1999
    [17].P.FRONTIERA, R. LARSON, J. RADKE.A comparison of geometric approaches to assessing spatial similarity for GIR[J].International Journal of Geographical Information Science.22(3).2008:337-360
    [18]. A.Konstantinos, Egenhofer M.. Spatial Similarity Queries with Logical Operators[J]. SSTD 2003.LNCS 2750.pp.430-448.2003
    [19]. M.F.Goodchild, M.J.Egenhofer, R.Fegeas (1998).Interoperating GISs. Report of a Specialist Meeting [EB/OL]. http://www.ncgia.ucsb.edu/conf/interop97/interop_toc.html
    [20].闫浩文、楮衍东.多尺度地图空间相似关系基本问题研究[J].地理与地理信息科学.25(4).2009:42-44
    [21].Allen JF. Maintaining knowledge about temporal intervals[J]. Communications of the ACM.26(11).1983:832-834
    [22].Max J.Egenhofer, Dvaid M.Mark, John Herring. The 9-Intesreetion:Fomralism and Its Use for Natural-Language. Spatial Predicates.1994. www.ncgia.ucsb.edu/Publieations/ Tech_RePorts/94/94-1.pdf
    [23].舒红、陈军、杜道生、樊启斌.时空拓扑关系定义及时态拓扑关系描述[J].测绘学报.1997年第4期
    [24].唐新明、方裕、Wolfgang Kainz模糊区域拓扑关系模型[J].地理与地理信息科学.2003年第2期
    [25].郭庆胜、杜晓初.模糊面元素空间拓扑关系抽象化方法研究.测绘学报.2004年第4期
    [26].杜世宏、秦其明、王桥、郭泺.基于关系矩阵的复合宽边界区域拓扑关系计算[J].北京大学学报(自然科学版)网络版(预印本).2007:2(2)
    [27].杜晓初.多重表达中空间拓扑关系等价性研究[D].武汉大学博士学位论文.2005
    [28].Peuquet D. The Use of Spatial Relationships to Aid Spatial Database Retrieval. In the Proceedings of the 2nd International Symposium on Spatial Data Handling (SDH).1986
    [29].Papadias D. and Egenhofer M. Algorithms for Hierarchical Reasoning[J]. Geolnformatica. 1994.1(3):251-273
    [30].Goyal R K. Similarity assessment between cardinal directions[D]. Ph D. Thesis. Orono:NCGIS. Department of spatial information science and engineering. University of Maine.2000
    [31].闫浩文、郭仁忠.空间方向关系形式化描述模型研究.测绘学报.2003(1):357-360
    [32].Ramer U. An iterative procedure for the polygonal approximation of plane curves[J]. Computer vision graphics and image processing.1972. Vol.1:244-256
    [33].Imai H.& Iri M. Polygonal approximation of a curve-formulations and algorithms[J]. In:G.T. Tousaint (Ed.). Computational morphology. Elsevier Science publishers.1988:71-86
    [34].Esther M.Arkin.L. Paul Chew.Daniel P. Huttenlocher et al.An Efficiently Computer Metric for Comparing Polygonal Shapes[J]. IEEE Transactions On Pattern Analysis And Machine Intelligence.3(13).1991:209-215
    [35].James Z.Wang, Jia Li, Gio Wiederhold. Simplicity:Semantics-Sensitive Integrated Matching for Picture Libraries[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence. 9(23).2001:947-963
    [36].Yossi Rubner, Carlo Tomasi, Leonidas J.Guibas. The Earth Mover's Distance as a Metric for Image Retrieval[J]. International Journal of Computer Vision.40(2).2000:99-121
    [37].Rodriguez M A. Assessing semantic similarity among spatial entity classes[D]. Ph.D. Thesis. University of Maine.2000
    [38].H.T.Bruns, M.Egenhofer. Similarity of Spatial Scenes.in:M.-J.Kraak&M.Molenaar (eds.). Seventh International Symposium on Spatial Data Handling. Delft. The Netherlands Taylor&Francis.1996:173-184
    [39].郭庆胜、丁虹.基于栅格数据的面状目标空间方向相似性研究[J].武汉大学学报(信息科学版).2004年第11期
    [40].丁虹.空间相似性理论与计算模型的研究[D].武汉大学博士学位论文.2004
    [41].吕秀琴、吴凡.多尺度空间对象拓扑相似关系的表达与计算[J].测绘信息与工程.2006年第2期
    [42].郭黎、崔铁军、郑海鹰等.基于空间方向相似性的面状矢量空间数据匹配算法[J].测绘科学技术学报.25(5).2008:380-382
    [43].郝燕玲、唐文静、赵玉新等.基于空间相似性的面实体匹配算法研究[J].测绘学报.37(4).2008:501-506
    [44].艾廷华、帅赟、李精忠.基于形状相似性识别的空间查询[J].测绘学报.38(4).2009:356-362
    [45].艾廷华、刘耀林.保持空间分布特征的群点化简方法[J].测绘学报.31(2).2002:175-181
    [46].TOBLER W. On the first law of geography:A reply [J].Annals of AAG.2004. 94(2):304-310.
    [47].李小文、曹春香、常超一.地理学第一定律与时空邻近度的提出[J]自然杂志.2006.29(2):69-71
    [48].Paul A. Longley. Michael F. Goodchild. David J. Maguire. David W. Rhind等编.唐中实、黄俊锋、尹平等译.地理信息系统(上卷)——原理与技术(第二版)[M].北京:电子工业出版社.2004
    [49].刘颖、翟京生.随机点群目标空间图形的表达与识别[J].测绘科学.30(4).2005:39-42
    [50].施建勇、闫浩文.点群分布要素地图综合的质量评价方法[J].矿山测量.12(5).2008:23-25
    [51].David W.S.Wong. Jay Lee著.张学良译ArcView GIS与ArcGIS地理信息统计分析[M].2008:187-189
    [52].闫浩文、王家耀.基于Voronoi图的点群目标普适综合算法[J].中国图象图形学报[J].10(5).2005:633-636
    [53].毋河海.凸壳原理在点群目标综合中的应用.测绘工程[J].6(1).1997:1-6
    [54].陆毅、翟京生、杜景海等.数字海图点群状特征的识别、测量与综合[J].武汉大学学报(信息科学版).2001.26(2):133-139
    [55].朱渭宁、马劲松、黄杏元等.GIS中投影加权Voronoi图及竞争三角形生成算法研究[J].中国图象图形学报[J].9(3).2004:334-338
    [56].M.Stricker. M.Orengo. Similarity of color images[J]. SPIE95. San Jose:1-12
    [57].武芳、邓红艳.基于遗传算法的线要素自动化简模型[J].测绘学报.32(4).2003:349-355
    [58]. Douglas D H, Peucker T K. Algorithms for the reduction of the number of points required to represent a digitized line or its caricature [J]. The Canadian Cartographer.10(2). 1973:112-122
    [59].Li Z L, Openshaw S. Algorithms for automated line generalization based on natural principle of objective generalization [J]. IJGIS.6(5).1992:373-389
    [60].郭庆胜.线状要素图形综合的渐进方法研究[J].武汉测绘科技大学学报.23(1).1998:52-56
    [61].郭庆胜、杜晓初、闫卫阳.地理空间推理[M].北京:科学出版社.2006.02第一版:100-113
    [62].杜清运、杨品福、谭仁春.基于空间统计特征的河网结构分类[J].武汉大学学报信息科学版.31(5).2006:419-422
    [63].闫浩文、王家耀.地图群(组)目标描述与自动综合[M].北京:科学出版社.2009.08第一版:60-60.78-79
    [64].张青年.顾及密度差异的河系简化[J].测绘学报.35(2).2006:191-196
    [65].F.J. Ariza Lopez, J.L.Garcia Balboa. Generalization-oriented road line segmentation by means of an artificial neural network applied over a moving window [J]. Pattern Recognition. 41(2008):1593-1609
    [66].Mandelbrot B B. How long is the coast of Britain? Statistical self-similarity and fractional dimension [J].Science.156(3775).1967:6362638
    [67].朱晓华.海岸线分维数计算方法及其比较研究[J].黄渤海海洋.20(2).2002:31-36
    [68].梁东方、李玉梁、江春波.测量分维的“数盒子”算法研究[J].中国图象图形学报.07(03).2002:246-250
    [69].武芳、邓红艳、钱海忠等.地图自动综合质量评估模型[M].北京:科学出版社.2009.11第一版
    [70].张燕、邓敏、李志林.地图综合中建筑物方向的计算方法及适用性分析[J].地理信息世界.2008.04第二期:58-64
    [71].程鹏飞、闫浩文、韩振辉.一个求解多边形最小面积外接矩形的算法[J].工程图学学报.2008年第一期:122-126
    [72].刘玉珍、刘润涛.简单多边形的最小外接矩形算法[J].哈尔滨理工大学学报.13(2).2008:5-7
    [73].吴晓光、王涤琼、盛慧.一种获取图像区域最小外接矩形的算法及实现[J].计算机工程.30(12).2004:124-125转142
    [74]. WARE J M, JONES C B. A Spatial Model for Detecting (and Resolving) Conflict Caused by Scale Reduction [A]. Advance in GIS Research Ⅱ [C]. London:Taylor&Francis.1997:547-558.
    [75]. HELLER M. Triangulation Algorithm for Adaptive Terrain Modeling [A]. Proceedings of the 4th International Symposium on Spatial Data Handling[C]. Zurich:International Geographical Union.1990:163-174
    [76].艾廷华、郭仁忠.基于约束Delaunay结构的街道中轴线提取及网络模型建立[J].测绘学报.29(4).2000:348-353
    [77].艾廷华、郭仁忠.支持地图综合的面状目标约束Delaunay三角网剖分[J].武汉测绘科技大学学报.25(1).2000:35-40
    [78].艾廷华、郭仁忠、陈晓东Delaunay三角网支持下的多边形化简与合并[J].中国图象图形学报.6A(7).2001:703-709
    [79].艾廷华、郭仁忠.基于格式塔识别原则挖掘空间分布模式[J].测绘学报.36(3).2007:302-308
    [80].WENTZ E A. Shape Analysis in GIS[A]. Proc of ACSM/ASPRS[C]. [s.l.]:[s. n.].1997: 204-213.
    [81].王建.现代自然地理学[M].北京:高等教育出版社.2001年第一版:114-117
    [82].刘志坚.谈谈提高像片的调绘质量[J].铁路航测.1984年第02期:21-22
    [83].王劲峰.空间分析[M].北京:科学出版社.2006年第一版
    [84].H.Freeman, R.Shapira. Determining the Minimum-Area Encasing Rectangle for an Arbitrary Closed Curve[J].Communications of the ACM.18(7).1975:409-413
    [85].邬伦、刘瑜.地理信息系统:原理方法和应用[M].北京:科学出版社.2005年1月第一版:374-390
    [86].秦昆.GIS空间分析理论与方法[M].武汉:武汉大学出版社.2010年3月第2版:13-20
    [87].Harr R. Computational Models of Spatial Relations. Technical Report:TR-478. MSC-72-03610.1976. University of Maryland.College Park.MD
    [88].Chen J.Li C M. Improving 9-intersection Model by Replacing the Complement with Voronoi Region.Proceedings of Dynamic and Multi-dimensional GIS.Hongkong.1997
    [89].Randell D A.Cui Z. Cohn A G. A spatial logic based on regions and connection.In:Proc 3rd Int Conf on Knowledge Representation and Reasoning.Morgan Kaufmann. Sanmateo.1992: 165-176
    [90].刘大彬、刘大有.空间推理与地理信息系统综述[J].软件学报.11(12).2000:1598-1606
    [91].吴立新、史文中.地理信息系统原理与算法[M].北京:科学出版社.2003年10月第一版
    [92].王家耀、陈毓芬.信息时代的地图学[J].解放军测绘研究所学报.1999.第1期:6-10
    [93].Ronald E. Walpole. Raymond H.Myers. Sharon L.Myers. Keying Ye.Probability & Statistics for Engineers & Scientists[M](Eighth Edition)周勇、马昀蓓、谢尚宇、王晓婧译.理工科概率统计[M](第八版).北京:机械工业出版社.2010年1月
    [94].[德]库尔特.考夫卡著.黎伟译.格式塔心理学原理[M].杭州:浙江教育出版社.1997

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700