一维碳纳米材料及二氧化钛纳米材料的可控制备、表征及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为一种重要的纳米材料,一维碳纳米材料(包括碳纳米管和碳纳米纤维)具有优越的电学、力学性能。而在一维碳纳米材料的研究中,还存在许多有待解决的问题,阻碍一维碳纳米材料的基础研究及实际应用的主要障碍在其可控制备。一维碳纳米材料的微观形貌及微结构等特性极大地影响着其电学、力学等性能。一维碳纳米材料的可控制备包括:纯度控制、结晶控制、排列控制、长度控制、直径控制等。一维碳纳米材料可控制备的关键是找到一种简便有效、重复性好的控制方法。在制备过程中外加电场磁场已经被证实是一种实现可控制备的有效方法。本文在制备一维碳纳米材料时加入电场磁场,以调控其排列、结晶度、直径等特征,并通过模拟计算给出理论解释,深化了电场磁场可控制备的研究。
     过渡金属氧化物TiO2具有无毒无害、催化效率高,稳定性好,成本低廉等优点,是一种较为理想的光催化剂材料,具有巨大的应用前景,因而引起了研究者的巨大兴趣。但由于Ti02有禁带过宽、不能有效吸收可见光以及光生电子-空穴分离效率低等固有缺陷,目前对TiO2的研究主要集中于通过掺杂、复合、染料敏化等手段对其进行改性,以提高其对可见光的吸收和光生电子-空穴的分离效率,进而提高光催化性能。而对于TiO2的光催化机制,特别是从原子尺度观察光催化过程、揭示光催化的机理方面的研究不多。本文利用HRTEM技术观测研究了Ti02光催化降解亚甲基蓝、罗丹明B以及甲基橙三种有机物的过程中TiO2晶体结构的变化,提出了一种崭新的光催化机理,此外也从共掺杂、纳米复合,暴露活性面等角度对TiO2进行改性以提升其光催化性能。
     本论文分为九章。
     第一章是绪论部分,介绍了本论文工作的研究背景、来源、意义及其重要性,在前半部分介绍了一维碳纳米材料的基础知识、研究现状,然后介绍了电场磁场控制制备一维碳纳米材料的研究进展。后半部分首先介绍了光催化以及TiO2的基础知识,然后从Ti02光催化机理研究、电纺Ti02应用于光催化研究、(001)高活性面暴露Ti02制备与研究进展以及掺杂Ti02提高光催化性能这四个方面对TiO2的研究现状进行了概括和总结。
     本论文各部分工作的实验方法、表征测试手段及仪器设备在第二章中详述。主要包括几个内容:在火焰法制备CNTs过程中施加磁场实现对其阵列性及微结构的调控;在CVD法制备CNFs(?)过程中外加较大电场实现对直径等特征的调控;结合电纺法及基于酒精水溶液的化学沉淀法,制得Cu2O/TiO2亚微米纤维复合物:通过加入NH4F的方法,经过水热过程成功地一步制备出锐钛矿金红石混品纳米TiO2;通过热氧化TiC与MoO3的混合物制备出Mo+C共掺杂TiO2以及对合成物性能的测试。
     在第三章中,在火焰法制备碳纳米管时外加一个恒定磁场,系统研究了外加磁场对碳纳米管微观形貌及微结构的影响。发现外加磁场能诱导碳纳米管阵列生长,同时影响其微结构:促使石墨层沿碳纳米管轴心方向排列,并提高了石墨化结晶。通过模拟计算发现外加磁场对碳纳米管管身有一个诱导力作用,促使其沿磁场方向生长,相比于电场力作用于碳纳米管顶端的催化剂颗粒,碳纳米管管身所受磁场力是其诱导的主因。而磁场还能影响活性碳原子的沉积方式,使其沉积有序化、石墨层倾向于沿轴向生长。
     在前期研究低电场对碳纳米管生长的影响基础上,在第四章中,通过在CVD法中施加偏压,研究了高电场对碳纳米纤维生长的影响,发现与前期工作相比高电场不能使“底端生长”的碳纳米纤维形成阵列,但能通过改变催化剂颗粒的方式来影响碳纳米纤维的直径,从而实现通过调节外电场大小调控生成的碳纳米纤维的直径;此外,碳纳米纤维的直径分布也更加均一,并且外加电场还能影响活性碳原子的沉积,使其不能形成“空心”结构。
     在第五章中,用HRTEM对比观察了TiO2光催化降解亚甲基蓝、罗丹明B以及甲基橙三种有机物的过程中TiO2晶体结构的变化,从原子-分子角度对TiO2光催化过程和机理进行了初步的研究,提出了一个“基于晶格畸变驱动力的TiO2光催化降解理论”,其主要观点认为:降解物首先吸附在锐钛矿TiO2表面,并形成较强的化学键,并使锐钛矿TiO2表面原子产生位移、晶格结构发生畸变。在光照作用下,畸变的晶格倾向于恢复到自由能较低的正常晶格状态,这种恢复作用产生的驱动力可以称之为晶格畸变驱动力,它的作用是使吸附分子的分子键断裂,使一个较大分子裂解成几部分小分子,再配合自由羟基的氧化作用将其降解。这种表面原子的畸变与恢复,可以通过HRTEM晶格像的模糊与清晰程度进行观察和判断。与公认的“光生电子-空穴”理论相比,该理论还能解释TiO2的失效过程。
     基于一个研究不多的TiO2电纺纤维作为复合体系,在第六章中,结合电纺法及基于酒精水溶液的化学沉淀法,制得Cu2O/TiO2亚微米纤维复合物。研究发现Cu2O的颗粒尺寸极大地影响着复合物的协同效果,结果证实颗粒尺寸在100 nm以内的纳米级的Cu20颗粒才能与Ti02发生协同作用,使其具有比不复合Cu2O的TiO2亚微米纤维更高的光催化活性。与一般的复合研究不同,本工作研究了复合物微观形貌与性能的关系,证实了微观形貌极大地影响了复合的效果。
     在第七章中,通过加入NH4F的方法,经过水热过程成功地一步制备出锐钛矿金红石混晶纳米TiO2。并且系统研究了HF的添加量对(001)面暴露比例、光催化性能的影响;以及NH4F添加量对混晶中金红石所占比例、(001)面所占比例以及光催化性能的影响。在一个最佳参数条件下,制备的锐钛矿金红石混晶纳米Ti02光催化性能可达到P25的四倍。本研究的意义在于结合(001)活性面制备与混晶两种手段、通过简单的一步水热法制得一种极其高效的光催化剂,这为新型催化剂的设计及制备创造了一个良好的前景。
     相比于单掺杂体系,共掺杂能一方面增强可见光吸收,另一方面减少单掺杂带来的电子-空穴复合中心的形成。在第八章中,以理论预测的Mo+C共掺杂设计思想为指导,通过热氧化TiC与M003的混合物制备出Mo+C共掺杂Ti02,并深入研究C,Mo掺杂对TiO2的能带以及光催化性能的影响。实验证实C掺杂能缩小Ti02的禁带宽度,使其对可见有有所吸收;Mo掺杂在对Ti02能级影响不大的情况下能消除单独C掺杂带来的光生电子-空穴复合中心,进一步提高光催化效率,在验证理论预测的同时也从实验上得到一种高效催化剂。
     第九章是全文总结。最后简要介绍了作者在研究生期间发表的论文及参与课题等科研情况。
As a kind of important nanomaterials, one-dimensional carbon nanomaterials (including carbon nanotubes and carbon nanofibers) have excellent electrical and mechanical properties. In the one-dimensional carbon nanomaterials research, there are still many problems to be solved, the main obstacle hinder one-dimensional carbon nanomaterials applied in practical application is controlled synthesis. Micro-morphology and micro-structure of one-dimensional carbon nanomaterials greatly affect the electrical, mechanical and other properties. Controlled synthesis of one-dimensional carbon nanomaterials include:purity controlled, crystallization controlled, alignment controlled, length controlled and diameter controlled. The key of controlled synthesize one-dimensional carbon nanomaterials is to find a simple, effective and repeatable controlled method. Applied electric field and magnetic field in the synthesis process has been shown to be an effective way to achieve controlled synthesis. In this paper, electric field and magnetic field were applied in synthesis of one-dimensional carbon nanomaterials to control the order, crystalline, diameter and other characteristics, and theoretical explanation is given by simulation calculation. These researches deepen the controlled synthesis using electric and magnetic fields.
     Transition metal oxide TiO2 with advantages of nontoxic, efficient photocatalysis, stability, and lower cost, is an ideal photocatalyst materials with a great prospect, has aroused great interest of researchers. However, since inherent defects of TiO2 can not effectively absorb visible light due to the wide band gap, and low electron-hole separation efficiency, the current study focused on improve the photocatalytic performance of TiO2 by doping, composite, and dye-sensitized modification to increase the visible light absorption and electron-hole separation efficiency. However, there was little research reveal the TiO2 photocatalytic mechanisms, in particular observation of photocatalytic process in the atomic-scale. In this research, the photocatalytic progress of TiO2 was studied using HRTEM by observed the crystal structure variation of TiO2 during degradation of methylene blue, rhodamine B and methyl orange, and a new photocatalytic mechanism was developed. On the other hand, TiO2 was modified from a total of co-doping, nano compound, and exposure of activity surface to enhance the photocatalytic ability.
     This dissertation is divided into nine chapters.
     The first chapter is the introduction, describes the research background, origin, meaning and importance of this work. The first half introduces the basic knowledge, research status of one-dimensional carbon nano-materials, and then introduces the research progress of electric fields and magnetic fields control synthesis of one-dimensional carbon nano-materials. The basics of TiO2 and photocatalysis were introduced in the second half, and then from the photocatalysis mechanism of TiO2, electrospun TiO2 applied in photocatalysis, synthesis and research progress of (001) high activity surface exposed TiO2, and improve the photocatalytic ability of TiO2 by co-doped of these four aspects in the study is summarized and concluded.
     The experimental methods, characterization methods and test equipment in the various parts of work are described in the second chapter. It includes several parts:controlling CNTs array growth and micro-structure of that in flame synthesis process using a magnetic field; applied a larger electric field in the CVD process to control the diameter and other characteristics of obtained CNFs; synthesizing Cu2O/TiO2 sub-micron-fiber composite combined with electrospinning progress and alcohol-based chemical solution deposition method; by adding NH4F, anatase mixed rutile TiO2 nanosheets were successfully obtained through a one-step hydrothermal progress; Mo+C co-doped TiO2 were synthesized by thermal oxidation of TiC and MoO3 mixture, and the photocatalysis ability of that was studied.
     In the third chapter, the influence to the morphology and microstructure of carbon nanotubes by applied a constant magnetic field in flames during growth was studied. It is found that magnetic field can not only induce the array growth of carbon nanotubes, but also affects the micro-structure:to promote the direction of the graphite layer arranged along the nanotube axis, and improve the crystallization of graphite. By simulation and calculation, it is revealed that there is induced force acting upon the tube of carbon nanotubes in magnetic field to promote its growth direction along the magnetic field, which is different with electric field force acting upon the catalyst particles on the top of carbon nanotubes. So the magnetic field induced force acting upon the tube of carbon nanotubes is the main reason for induction. Furthermore, magnetic field can affect the deposition pattern of carbon atoms: improve the order of deposition, and promote which tends to grow along the axis of graphite layer.
     On the basis of research on low electric field inducing in the carbon nanotubes growth, in the fourth chapter, the influence of applying high electric field on the growth of carbon nanofibers in CVD system was studied. It is found that instead of inducing "the bottom growth" carbon nanofibers array growth as the previous work, the size of catalyst particles can be changed by a high electric field, as a result, the diameter of carbon nanofibers can be controlled by adjusting the strength of the external electric field. In addition, the diameter distribution of carbon nanofibers is more uniform when the strength of electric field enhanced, and the applied electric field can also affect the deposition of carbon atoms, so that it can not form a "hollow" structure.
     In the fifth chapter, the crystal structure changes of TiO2 during degradation of methylene blue, rhodamine B and methyl orange were studied with the HRTEM observation. Photocatalytic process and the mechanism of anatase TiO2 were researched in the atomic-molecular scale, and proposed a "hotocatalytic degradation theory based TiO2 lattice distortion driving force". The main point of view can be described as:first, dye molecules adsorb on the surface of anatase TiO2 and formatted strong chemical bonds, which can displace anatase TiO2 surface atom, result in lattice structure distortion. Then under illumination, distorted lattice tends to return to a lower free energy of the normal lattice state. This recovery can be called as "lattice distortion driving force", its effect is to break the bonds of adsorbed molecules, split a large molecule into several parts of small molecules, and degradation of the dye molecules is achieved coupled with the oxidation of free carboxyl group. This distortion of the surface atoms and recovery can be observed by judging HRTEM lattice image from clarity to fuzzy. Compared with the "electron-hole theory", this theory can also explain the failure of TiO2.
     By choosing TiO2 electrospun fibers with a little research as a composite system, in the sixth chapter, Cu2O/TiO2 sub-micron-fiber composites were synthesized combined with electrospinning progress and an alcohol-based chemical solution deposition method. It is found that the size of Cu2O particles greatly influences the complex synergies between Cu2O and TiO2 which proved to take effect only when the Cu2O particles size less than 100 nm, and photocatalytic activity of the composites can be much higher than TiO2 sub-micron-fibers. Different from other work, the relationship between microstructure and properties of composites is studied in this paper, and it is confirmed that the microstructure greatly influences the composites properties.
     In the seventh chapter, by adding NH4F, (001) surface exposed anatase mixed rutile TiO2 nanosheets were successfully synthesized after one step hydrothermal process. And the relationship between amount of added HF and the ratio of (001) exposed surface, photocatalytic properties was studied; the influence of NH4F content on the percentage of rutile in mixed crystal, the ratio of (001) exposed surface, photocatalytic properties was also revealed. In the best parameter conditions, the photocatalytic ability of (001) surface exposed anatase mixed rutile TiO2 nanosheets can be four times as high as the P25. Significance of this study is to combine two means of exposing (001) activity surface and mixed crystal, through a simple one-step hydrothermal method, obtained extremely efficient photocatalyst, which create a good future for the design and preparation of new catalysts.
     Compared with single-doped, co-doping, on one hand, can enhance the visible light absorption, and on the other hand reduce the electron-hole recombination center formation bring by single-doping. In the eighth chapter, based on the theoretical prediction of Mo+C co-doped, Mo+C co-doped TiO2 were obtained by thermal oxidation of a mixture of TiC and MoO3, and the influence of C, Mo doping on the band and photocatalytic ability of TiO2 was in-depth studied. Experiments confirmed that C doping narrows band gap of TiO2, makes it absorb visible light; Mo doping has little effect on the band gap of TiO2, but can reduce the electron-hole recombination center formation bring by C doping, and improve the photocatalytic ability. The study verifies the theoretical prediction and obtained an efficient photocatalyst.
     Chapter nine is a full summary. Finally, a brief introduction of published papers and participated project in the graduate were given.
引文
[1]张立德.纳米材料[M].北京:化学工业出版社:2000.
    [2]张立德;牟季美.纳米材料和纳米结构[M].北京:科学出版社,2001.
    [3]许并社.纳米材料及其应用技术[M].北京:化学工业出版社,2004.
    [4]朱屯;王福明;王习东等.国外纳米材料技术进展与应用[M].北京:化学工业出版社,2002.
    [5]朱静等.纳米材料和器件[M].北京:清华大学出版社,2003.
    [6]李奋生;史红虎.纳米经济[M].长春:长春出版社,2002.
    [7]高瑞平.纳米材料和技术的研究及展望[J].材料导报,2001,15(5):6-7.
    [8]朱宏伟;吴德海;徐才录.碳纳米管[M].北京:机械工业出版社,2003.
    [9]成会明.新型碳材料的发展趋势[J].材料导报,1998,12(1):5-9.
    [10]高利珍;李贺;梁奇;陈召勇;于作龙.碳纳米管的生产及其应用[J].科技导报,2001,(6):16-19.
    [11]夏正才;唐超群;曹霞.碳纳米管[J].材料导报,2000,14(2):49-50.
    [12]Baughman, R. H.; Zakhidov, A. A.; de Heer, W. A. Carbon nanotubes-the route toward applications [J]. Science,2002,297 (5582):787-792.
    [13]Dresselhaus, M. S.; Dai, H. J.; Editors, G. Carbon nanotubes:Continued innovations and challenges [J]. MRS Bulletin,2004, April,237-239.
    [14]Dai, H. Carbon nanotubes:opportunities and challenges [J]. Surface Science,2002, 500:218-241.
    [15]Chen, X.; Mao S. S. Titanium dioxide nanomaterials:synthesis, properties, modifications, and applications chemical reviews [J].2007,107 (7):2891-2959.
    [16]Fujishima, A.; Honda, K. Electrochemical photocataslysis of water at a semiconductor electrode [J]. Nature,1972,238 (5358):37-38.
    [17]Frank, S. N.; Bard, A. J. Heterogeneous photocatalytic oxidation of cyanide and sulfite in aqueous solution at TiO2 power [J]. Journal of American Chemical Society,1977, 99:303-304.
    [18]Frank, S. N.; Bard, A. J. Heterogeneous photocatalytic oxidation of cyanide and sulfite in aqueous solution at semiconductor powers [J]. Journal of Physical Chemistry,1977, 81:1484-1488.
    [19]Pruden, A. L.; Ollis, D. F. Photoassisted heterogeneous catalysis:the degradation of trichloroethylene in water [J]. Journal of Catalysis,1983,82 (2):404-417.
    [20]Hsiao, C.Y.; Lee, C.L.; Ollis, D. F. Heterogeneous photocatalysis:degradation of dilute solutions of dichloromethane (CH2Cl2), chloroform (CHCl3), and carbon tetrachloride (CC14) with illuminated TiO2 photocatalyst [J]. Journal of Catalysis,1983, 82 (2):418-423.
    [21]Khan, S. U. M.; Al-Shahry, M.; Ingler, W. B. Efficient photochemical water splitting by a chemically modified n-TiO2 [J]. Science,2002,297:2243-2245.
    [22]Kroto, H. W.; Heath, J. R.; O'Brien, S. C.; Curl, R. F.; Smalley, R. E. C60: Buckminsterfullerene [J]. Nature,1985,318:162-163.
    [23]Iijima, S. Helical microtubules of graphitic carbon [J]. Nature,1991,354 (7):56-58.
    [24]Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films [J]. Science,2004,306:666-669.
    [25]Ebbesen, T. W. carbon nanotubes [J]. Physics today,1996,49 (6):26-32.
    [26]Balasubramanian, K.; Burghard, M. Chemically functionalized carbon nanotubes [J]. Small,2005,1 (2):180-192.
    [27]Eklund, P. C.; Holden, J. M.; Jishi, R. A. Vibrational modes of carbon nanotubes; Spectroscopy and theory [J]. Carbon,1995,33 (7):959-972.
    [28]Fan, Y. Y.; Cheng, H. M.; Wei, Y. L.; et al. Tailoring the diameters of vapor-grown carbon nanofibers [J]. Carbon,2000,38 (6):921-927.
    [29]Endo, M.; Kroto, H. W. Formation of carbon nanofibers [J]. The Journal of Physical Chemistry,1992,96 (17):6941-6944.
    [30]Merkulov, V. I.; Melechko, A. V.; Guillorn, M. A.; et al. Effects of spatial separation on the growth of vertically aligned carbon nanofibers produced by plasma-enhanced chemical vapor deposition [J]. Applied Physics Letters,2002,80 (3):476-478.
    [31]Collins, S.; Brydson, R.; Rand, B. Structural analysis of carbon nanofibres grown by the floating catalyst method [J]. Carbon,2002,40 (7):1089-1100.
    [32]Vander Wal, R. L.; Hall, L. J. Flame synthesis of Fe catalyzed single-walled carbon nanotubes and Ni catalyzed nanofibers:growth mechanisms and consequences [J]. Chemical Physics Letters,2001,349 (3-4):178-184.
    [33]Vander Wal, R. L. Flame synthesis of Ni-catalyzed nanofibers [J]. Carbon,2002,40 (12):2101-2107.
    [34]Pan, C.; Liu, Y.; Cao, F.; et al. Synthesis and growth mechanism of carbon nanotubes and nanofibers from ethanol flames [J]. Micron,2004,35 (6):461-468.
    [35]Qi, X.; Ruan, X.; Pan, C. Graphitization of solid carbon nanofibers at an unexpectedly low temperature [J]. Materials Letters,2007,61 (21):4272-4275.
    [36]Pan, C.; Liu, Y.; Cao, F. Novel solid-cored carbon nanofibers grown on steels substrates in ethanol flames [J]. Journal of materials science,2005,40 (5):1293-1295.
    [37]Liu, Y.; Pan, C.; Chen, W. Diameter-controlling growth of solid-cored carbon nanofibers on a pulse plated iron nanocrystalline substrate in flames [J]. Materials Research Bulletin,2008,43 (12):3397-3407.
    [38]Bonnot, A. M.; Deldem, M.; Beaugnon, E.; et al. Carbon nanostructures and diamond growth by HFCVD:role of the substrate preparation and synthesis conditions [J]. Diamond and Related Materials,1999,8 (2-5):631-635.
    [39]Lee, C. J.; Park, J.; Huh, Y.; et al. Temperature effect on the growth of carbon nanotubes using thermal chemical vapor deposition [J]. Chemical Physics Letters, 2001,343 (1-2):33-38.
    [40]Zou, X. P.; Abe, H.; Shimizu, T.; et al. Simple thermal chemical vapor deposition synthesis and electrical property of multi-walled carbon nanotubes [J]. Physica E: Low-dimensional Systems and Nanostructures,2004,24 (1-2):14-18.
    [41]Vander Wal, R. L. Fe-catalyzed single-walled carbon nanotube synthesis within a flame environment [J]. Combustion and Flame,2002,130 (1-2):37-47.
    [42]Vander Wal, R. L.; Hall, L. J.; Berger, G. M. Optimization of flame synthesis for carbon nanotubes using supported catalyst [J]. The Journal of Physical Chemistry B, 2002,106(51):13122-13132.
    [43]Wang, M.; Zhao, X.; Ohkohchi, M.; et al. Carbon nanotubes grown on the surface of cathode deposit by arc discharge [J]. Fullerene Science and Technology,1996,4 (5): 1027-1039.
    [44]Kong, J.; Cassell, A. M.; Dai, H. Chemical vapor deposition of methane for single-walled carbon nanotubes [J]. Chemical Physics Letters,1998,292 (4-6): 567-574.
    [45]Lee, C. J.; Park, J. Growth model of bamboo-shaped carbon nanotubes by thermal chemical vapor deposition [J]. Applied Physics Letters,2000,77 (21):3397-3399.
    [46]Daniel, T. C.; Richarde, E. S. Electric effects in nanotube grown [J]. Carbon,1995,33 (7):921-924.
    [47]Ren, Z. F.; Huang, Z. P.; Wang, D. Z.; et al. Growth of a single freestanding multiwall carbon nanotube on each nanonickel dot [J]. Applied Physics Letters,1999,75 (8): 1086-1088.
    [48]Murakami, H.; Hirakawa, M.; Tanaka, C.; et al. Field emission from well-aligned, patterned, carbon nanotube emitters [J]. Applied Physics Letters,2000,76 (13): 1776-1779.
    [49]Bower, C.; Zhu, W.; Jin, S. H.; et al. Plasma-induced alignment of carbon nanotubes [J]. Applied Physics Letters,2000,77 (6):830-832.
    [50]Gjerde, K.; Schurmann, T.; Bu, I.; et al. Integration of carbon nanotubes with controllable inclination angle into microsystems [J]. Carbon,2006,44 (14): 3030-3036.
    [51]AuBuchon, J. F.; Chen, L. H.; Gapin, A. I.; et al. Electric-field-guided growth of carbon nanotubes during DC plasma-enhanced CVD [J]. Chemical Vapor Deposition, 2006,12 (6):370-374.
    [52]Law, J. B. K.; Koo, C. K.; Thong, J. T. L. Horizontally directed growth of carbon nanotubes utilizing self-generated electric field from plasma induced surface charging [J]. Applied Physics Letters,2007,91 (24):243108.
    [53]Hatakeyama, R.; Jeong, G. H.; Kato, T.; et al. Effects of micro- and macro-plasma-sheath electric fields on carbon nanotube growth in a cross-field radio-frequency discharge [J]. Journal of Applied Physics,2004,96 (11):6053-6070.
    [54]Wei, H. W.; Leou, K. C.; Wei, M. T.; et al. Effect of high-voltage sheath electric field and ion-enhanced etching on growth of carbon nanofibers in high-density plasma chemical-vapor deposition [J]. Journal of Applied Physics,2005,98 (4):044313.
    [55]Srivastava, A.; Srivastava, A. K.; Srivastava, O. N. Effect of external electric field on the growth of nanotubules [J]. Applied Physics Letters,1998,72 (14):1685-1687.
    [56]Avigal, Y.; Kalish, R. Growth of aligned carbon nanotubes by biasing during growth [J]. Applied Physics Letters,2001,78 (16):2291-2293.
    [57]Kuzuya, C.; Kohda, M.; Hishikawa, Y.; et al. Preparation of carbon micro-coils with the application of outer and inner electromagnetic fields and bias voltage [J]. Carbon, 2002,40(11):1991-2001.
    [58]Ono, T.; Oesterschulze, E.; Georgiev, G.; et al. Field-assisted assembly and alignment of carbon-nanofibres [J]. Nanotechnology,2003,14 (1):37-41.
    [59]Zhang, Y. G.; Chang, A. L.; Cao, J.; et al. Electric-field-directed growth of aligned single-walled carbon nanotubes [J]. Applied Physics Letters,2001,79 (19): 3155-3157.
    [60]Ural, A. Li, Y. M. Dai, H.; Electric-field-aligned growth of single-walled carbon nanotubes on surfaces [J]. Applied Physics Letters,2002,81 (18):3464-3466.
    [61]Dittmer, S.; Svensson, J.; Campbell, E. E. B. Electric field aligned growth of single-walled carbon nanotubes [J]. Current Applied Physics,2004,4 (6):595-598.
    [62]Nojeh, A.; Ural, A.; Pease, R. F.; et al. Electric-field-directed growth of carbon nanotubes in two dimensions [J]. Journal of Vacuum Science & Technology B,2004, 22 (6):3421-3425.
    [63]Peng, N.; Zhang, Q.; Li, J. Q.; et al. Influences of ac electric field on the spatial distribution of carbon nanotubes formed between electrodes [J]. Journal of Applied Physics,2006,100 (2):024309.
    [64]Maeda, M.; Kamimura, T.; Matsumoto, K. One by one control of the exact number of carbon nanotubes formed by chemical vapor deposition growth:A digital growth process [J]. Applied Physics Letters,2007,90 (4):043119.
    [65]Merchan-Merchan, W.; Saveliev, A. V.; Kennedy, L. A. High-rate flame synthesis of vertically aligned carbon nanotubes using electric field control [J]. Carbon,2004,42 (3):599-608.
    [66]Merchan-Merchan, W.; Saveliev, A. V.; Kennedy, L. A. Flame nanotube synthesis in moderate electric fields:From alignment and growth rate effects to structural variations and branching phenomena [J]. Carbon,2006,44 (15):3308-3314.
    [67]Xu, F. S.; Liu, X. F.; Tse, S. D. Synthesis of carbon nanotubes on metal alloy substrates with voltage bias in methane inverse diffusion flames [J]. Carbon,2006,44 (3): 570-577.
    [68]Bao, Q. L.; Pan, C. Electric field induced growth of well aligned carbon nanotubes from ethanol flames [J]. Nanotechnology,2006,17 (4):1016-1021.
    [69]Bao, Q. L.; Zhang, H.; Pan C. Simulation for growth of multi-walled carbon nanotubes in electric field [J]. Computational Materials Science,2007,39 (3):616-626.
    [70]Bao, Q. L.; Zhang, H.; Pan, C. Electric-field-induced microstructural transformation of carbon nanotubes [J]. Applied Physics Letters,2006,89 (6):063124.
    [71]Chen, X. Q.; Saito, T.; Yamada, H.; et al. Aligning single-wall carbon nanotubes with an alternating-current electric field [J]. Applied Physics Letters,2001,78 (23): 3714-3716.
    [72]Kumar, M. S.; Kim, T. H.; Lee, S. H.; et al. Influence of electric field type on the assembly of single walled carbon nanotubes [J]. Chemical Physics Letters,2004,383 (3-4):235-239.
    [73]夏明霞;颜宁;李红星.外加电场作用下碳纳米管结构稳定性及结构修饰研究[J].物理学报,2007,56(113):113-116.
    [74]Wei, Y.; Xie, C. G.; Dean, K. A.; et al. Stability of carbon nanotubes under electric field studied by scanning electron microscopy [J]. Applied Physics Letters,2001,79 (27): 4527-4529.
    [75]Yuzvinsky, T. D.; Mickelson, W.; Aloni, S.; et al. Shrinking a carbon nanotube [J]. Nano Letters,2006,6 (12):2718-2722.
    [76]Chen, M.; Wei, Z.; Zhua, Y. Alignment and dispersion of functionalized carbon nanotubes in polymer composites induced by an electric field [J]. Carbon,2008,46 (4): 706-720.
    [77]Lee, K. H.; Cho, J. M.; Sigmund, W. Control of growth orientation for carbon nanotubes [J]. Applied Physics Letters,2003,82 (3):448-450.
    [78]Anazawa, K.; Shimotani, K.; Manabe, C.; et al. High-purity carbon nanotubes synthesis method by an arc discharging in magnetic field [J]. Applied Physics Letters, 2002,81 (4):739-741.
    [79]Doherty, S. P.; Buchholz, D. B.; Chang, R. P. H. Semi-continuous production of multiwalled carbon nanotubes using magnetic field assisted arc furnace [J]. Carbon, 2006,44(8):1511-1517.
    [80]Keidar, M.; Levchenko, I.; Arbel, T.; et al. Increasing the length of single-wall carbon nanotubes in a magnetically enhanced arc discharge [J]. Applied Physics Letters,2008, 92 (4):043129.
    [81]Xing, G.; Jia, S. L.; Shi, Z. Q. Influence of transverse magnetic field on the formation of carbon nano-materials by arc discharge in liquid [J]. Carbon,2007,45 (13): 2584-2588.
    [82]Kaneko, T.; Matsuoka, H.; Hirata, T.; et al. Effects of strong magnetic field on carbon nanotube formation using rf glow-discharge plasma [J]. Thin Solid Films,2006,506: 259-262.
    [83]Kim, C. D.; Jang, H. S.; Lee, H. R.; et al. Low temperature growth of carbon nanotubes in a magnetic field [J]. Materials Letters,2007,61(10):2075-2078.
    [84]Ohmae, Nobuo. Shaping carbon nanotube bundles during growth using a magnetic field [J]. Carbon,2008,46 (4):544-561.
    [85]Wei, D. C.; Liu, Y. Q.; Cao, L. C.; et al. A magnetism-assisted chemical vapor deposition method to produce branched or iron-encapsulated carbon nanotubes [J]. Journal of the American Chemical Society,2007,129 (23):7364-7368.
    [86]Sun, L. F.; Liu, Z. Q.; Ma, X. C.; et al. Growth of carbon nanofibers array under magnetic force by chemical vapor deposition [J]. Chemical Physics Letters,2001,336 (5-6):392-396.
    [87]Kimura, T.; Ago, H.; Tobita, M.; et al. Polymer composites of carbon nanotubes aligned by a magnetic field [J]. Advanced Materials,2002,14 (19):1380-1383.
    [88]Stoffelbach, F.; Aqil, A.; Jerome, C.; et al. An easy and economically viable route for the decoration of carbon nanotubes by magnetite nanoparticles, and their orientation in a magnetic field [J]. Chemical Communications,2005 (36):4532-4533.
    [89]Sano, N.; Naito, M.; Kikuchi, T.; Enhanced field emission properties of films consisting of Fe-core carbon nanotubes prepared under magnetic field [J]. Carbon, 2007,45(1):78-82.
    [90]陈荣华;朱明原;李瑛.脉冲磁场处理对碳纳米管掺杂MgB2线材临界电流密度的影响[J].物理学报,2006,55(9):4878-4882.
    [91]Zhang, J.; Pan, C. Magnetic-field-controlled alignment of carbon nanotubes from flames and its growth mechanism [J]. The Journal of Physical Chemistry C,2008,112 (35):13470-13474.
    [92]Zhang, J.; Pan, C. Electric-field-induced diameter control of carbon nanofibers [J]. Journal of Alloys and Compounds,2010,495:93-96.
    [93]Linsebigler, A. L.; Lu, G.; Yates, J. T., Jr. Photocatalysis on TiO2 surfaces:principles, mechanisms, and selected results [J]. Chemical Reviews,1995,95 (3):735-758.
    [94]Asahi, R.; Taga, Y.; Mannstadt, W.; Freeman, A. J. Electronic and optical properties of anatase TiO2 [J]. Physical Review B,2000,61(11):7459-7465.
    [95]Konstantinou, I. K.; Albanis, T. A. TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution:kinetic and mechanistic investigations:A review [J]. Applied Catalysis B:Environmental,2004,49 (1):1-14.
    [96]Berko, A.; Hakkel, O.; Szoko, J.; Solymosi, F. Thermally induced formation of vacancy-islands on the atomic terraces of TiO2(110) surface covered by Pt [J]. Surface Science,2002,643:507-510.
    [97]Ting, C. C.; Chen, S. Y.; Liu, D. M. Preferential growth of thin rutile TiO2 films upon thermal oxidation of sputtered Ti films [J]. Thin Solid Films,2002,402:290-295.
    [98]Anpo, M. Preparation, characterization, and reactivities of highly functional titanium oxide-based photocatalysts able to operate under UV-visible light irradiation: approaches in realizing high efficiency in the use of visible light [J]. Bulletin of the Chemical Society of Japan,2004,77:1427-1442.
    [99]Liu, G.; Wang, L.; Yang, H. G.; Cheng, H. M.; Lu, G Q. Titania-based photocatalysts crystal growth, doping and heterostructuring [J]. Journal of Materials Chemistry,2010, 20(5):831-843.
    [100]Shigwedha, N.; Hua, Z. Z.; Chen, J. A new photon kinetic-measurement based on the kinetics of electron-hole pairs in photodegradation of textile wastewater using the UV-H2O2FS-TiO2 process [J]. Journal of Environmental Sciences-China,2007,19 (3): 367-373.
    [101]Kawahara, T.; Konishi, Y.; Tada, H.; Tohge, N.; Nishii, J.; Ito, S. A patterned TiO2(anatase)/TiO2(rutile) bilayer-type photocatalyst:Effect of the anatase/rutile junction on the photocatalytic activity [J]. Angewandte Chemie International Edition, 2002,41 (15):2811-2813.
    [102]Zhang, J.; Xu, Q.; Feng, Z.; Li, M.; Li, C. Importance of the relationship between surface phases and photocatalytic activity of TiO2 [J].Angewandte Chemie International Edition,2008,47 (9):1766-1769.
    [103]Bickley, R.I.; Gonzalezcarreno, T.; Lees, J. S.; Palmisano, L.; Tilley, R. J. D. A structural investigation of titanium dioxide photocatalysts [J]. Journal of Solid State Chemistry,1991,92 (1):178-190.
    [104]Hurum, D. C.; Agrios, A. G.; Gray, K. A.; Rajh, T.; Thurnauer, M. C. Explaining the enhanced photocatalytic activity of degussa P25 mixed-phase TiO2 using EPR. The Journal of Physical Chemistry B,2003,107 (19):4545-4549.
    [105]Hurum, D. C.; Gray, K. A.; Rajh, T.; Thurnauer, M. C. Recombination pathways in the degussa P25 formulation of TiO2:surface versus lattice mechanisms [J]. The Journal of Physical Chemistry B,2005,109 (2),977-980.
    [106]Bessekhouad, Y.; Robert, D.; Weber, J. V. Bi2S3/TiO2 and CdS/TiO2 heterojunctions as an available configuration for photocatalytic degradation of organic pollutant [J]. Journal of Photochemistry and Photobiology A:Chemistry,2004,163 (3):569-580.
    [107]Kumar, A.; Jain, A. K. Photophysics and photochemistry of colloidal CdS-TiO2 coupled semiconductors-photocatalytic oxidation of indole [J]. Journal of Molecular Catalysis A:Chemical,2001,165:265-273.
    [108]Lo, S. C.; Lin, C. F.; Wu, C.H.; Hung, P. H. Capability of coupled CdSe/TiO2 for photocatalytic degradation of 4-chloro- phenol [J]. Journal of Hazardous Materials, 2004,114(1-3):183-190.
    [109]Pilkenton, S.; Raftery, D. Solid-state NMR studies of the adsorption and photooxidation of ethanol on mixed TiO2-SnO2 photocatalysts [J]. Solid State Nuclear Magnetic Resonance,2003,24:236-253.
    [110]Brahimi, R.; Bessekhouad, Y.; Bouguelia A.; Trari, M. Improvement of eosin visible light degradation using PbS-sensititized TiO2 [J]. Journal of Photochemistry and Photobiology A:Chemistry,2008,194 (2-3):173-180.
    [111]Chao, H. E.; Yuna, Y. U.; Xingfang, H. U.; Larbot, A. Effect of silver doping on the phase transformation and grain growth of Sol-gel titania powder [J]. Journal of the European Ceramic Society,2003,23 (9):1457-1464.
    [112]Li, F. B.; Li, X. Z. The enhancement of photodegradation efficiency using Pt-TiO2 catalyst [J]. Chemosphere,2002,48 (10):1103-1111.
    [113]Yu, J. G.; Xiong, J. F.; Cheng, B.; Liu, S. W. Fabrication and characterization of Ag-TiO2 multiphase nanocomposite thin films with enhanced photocatalytic activity [J]. Applied Catalysis B:Environmental.2005,60 (3-4):211-221.
    [114]Rengaraj, S.; Li, X. Z. Enhanced Photocatalytic activity of TiO2 by doping with Ag for degradation of 2,4,6-trichlorophenol in aqueous suspension [J]. Journal of Molecular Catalysis A:Chemical,2006,243 (1):60-67.
    [115]Wang, C. M.; Heller, A.; Gerischer, H. Palladium catalysis of O2 reduction by electrons accumulated on TiO2 particles during photoassisted oxidation of organic compounds [J]. Journal of the American Chemical Society,1992,114 (13):5230-5234.
    [116]Macak, J. M.; Barczuk, P. J.; Tsuchiya, H.; Nowakowska, M. Z.; Ghicov, A.; Chojak, M.; Bauer, S.; Virtanen, S.; Kulesza, P. J.; Schmuki, P. Self-Organized nanotobular TiO2 matrix as support for dispersed Pt/Ru nanoparticles:Enhancement of the electrocatalytic oxidation of methanol [J]. Electrochemistry Communications,2005,7 (12):1417-1422.
    [117]Berko, A.; Biro, T.; Solymosi, F. Formation and migration of carbon produced in the dissociation of CO on Rh/TiO2(110)-(1*2) model catalyst:a scanning tunneling microscopy study [J]. The Journal of Physical Chemistry B,2000,104 (11): 2506-2510.
    [118]Wu, T. X.; Liu, G. M.; Zhao, J. C.; Hidaka, H.; Serpone, N. Photoassisted degradation of dye pollutants V.self-photosensitized oxidative transformation of rhodamine B under visible light irradiation in aqueous TiO2 dispersions [J]. The Journal of Physical Chemistry B,1998,102 (30):5845-5851.
    [119]Kim, S. S.; Yum, J. H.; Sung, Y. E. Improved Performance of a dye-sensitized solar cell using a TiO2/ZnO/EosinY electrode [J]. Solar Energy Materials & Solar Cells, 2003,79 (4):495-505.
    [120]Amao, Y.; Yamad, Y.; Aoki, K. Preparation and Properties of dye-sensitized solar cell using chlorophyll derivative immobilized TiO2 film electrode [J]. Journal of Photochemistry and Photobiology A:Chemistry,2004,164 (1-3):47-51.
    [121]Nazeeruddin, M. K.; Splivallo, R.; Liska, P.; Comte, P.; Gratzel, M. A swift dye uptake procedure for dye sensitized solar cells [J]. Chemical Communications,2003,12: 1456-1457.
    [122]Ekstro, G. N.; McQuillan A. J. In situ infrared spectroscopy of glyoxylic acid adsorption and photocatalysis on TiO2 in aqueous solution [J]. The Journal of Physical Chemistry B,1999,103:10562-10565.
    [123]El-Maazawi, M.; Finken, A. N.; Nair, A. B.; Grassiany, V. H. Adsorption and photocatalytic oxidation of acetone on TiO2:an in situ transmission FT-IR study [J]. Journal of Catalysis,2000,191:138-146.
    [124]Sato, S.; Ueda, K.; Kawasaki, Y.; Nakamura, R. In situ IR observation of surface species during the photocatalytic decomposition of acetic acid over TiO2 films [J]. The Journal of Physical Chemistry B,2002,106:9054-9058.
    [125]Yu, Z.; Chuang, S. S.C.In situ IR study of adsorbed species and photogenerated electrons during photocatalytic oxidation of ethanol on TiO2 [J]. Journal of Catalysis, 2007,246:118-126.
    [126]Ho, C.; Shieh, C.; Tseng, C.; Chen, Y.; Lin, J. Decomposition pathways of glycolic acid on titanium dioxide [J]. Journal of Catalysis,2009,261:150-157.
    [127]Almeida, A. R.; Moulijn, J. A.; Mul, G. In situ ATR-FTIR study on the selective photo-oxidation of cyclohexane over anatase TiO2 [J]. The Journal of Physical Chemistry C,2008,112:1552-1561.
    [128]Kang, M.; Lee, J. H.; Lee, S.; Chung, C.; Yoon, K. J.; Ogino, K.; Miyata, S.; Choung, S. Preparation of TiO2 film by the MOCVD method and analysis for decomposition of trichloroethylene using in situ FT-IR spectroscopy [J]. Journal of Molecular Catalysis A:Chemical,2003,193:273-283.
    [129]Tseng, C.; Chen, Y.; Wang, S.; Peng, Z.; Lin, J.2-Ethanolamine on TiO2 investigated by in situ infrared spectroscopy. Adsorption, photochemistry, and its interaction with CO2 [J]. The Journal of Physical Chemistry C,2010,114:11835-11843.
    [130]Roddick-Lanzilotta, A. D.; McQuillan, A. J. An in situ infrared spectroscopic investigation of lysine peptide and polylysine adsorption to TiO2 from aqueous solutions [J]. Journal of Colloid and Interface Science,1999,217:194-202.
    [131]Nakamura, R.; Ueda, K.; Sato, S. In situ observation of the photoenhanced adsorption of water on TiO2 films by surface-enhanced IR absorption spectroscopy [J]. Langmuir, 2001,17 (8):2298-2300.
    [132]Nakamura, R.; Imanishi, A.; Murakoshi, K.; Nakato, Y. In situ FTIR studies of primary intermediates of photocatalytic reactions on nanocrystalline TiO2 films in contact with aqueous solutions [J]. Journal of the American Chemical Society,2003,125: 7443-7450.
    [133]Nakamura, R.; Nakato, Y.; Primary intermediates of oxygen photoevolution reaction on TiO2 (rutile) particles, revealed by in situ FTIR absorption and photoluminescence measurements [J]. Journal of the American Chemical Society,2004,126:1290-1298.
    [134]Dolamic, I.; Biirgi, T.; Photocatalysis of dicarboxylic acids over TiO2:An in situ ATR-IR study [J]. Journal of Catalysis,2007,248:268-276.
    [135]Yu. Z.; Chuang, S. S. C. Probing methylene blue photocatalytic degradation by adsorbed ethanol with in situ IR [J]. The Journal of Physical Chemistry C,2007,111: 13813-13820.
    [136]Kataoka, S.; Lee, E.; Tejedor-Tejedor, M. I.; Anderson, M. A. Photocatalytic degradation of hydrogen sulfide and in situ FT-IR analysis of reaction products on surface of TiO2 [J]. Applied Catalysis B:Environmental,2005,61:159-163.
    [137]Mul, G.; Zwijnenburg, A.; Linden, B.; Makkee, M.; Moulijn, J. A. Stability and selectivity of Au/TiO2 and Au/TiO2/SiO2 catalysts in propene epoxidation:An in situ FT-IR study [J]. Journal of Catalysis,2001,201:128-137.
    [138]Kim, M. R.; Woo, S. I. Poisoning effect of SO2 on the catalytic activity of Au/TiO2 investigated with XPS and in situ FT-IR [J]. Applied Catalysis A:General,2006,299: 52-57.
    [139]Chen, T.; Feng, Z.; Wu, G.; Shi, J.; Ma, G.; Ying, P.; Li, C. Mechanistic studies of photocatalytic reaction of methanol for hydrogen production on Pt/TiO2 by in situ fourier transform IR and time-resolved IR spectroscopy [J]. The Journal of Physical Chemistry C,2007,111:8005-8014.
    [140]Chen, T.; Wu, G.; Feng, Z.; Hu, G.; Su, W.; Ying, P.; Li C. In situ FT-IR study of photocatalytic decomposition of formic acid to hydrogen on Pt/TiO2 catalyst [J]. Chinese Journal of Catalysis,2008,29 (2):105-107.
    [141]Panagiotopoulou, P.; Kondarides, D.I.; Verykios, X. E. Mechanistic study of the selective methanation of CO over Ru/TiO2 catalyst:identification of active surface species and reaction pathways [J]. The Journal of Physical Chemistry C,2011,115: 1220-1230.
    [142]Bikondoa, O.; Pang, C. L.; Ithnin, R.; Muryn, C. A.; Onishi, H.; Thornton, G. Direct visualization of defect-mediated dissociation of water on TiO2(110) [J]. Nature materials,2006,5:189-192.
    [143]Du, Y.; Deskins, N. A.; Zhang, Z.; Dohnalek, Z.; Dupuis, M.; Lyubinetsky, I. Two pathways for water interaction with oxygen adatoms on TiO2(110) [J]. Physical Review Letters,2009,102:096102.
    [144]Tekiel, A.; Prauzner-Bechcicki. J. S.; Godlewski, S.; Budzioch, J.; Szymonski, M. Self-assembly of terephthalic acid on rutile TiO2(110):toward chemically functionalized metal oxide surfaces [J]. The Journal of Physical Chemistry C,2008, 112(33):12606-12609.
    [145]Prauzner-Bechcicki, J. S.; Godlewski, S.; Tekiel, A.; Cyganik, P.; Budzioch, J.; Szymonski, M. High-resolution STM studies of terephthalic acid molecules on rutile TiO2(110)-(1×1) surfaces [J]. The Journal of Physical Chemistry C,2009,113: 9309-9315.
    [146]Rahe, P.; Nimmrich, M.; Nefedov, A.; Naboka, M.; Woll, C.; Kuhnle A. Transition of molecule orientation during adsorption of terephthalic acid on rutile TiO2(110) [J]. The Journal of Physical Chemistry C,2009,113:17471-17478.
    [147]Potapenko, D. V.; Choi, N. J.; Osgood, R. M. Adsorption geometry of anthracene and 4-bromobiphenyl on TiO2(110) surfaces [J]. The Journal of Physical Chemistry C, 2010,114:19419-19424.
    [148]Tao, J.; Luttrell, T.; Bylsma, J.; Batzill M. Adsorption of acetic acid on rutile TiO2(110) vs (011)-2 X 1 Surfaces [J]. The Journal of Physical Chemistry C,2011,115: 3434-3442.
    [149]He, Y.; Tilocca, A.; Dulub, O.; Selloni, A.; Diebold, U. Local ordering and electronic signatures of submonolayer water on anatase TiO2(101) [J]. Nature Maternials,2009,8: 585-589.
    [150]Aschauer, U.; He, Y.; Cheng, H.; Li, S.; Diebold, U.; Selloni, A. Influence of subsurface defects on the surface reactivity of TiO2:water on anatase (101) [J]. The Journal of Physical Chemistry C,2010,114:1278-1284.
    [151]Sakai, N.; Fujishima, A.; Watanabe, T.; Hashimoto, K. Enhancement of the photoinduced hydrophilic conversion rate of TiO2 film electrode surfaces by anodic polarization [J]. The Journal of Physical Chemistry B,2001,105:3023-3026.
    [152]Nakamura, R.; Okamura, T.; Ohashi, N.; Imanishi, A.; Nakato, Y. Molecular mechanisms of photoinduced oxygen evolution, PL emission, and surface roughening at atomically smooth (110) and (100) n-TiO2 (rutile) surfaces in aqueous acidic solutions [J]. Journal of the American Chemical Society,2005,127:12975-12983.
    [153]Imanishi, A.; Okamura, T.; Ohashi, N.; Nakamura, R.; Nakato, Y. Mechanism of water photooxidation reaction at atomically flat TiO2 (rutile) (110) and (100) surfaces: dependence on solution pH [J]. Journal of the American Chemical Society,2007,129: 11569-11578.
    [154]Fleming, G. J.; Idriss, H. Probing the reaction pathways of DL-proline on TiO2 (001) single crystal surfaces [J]. Langmuir,2004,20:7540-7546.
    [155]Cao, Y.; Yi, L.; Huang, L.; Hou, Y.; Lu, Y Mechanism and pathways of chlorfenapyr photocatalytic degradation in aqueous suspension of TiO2 [J]. Environmental Science & Technology,2006,40:3373-3377.
    [156]Doh, S. J.; Kim, C.; Lee, S. G.; Lee, S. J.; Kim, H. Development of photocatalytic TiO2 nanofibers by electrospinning and its application to degradation of dye pollutants [J]. Journal of Hazardous Materials,2008,154:118-127.
    [157]Caruso, R. A.; Schattka, J. H.; Greiner, A. Titanium dioxide tubes from sob±gel coating of electrospun polymer fibers [J]. Advanced Materials,2001,13 (20):1577-1579.
    [158]Zhan, S.; Chen, D.; Jiao, X.; Tao, C. Long TiO2 hollow fibers with mesoporous walls: sol-gel combined electrospun fabrication and photocatalytic properties [J]. The Journal of Physical Chemistry B,2006,110:11199-11204.
    [159]Kim, G. M.; Lee, S. M.; Michler, G. H.; Roggendorf, H.; Gosele, U.; Knez, M. Nanostructured pure anatase titania tubes replicated from electrospun polymer fiber templates by atomic layer deposition [J]. Chemistry of Materials,2008,20:3085-3091.
    [160]Lee, J. A.; Krogman, K. C.; Ma, M.; Hill, R. M.; Hammond, P. T.; Rutledge, G. C. Highly reactive multilayer-assembled TiO2 coating on electrospun polymer nanofibers [J]. Advanced Materials,2009,21:1252-1256.
    [161]Li, D.; Xia, Y. Fabrication of titania nanofibers by electrospinning [J]. Nano Letters, 2003,3 (4):555-560.
    [162]Ding, B.; Kim, C. K.; Kim, H. Y.; Seo, M. K.; Park, S. J. Titanium dioxide nanofibers prepared by using electrospinning method [J]. Fibers and Polymers,2004,5 (2): 105-109.
    [163]Kumar, A.; Jose, R.; Fujihara, K.; Wang, J.; Ramakrishna, S. Structural and optical properties of electrospun TiO2 nanofibers [J]. Chemistry of Materials,2007,19: 6536-6542.
    [164]Rinaldi, M.; Ruggieri, F.; Lozzi, L.; Santucci, S. Well-aligned TiO2 nanofibers grown by near-field-electrospinning [J]. Journal of Vacuum Science & Technology B,2009, 27(4):1829-1833.
    [165]Alves, A. K.; Berutti, F. A.; Clemens, F. J.; Graule, T.; Bergmann, C. P. Photocatalytic activity of titania fibers obtained by electrospinning [J]. Materials Research Bulletin, 2009,44:312-317.
    [166]Li, H.; Zhang, W.; Li, B.; Panw, W. Diameter-dependent photocatalytic activity of electrospun TiO2 nanofiber [J]. Journal of the American Ceramic Society,2010,93 (9): 2503-2506.
    [167]Chuangchote, S.; Jitputti, J.; Sagawa, T.; Yoshikawa, S. Photocatalytic activity for hydrogen evolution of electrospun TiO2 nanofibers [J]. ACS Applied Materials & Interfaces,2009,1 (5):1140-1143.
    [168]Song, M. Y.; Kim, D. K.; Ihn, K. J.; Jo, S. M.; Kim, D. Y. Electrospun TiO2 electrodes for dye-sensitized solar cells [J]. Nanotechnology,2004,15:1861-1865.
    [169]Mukherjee, K.; Teng, T. H.; Jose, R.; Ramakrishna, S. Electron transport in electrospun TiO2 nanofiber dye-sensitized solar cells [J]. Applied Physics Letters,2009,95: 012101.
    [170]Archana, P. S.; Jose, R.; Vijila, C.; Ramakrishna, S. Improved electron diffusion coefficient in electrospun TiO2 nanowires [J]. The Journal of Physical Chemistry C, 2009,113:21538-21542.
    [171]Sreekumaran, N.; Yang, S.; Zhu, P.; Seeram, R. Rice grain-shaped TiO2 mesostructures by electrospinning for dye-sensitized solar cellsw [J]. Chemical Communications, 2010,46:7421-7423.
    [172]Choi, S. K.; Kim, S.; Lim, S. K.; Park, H. Photocatalytic comparison of TiO2 nanoparticles and electrospun TiO2 nanofibers:effects of mesoporosity and interparticle charge transfer [J]. The Journal of Physical Chemistry C,2010,114: 16475-16480.
    [173]Jabal, J. M. F.; McGarry, L.; Sobczyk, A.; Aston, D. E. Wettability of electrospun poly(vinylpyrrolidone)-titania fiber mats on glass and ITO substrates in aqueous media [J]. ACS Applied Materials & Interfaces,2009,1 (10):2325-2331.
    [174]Lee, S. H.; Tekmen, C.; Sigmund, W. M.; Three-point bending of electrospun TiO2 nanofibers [J]. Materials Science and Engineering A,2005,398:77-81.
    [175]Park, S. J.; Chase, G. G.; Jeong, K. U.; Kim, H. Y. Mechanical properties of titania nanofiber mats fabricated by electrospinning of sol-gel precursor [J]. Journal of Sol-Gel Science and Technology,2010,54:188-194.
    [176]Kim, I. D.; Rothschild, A.; Lee, B. H.; Kim, D. Y.; Jo, S. M.; Tuller, H. L. Ultrasensitive chemiresistors based on electrospun TiO2 nanofibers [J]. Nano Letters, 2006,6 (9):2009-2013.
    [177]Zukalova, M.; Prochazka, J.; Bastl, Z.; Duchoslav, J.; Rubacek, L.; Havlicek, D.; Kavan, L. Facile conversion of electrospun TiO2 into titanium nitride/oxynitride fibers [J]. Chemisty of Materials,2010,22:4045-4055.
    [178]Wang, X. X.; Song, X. M.; Wang, G. Q.; Wang, H. T.; Du, Q. G. Convenient fabrication of carbon-doped titania nanofibres by electrospinning [J]. Micro & Nano Letters,2010,5 (1):42-48.
    [179]Viswanathamurthi, P.; Bhattarai, N.; Kim, C. K.; Kim, H. Y.; Lee, D. R. Ruthenium doped TiO2 fibers by electrospinning [J]. Inorganic Chemistry Communications,2004, 7:679-682.
    [180]Jia, C. W.; Xie, E. Q.; Zhao, J. G.; Duan, H. G. Co-doped anatase TiO2 nanofibers fabricated by electrospinning [J]. Journal of Applied Physics,2007,101:093509.
    [181]Zhao, J.; Jia, C.; Duan, H.; Sun, Z.; Wang, X.; Xie, E. Structural and photoluminescence properties of europium-doped titania nanofibers prepared by electrospinning method [J]. Journal of Alloys and Compounds,2008,455:497-500.
    [182]Mezzi, A.; Kaciulis, S.; Cacciotti, I.; Bianco, A.; Gusmano, G.; Lamastra, F. R.; Fragal, M. E. Structure and composition of electrospun titania nanofibres doped with Eu+[J]. Surface and Interface Analysis,2010,42:572-575.
    [183]Li, Z.; Zhang, H.; Zheng, W.; Wang, W.; Huang, H.; Wang, C.; MacDiarmid, A. G.; Wei, Y. Highly Sensitive and Stable Humidity Nanosensors Based on LiCl Doped TiO2 Electrospun Nanofibers [J]. Journal of the American Chemical Society,2008,130: 5036-5037.
    [184]Dong, G.; Xiao, X.; Chi, Y.; Qian, B.; Liu, X.; Ma, Z.; Ye, S.; Wu, E.; Zeng, H.; Chen, D.; Qiu, J. Polarized luminescence properties of TiO2:Sm3+ microfibers and microbelts prepared by electrospinning [J]. The Journal of Physical Chemistry C,2009,113: 9595-9600.
    [185]Archana, P. S.; Jose, R.; Jin, T. M.; Vijila, C.; Yusoff, M. M.; Ramakrishnaw, S. Structural and electrical properties of Nb-doped anatase TiO2 nanowires by electrospinning [J]. Journal of the American Ceramic Society,2010,93 (12): 4096-4102.
    [186]Zhang, Z.; Shao, C.; Zhang, L.; Li, X.; Liu, Y. Electrospun nanofibers of V-doped TiO2 with high photocatalytic activity [J]. Journal of Colloid and Interface Science,2010, 351:57-62.
    [187]Formo, E.; Lee, E.; Campbell, D.; Xia, Y. Functionalization of electrospun TiO2 nanofibers with Pt nanoparticles and nanowires for catalytic Applications [J]. Nnao Letters.2008,8 (2):668-672.
    [188]Kim, H.; Choi, Y.; Kanuka, N.; Kinoshita, H.; Nishiyama, T.; Usami, T. Preparation of Pt-loaded TiO2 nanofibers by electrospinning and their application for WGS reactions [J]. Applied Catalysis A:General,2009,352:265-270.
    [189]Tang, H.; Yan, F.; Tai, Q.; Chan, H. L. W. The improvement of glucose bioelectrocatalytic properties of platinum electrodes modified with electrospun TiO2 nanofibers [J]. Biosensors and Bioelectronics,2010,25:1646-1651.
    [190]Li, D.; McCann, J. T.; Gratt, M.; Xia, Y. Photocatalytic deposition of gold nanoparticles on electrospun nanofibers of titania [J]. Chemical Physics Letters,2004, 394:387-391.
    [191]Nam, S. H.; Shim, H. S.; Kim, Y. S.; Dar, M. A.; Kim, J. G.; Kim, W. B. Ag or Au nanoparticle-embedded one-dimensional composite TiO2 nanofibers prepared via electrospinning for use in lithium-ion batteries [J]. ACS Applied Materials & Interfaces, 2010,2 (7):2046-2052.
    [192]Pan, C.; Dong,L.; Gu, Z. Z. Surface functionalization of electrospun TiO2 nanofibers by Au sputter coating for photocatalytic applications [J]. International Journal of Applied Ceramic Technology,2010,7 (6):895-901.
    [193]Park, J. Y.; Yun, J. J.; Hwang, C. H.; Lee, I. H. Influence of silver doping on the phase transformation and crystallite growth of electrospun TiO2 nanofibers [J]. Materials Letters,2010,64:2692-2695.
    [194]Ding, B.; Kim, H.; Kim, C.; Khil, M.; Park, S. Morphology and crystalline phase study of electrospun TiO2-SiO2 nanofibres [J]. Nanotechnology,2003,14:532-537.
    [195]Teye-Mensah, R.; Tomer, V.; Kataphinan, W.; Tokash, J. C.; Stojilovic, N.; Chase, G. G.; Evans, E. A.; Ramsier, R. D.; Smith, D. J.; Reneker, D. H. Erbia-modified electrospun titania nanofibres for selective infrared emitters [J]. Journal of Physics:Condensed Matter,2004,16:7557-7564.
    [196]Ostermann, R.; Li, D.; Yin, Y.; McCann, J. T.; Xia, Y. V2O5 nanorods on TiO2 nanofibers:A new class of hierarchical nanostructures enabled by electrospinning and calcinations [J]. Nano Letters,2006,6 (6):1297-1302.
    [197]Liu, Z.; Sun, D. D.; Guo, P.; Leckie, J. O. An efficient bicomponent TiO2/SnO2 nanofiber photocatalyst fabricated by electrospinning with a side-by-side dual spinneret method [J]. Nano Letters,2007,7 (4):1081-1085.
    [198]Wang, C.; Shao, C.; Zhang, X.; Liu, Y. SnO2 nanostructures-TiO2 nanofibers heterostructures:controlled fabrication and high photocatalytic properties [J]. Inorganic Chemistry,2009,48:7261-7268.
    [199]Zhang, R.; Wu, H.; Lin, D.; Panw, W. Photocatalytic and magnetic properties of the Fe-TiO2/SnO2 nanofiber via electrospinning [J]. Journal of the American Ceramic Society,2010,93 (3):605-608.
    [200]Aryal, S.; Kim, C. K.; Kim, K. W.; Khil, M. S.; Kim, H. Y Multi-walled carbon nanotubes/TiO2 composite nanofiber by electrospinning [J]. Materials Science and Engineering C,2008,28:75-79.
    [201]Zhang. L.; Chandrasekar, R.; Howe, J. Y.; West, M. K.; Hedin, N. E.; Arbegast, W. J.; Fong, H. A metal matrix composite prepared from electrospun TiO2 nanofibers and an A1 1100 alloy via friction stir processing [J]. ACS Applied Materials & Interfaces, 2009,1(5):987-991.
    [202]Widiyandari, H.; Munir, M. M.; Iskandar, F.; Okuyama, K. Morphology-controlled synthesis of chromia-titania nanofibers via electrospinning followed by annealing [J]. Materials Chemistry and Physics,2009,116:169-174.
    [203]Cao, H.; Zhu, Y.; Tan, X.; Kang, H.; Yang, X.; Li, C. Fabrication of TiO2/CdS composite fiber via an electrospinning method [J]. New Journal of Chemistry,2010,34: 1116-1119.
    [204]Lotus, A. F.; Feaver, R. K.; Britton, L. A.; Bender, E. T.; Perhay, D. A.; Stojilovic, N.; Ramsier, R. D.; Chase, G. G. Characterization of TiO2-Al2O3 composite fibers formed by electrospinning a sol-gel and polymer mixture [J]. Materials Science and Engineering B,2010,167:55-59.
    [205]Su, C.; Shao, C.; Liu, Y. Synthesis of heteroarchitectures of PbS nanostructures well-erected on electrospun TiO2 nanofibers [J]. Journal of Colloid and Interface Science,2010,346:324-329.
    [206]Kanjwal, M. A.; Barakat, N. A. M.; Sheikh, F. A.; Kim, H. Y. Electronic characterization and photocatalytic properties of TiO2/CdO electrospun nanofibers [J]. Journal of Materials Science,2010,45:1272-1279.
    [207]Wang, H. Y.; Yang, Y.; Li, X.; Li, L. J.; Wang, C. Preparation and characterization of porous TiO2/ZnO composite nanofibers via electrospinning [J]. Chinese Chemical Letters,2010,21:1119-1123.
    [208]Fragal, M. E.; Cacciotti, I.; Aleeva, Y.; Nigro, R. L.; Bianco, A.; Malandrino, G.; Spinella, C.; Pezzotti, G.; Gusmano, G. Core-shell Zn-doped TiO2-ZnO nanofibers fabricated via a combination of electrospinning and metal-organic chemical vapour deposition [J]. CrystEngComm,2010,12:3858-3865.
    [209]Kanjwal, M. A.; Barakat, N. A. M.; Sheikh, F. A.; Park, S. J.; Kim, H. Y. Photocatalytic activity of ZnO-TiO2 hierarchical nanostructure prepared by combined electrospinning and hydrothermal techniques [J]. Macromolecular Research,2010,18 (3):233-240.
    [210]Liu, R.; Ye. H.; Xiong, X.; Liu, H. Fabrication of TiO2/ZnO composite nanofibers by electrospinning and their photocatalytic property [J]. Materials Chemistry and Physics, 2010,121:432-439.
    [211]Wu, B.; Guo, C.; Zheng, N.; Xie, Z.; Stucky, G. D. Nonaqueous production of nanostructured anatase with high-energy facets [J]. Journal of the American Chemical Society,2008,130:17563-17567.
    [212]Dinh, C. T.; Nguyen, T. D.; Kleitz, F.; Do, T. O. Shape-controlled synthesis of highly crystalline titania nanocrystals [J]. ACS Nano,3 (11):3737-3743.
    [213]Yang, H. G.; Sun, C. H.; Qiao, S. Z.; Zou, J.; Liu, G.; Smith, S. C.; Cheng, H. M.; Lu, G. Q. Anatase TiO2 single crystals with a large percentage of reactive facets [J]. Nature, 2008,453:638-641.
    [214]Selloni, A. Anatase shows its reactive side [J]. Nature Materials,2008,7:614-615.
    [215]Yang, H. G.; Liu, G.; Qiao, S. Z.; Sun, C. H.; Jin, Y. G.; Smith, S. C.; Zou, J.; Cheng, H. M.; Lu, G. Q. Solvothermal synthesis and photoreactivity of anatase TiO2 nanosheets with dominant{001} facets [J]. Journal of the American Chemical Society,2009,131: 4078-4083.
    [216]Zhang, D.; Li, G.; Yang, X.; Yu, J. C. A micrometer-size TiO2 single-crystal photocatalyst with remarkable 80% level of reactive facets [J]. Chemical Communications,2009,4381-4383.
    [217]Zhang, D.; Li, G.; Wang, H.; Chan, K. M.; Yu, J. C. Biocompatible anatase single-crystal photocatalysts with tunable percentage of reactive facets [J]. Crystal Growth & Design,2010,10(3):1130-1137.
    [218]Ma, X. Y.; Chen, Z. G.; Hartono, S. B.; Jiang, H. B.; Zou, J.; Qiao, S. Z.; Yang, H. G. Fabrication of uniform anatase TiO2 particles exposed by{001} facetsw [J]. Chemical Communications,2010,46:6608-6610.
    [219]Liu, M.; Piao, L.; Lu, W.; Ju, S.; Zhao, L.; Zhou, C.; Lia, H.; Wang, W. Flower-like TiO2 nanostructures with exposed{001} facets:Facile synthesis and enhanced photocatalysis [J]. Nanoscale,2010,2:1115-1117.
    [220]Wang, X.; Huang, B.; Wang, Z.; Qin, X.; Zhang, X.; Dai, Y.; Whangbo, M. H. Synthesis of anatase TiO2 tubular structures microcrystallites with a high percentage of {001} facets by a simple one-step hydrothermal template process [J]. Chemistry-A European Journal,2010,16:7106-7109.
    [221]Feng, J.; Yin, M.; Wang, Z.; Yan, S.; Wan, L.; Li, Z.; Zou, Z.; Facile synthesis of anatase TiO2 mesocrystal sheets with dominant{001} facets based on topochemical conversion [J]. CrystEngComm,2010,12:3425-3429.
    [222]Liu, G.; Sun, C.; Yang, H. G.; Smith, S. C.; Wang, L.; Lu, G. Q.; Cheng, H. M. Nanosized anatase TiO2 single crystals for enhanced photocatalytic activity [J]. Chemical Communications.2010,46:755-757.
    [223]Alivov, Y.; Fan, Z. Y. A method for fabrication of pyramid-shaped TiO2 nanoparticles with a high{001} facet percentage [J]. The Journal of Physical Chemistry C,2009, 113(30):12954-12957.
    [224]Dai, Y.; Cobley, C. M.; Zeng, J.; Sun, Y.; Xia, Y. Synthesis of anatase TiO2 nanocrystals with exposed{001} facets [J]. Nano Letters,2009,9 (6):2455-2459.
    [225]Zheng, Z.; Huang, B.; Qin, X.; Zhang, X.; Dai, Y.; Jiang, M.; Wang, P.; Whangbo, M. H. Highly efficient photocatalyst:TiO2 microspheres produced from TiO2 nanosheets with a high percentage of reactive{001} facets [J]. Chemistry-A European Journal, 2009,15:12576-12579.
    [226]Han, X.; Kuang, Q.; Jin, M.; Xie, Z.; Zheng, L. Synthesis of Titania nanosheets with a high percentage of exposed (001) facets and related photocatalytic properties [J]. Journal of the American Chemical Society,2009,131:3152-3153.
    [227]Xiang, Q.; Lv, K.; Yu, J. Pivotal role of fluorine in enhanced photocatalytic activity of anatase TiO2 nanosheets with dominant (001) facets for the photocatalytic degradation of acetone in air [J]. Applied Catalysis B:Environmental,2010,96:557-564.
    [228]Wang, Z.; Lv, K.; Wang, G.; Deng, K.; Tang, D. Study on the shape control and photocatalytic activity of high-energy anatase titania [J]. Applied Catalysis B: Environmental,2010,100:378-385.
    [229]Liu, S.; Yu, J.; Jaroniec, M. Tunable photocatalytic selectivity of hollow TiO2 microspheres composed of anatase polyhedral with exposed{001} facets [J]. Journal of the American Chemical Society,2010,132:11914-11916.
    [230]Liu, M.; Piao, Li.; Zhao, L.; Ju, S.; Yan, Z.; He, T.; Zhou, C.; Wang, W. Anatase TiO2 single crystals with exposed{001} and{110} facets:facile synthesis and enhanced photocatalysis [J]. Chemical Communications,2010,46:1664-1666.
    [231]Li, J.; Xu, D. Tetragonal faceted-nanorods of anatase TiO2 single crystals with a large percentage of active{100} facets [J]. Chemical Communications,2010,46: 2301-2303.
    [232]Li, J.; Yu, Y.; Chen, Q.; Li, J.; Xu, D. Controllable synthesis of TiO2 single crystals with tunable shapes using ammonium-exchanged titanate nanowires as precursors [J]. Crystal Growth & Design,2010,10 (5):2111-2115.
    [233]Sosnowchik, B. D.; Chiamori, H. C.; Ding, Y.; Ha, J. Y.; Wang, Z. L.; Lin, L. Titanium dioxide nanoswords with highly reactive, photocatalytic facets [J]. Nanotechnology, 2010,21:485601.
    [234]Liu, G.; Yang, H. G.-; Wang, X.; Cheng, L.; Pan, J.; Lu, G. Q.; Cheng, H. M. Visible light responsive nitrogen doped anatase TiO2 sheets with dominant{001} facets derived from TiN [J]. Journal of the American Chemical Society,2009,131: 12868-12869.
    [235]Liu, G.; Yang, H. G.; Wang, X.; Cheng, L.; Lu, H.; Wang, L.; Lu, G Q.; Cheng, H. M. Enhanced photoactivity of oxygen-deficient anatase TiO2 sheets with dominant{001} facets [J]. The Journal of Physical Chemistry C,2009,113:21784-21788.
    [236]Liu, G.; Sun, C.; Smith, S. C.; Wang, L.; Lu, G. Q.; Cheng, H. M. Sulfur doped anatase TiO2 single crystals with a high percentage of{001} facets [J]. Journal of Colloid and Interface Science,2010,349:477-483.
    [237]Yu, J.; Dai, G.; Xiang, Q.; Jaroniec, M. Fabrication and enhanced visible-light photocatalytic activity of carbon self-doped TiO2 sheets with exposed{001} facets [J]. Journal of Materials Chemistry,2011,21:1049-1057.
    [238]Wang, X.; Liu, G.; Wang, L.; Pan, J.; Lu, G. Q.; Cheng, H. M. TiO2 films with oriented anatase{001} facets and their photoelectrochemical behavior as CdS nanoparticle sensitized photoanodes [J]. Journal of Materials Chemistry,2011,21:869-873.
    [239]Liu, X.; Geng, D.; Wang, X.; Ma, S.; Wang, H.; Li, D.; Li, B.; Liu, W.; Zhang, Z. Enhanced photocatalytic activity of Mo-{001}TiO2 core-shell nanoparticles under visible light [J]. Chemical Communications,2010,46:6956-6958.
    [240]Yu, J.; Qi, L.; Jaroniec, M. Hydrogen production by photocatalytic water splitting over Pt/TiO2 nanosheets with exposed (001) facets [J]. The Journal of Physical Chemistry C, 2010,114:13118-13125.
    [241]Chen, J. S.; Tan, Y L.; Li, C. M.; Cheah, Y. L.; Luan, D.; Madhavi, S.; Boey, F. Y. C. Archer, L. A.; Lou, X. W. Constructing hierarchical spheres from large ultrathin anatase TiO2 nanosheets with nearly 100% exposed (001) facets for fast reversible lithium storage [J]. Journal of the American Chemical Society,2010,132:6124-6130.
    [242]Chen, J. S.; Luan, D.; Li, C. M.; Boey, F. Y. C.; Qiao, S.; Lou, X. W.; TiO2 and SnO2@TiO2 hollow spheres assembled from anatase TiO2 nanosheets with enhanced lithium storage properties [J]. Chemical Communications,2010,46:8252-8254.
    [243]Ding, S.; Chen, J. S.; Wang, Z.; Cheah, Y L.; Madhavi, S.; Hu, X.; Lou, X. W. TiO2 hollow spheres with large amount of exposed (001) facets for fast reversible lithium storage [J]. Journal of Materials Chemistry,2011,21:1677-1680.
    [244]Zhang, H.; Han, Y.; Liu, X.; Liu, P.; Yu, H.; Zhang, S.; Yao, X.; Zhao, H. Anatase TiO2 micro-spheres with exposed mirror-like plane{001} facets for high performance dye-sensitized solar cells (DSSCs) [J]. Chemical Communications,2010,46: 8395-8397.
    [245]Yang, W.; Li, J.; Wang, Y.; Zhu, F.; Shi, W.; Wan, F.; Xu, D. A facile synthesis of anatase TiO2 nanosheets-based hierarchical spheres with over 90%{001} facets for dye-sensitized solar cells [J]. Chemical Communications,2011,47:1809-1811.
    [246]Choi, W.; Termin, A.; Hoffmann, M. R. The role of metal ion dopants in quantum-sized TiO2:correlation between photoreactivity and charge carrier recombination dynamics [J]. The Journal of Physical Chemistry,1994,98:13669-13679.
    [247]Wang, Y.; Cheng, H.; Hao, Y.; Ma, J.; LI, W.; Cai, S. Preparation, characterization and photoelectrochemical behaviors of Fe(Ⅲ)-doped TiO2 nanoparticles [J]. Journal of Materials Science,1999,34:3721-3729.
    [248]Wang, Y.; Cheng, H.; Hao, Y.; Ma, J.; Li, W.; Cai, S. Photoelectrochemical properties of metal-ion-doped TiO2 nanocrystalline electrodes [J]. Thin Solid Films,1999,349: 120-125.
    [249]Takeuchi, M.; Yamashita, H.; Matsuoka, M.; Anpo, M.; Hirao, T.; Itoh, N.; Iwamoto, N. Photocatalytic decomposition of NO under visible light irradiation on the Cr-ion-implanted TiO2 thin film photocatalyst [J]. Catalysis Letters,2000,67: 135-137.
    [250]Anpo, M. Utilization of TiO2 photocatalysts in green chemistry [J]. Pure and Applied Chemistry,72 (7):1265-1270.
    [251]Anpo, M. Use of visible light. Second-generation titanium oxide photocatalysts prepared by the application of an advanced metal ion-implantation method [J]. Pure and Applied Chemistry,72 (9):1787-1792.
    [252]Anpo, M.; Kishiguchi, S.; Ichihashi, Y.; Takeuchi, M.; Yamashita, H.; Ikeue, K.; Morin, B.; Davidson, A.; Che, M. The design and development of second-generation titanium oxide photocatalysts able to operate under visible light irradiation by applying a metal ion-implantation method [J]. Research on Chemical Intermediates,2001,27 (4-5): 459-467.
    [253]Anpo, M.; Takeuchi, M. Design and development of second-generation titanium oxide photocatalysts to better our environment-approaches in realizing the use of visible light [J]. International Journal of Photoenergy,2001,3:89-94.
    [254]Anpo, M.; Takeuchi, M. The design and development of highly reactive titanium oxide photocatalysts operating under visible light irradiation [J]. Journal of Catalysis,2003, 216:505-516.
    [255]Gracia, F.; Holgado. J. P.; Caballero, A.; Gonzalez-Elipe, A. R. Structural, optical, and photoelectrochemical properties of Mn+-TiO2 model thin film photocatalysts [J]. The Journal of Physical Chemistry C,2004,108:17466-17476.
    [256]Li, F. B.; Li, X. Z.; Hou, M. F. Photocatalytic degradation of 2-mercaptobenzothiazole in aqueous La3+-TiO2 suspension for odor control [J]. Applied Catalysis B: Environmental,2004,48:185-194.
    [257]Bessekhouad, Y.; Robert, D.; Weber, J. V.; Chaoui, N. Effect of alkaline-doped TiO2 on photocatalytic efficiency [J]. Journal of Photochemistry and Photobiology A: Chemistry,2004,167:49-57.
    [258]Nagaveni, K.; Hegde, M. S.; Madras, G. Structure and photocatalytic activity of Ti1-xMxO2+δ(M=W, V, Ce, Zr, Fe, and Cu) synthesized by solution combustion method [J]. The Journal of Physical Chemistry C,2004,108:20204-20212.
    [259]Cao, Y.; Yang, W.; Zhang, W.; Liu, G.; Yue, P. Improved photocatalytic activity of Sn4+ doped TiO2 nanoparticulate films prepared by plasma-enhanced chemical vapor deposition [J]. New Journal of Chemistry,2004,28:218-222.
    [260]Paola, A. D.; Marc, G.; Palmisano, L.; Schiavello, M.; Uosaki, K.; Ikeda, S.; Ohtani, B. Preparation of polycrystalline TiO2 photocatalysts impregnated with various transition metal ions:characterization and photocatalytic activity for the degradation of 4-Nitrophenol [J]. The Journal of Physical Chemistry C,2002,106:637-645.
    [261]Yang, Y.; Li, X.; Chen, J.; Wang, L. Effect of doping mode on the photocatalytic activities of Mo/TiO2 [J]. Journal of Photochemistry and Photobiology A:Chemistry, 2004,163:517-522.
    [262]Devi, L. G.; Murthy, B. N. Characterization of Mo doped TiO2 and its enhanced photo catalytic activity under visible light [J]. Catalysis Letters,2008,125:320-330.
    [263]Haber, J.; Nowak, P.; Zurek, P. Charge transfer in photocatalytic systems:V and Mo doped TiO2/Ti electrodes [J]. Catalysis Letters,2008,126:43-48.
    [264]Devi, L. G.; Kumar, S. G.; Murthy, B. N.; Kottam, N. Influence of Mn2T and Mo6" dopants on the phase transformations of TiO2 lattice and its photo catalytic activity under solar illumination [J]. Catalysis Communications,2009,10:794-798.
    [265]Asahi, R.; Morikawa, T.; Ohwaki, T.; Aoki, K.; Taga, Y. Visible-light photocatalysis in nitrogen-doped titanium oxides [J]. Science,2001,293:269-271.
    [266]Burda, C.; Lou, Y.; Chen, X.; Samia, A. C. S., Stout, J.; Gole, J. L. Enhanced nitrogen doping in TiO2 nanoparticles [J]. Nano Letters,2003,3 (8):1049-1051.
    [267]lrie, H.; Watanabe, Y.; Hashimoto, K. Nitrogen-concentration dependence on photocatalytic activity of TiO2-xNx powders [J]. The Journal of Physical Chemistry B, 2003,107:5483-5486.
    [268]Gole, J. L.; Stout, J. D.; Burda, C.; Lou, Y.; Chen, X. Highly efficient formation of visible light tunable TiO2-xNx photocatalysts and their transformation at the nanoscale [J]. The Journal of Physical Chemistry B,2004,108:1230-1240.
    [269]Chen, X. B.; Lou, Y. B.; Samia, A. C. S.; Burda, C.; Gole, J. L. Formation of oxynitride as the photocatalytic enhancing site in nitrogen-doped titania nanocatalysts: Comparison to a commercial nanopowder [J]. Advanced Functional Materials,2005, 15(1):41-49.
    [270]Sakthivel, S.; Janczarek, M.; Kisch, H. Visible light activity and photoelectrochemical properties of nitrogen-doped TiO2 [J]. The Journal of Physical Chemistry B,2004,108: 19384-19387.
    [271]Ohno, T.; Akiyoshi, M.; Umebayashi, T.; Asai, K.; Mitsui, T.; Matsumura, M. Preparation of S-doped TiO2 photocatalysts and their photocatalytic activities under visible light [J]. Applied Catalysis A:General,2004,265:115-121.
    [272]Yu, J. C.; Yu, J.; Ho, W.; Jiang, Z.; Zhang, L. Effects of F-doping on the photocatalytic activity and microstructures of nanocrystalline TiO2 powders [J]. Chemistry of Materials,2002,14:3808-3816.
    [273]Yu, J. G.; Yu, J. C.; Cheng, B.; Hark, S. K.; Iu, K. The effect of F-doping and temperature on the structural and textural evolution of mesoporous TiO2 powders [J]. Journal of Solid State Chemistry,2003,174:372-380.
    [274]Khan, S. U. M.; Shahry, M. A.; lngler Jr, W. B. Efficient photochemical water splitting by a chemically modified n-TiO2 [J]. Science,2002,297:2243-2245.
    [275]Irie, H.; Watanabe, Y.; Hashimoto, K. Carbon-doped anatase TiO2 powders as a visible-light sensitive photocatalyst [J]. Chemistry Letters,2003,32 (8):772-773.
    [276]Choi, Y.; Umenayashi, T.; Yoshikawa, M. Fabrication and characterization of C-doped anatase TiO2 photocatalysts [J]. Journal of Materials Science,2004,39:1837-1839.
    [277]Shen, M.; Wu, Z.; Huang, H.; Du, Y.; Zou, Z.; Yang, P. Carbon-doped anatase TiO2 obtained from TiC for photocatalysis under visible light irradiation [J]. Materials Letters,2006,60:693-697.
    [278]Park, J. H.; Kim, S.; Bard, A. J. Novel carbon-doped TiO2 nanotube arrays with high aspect ratios for efficient solar water splitting [J]. Nano Letters,2006,6(1):24-28.
    [279]Ren, W.; Ai, Z.; Jia, F.; Zhang, L.; Fan, X.; Zou, Z. Low temperature preparation and visible light photocatalytic activity of mesoporous carbon-doped crystalline TiO2[J]. Applied Catalysis B:Environmental,2007,69:138-144.
    [280]Wu, G.; Nishikawa, T.; Ohtani, B.; Chen, A. Synthesis and characterization of carbon-doped TiO2 nanostructures with enhanced visible light response [J]. Chemistry of Materials,2007,19 (18),4530-4537.
    [281]Wang, X.; Meng, S.; Zhang, X.; Wang, H.; Zhong, W.; Du, Q. Multi-type carbon doping of TiO2 photocatalyst [J]. Chemical Physics Letters,2007,444:292-296.
    [282]Kang,I. C.; Zhang, Q.; Yin, S.; Sato, T.; Saito, F. Preparation of a visible sensitive carbon doped TiO2 photo-catalyst by grinding TiO2 with ethanol and heating treatment [J]. Applied Catalysis B:Environmental,2008,80:81-87.
    [283]He, D.; Meng, X.; Tao, Y.; Zhang, Lin.; Xiao, F. Synthesis of carbon-doped TiO2 using porous resin and its excellent photocatalytic properties [J]. Chinese Journal of Catalysis,2009,30 (2):83-85.
    [284]Lee, Y. F.; Chang, K. H.; Hu, C. C.; Lin, K. M. Synthesis of activated carbon-surrounded and carbon-doped anatase TiO2 nanocomposites [J]. Journal of Materials Chemistry,2010,20:5682-5688.
    [285]Lee, C. J.; Kim, D. W.; Lee, T. J. Choi, Y. C.; Park, Y. S.; Lee, Y. H.; Choi, W. B. Lee, N. S.; Park, G. S.; Kim, J. M. Synthesis of aligned carbon nanotubes using thermal chemical vapor deposition [J]. Chemical Physics Letters,1999,312 (5-6):461-468.
    [286]Che, G.; Lakshmi, B. B.; Fisher, E. R. Carbon nanotubule membranes for electrochemical energy storage and production [J]. Nature,1998,393:346-349.
    [287]Fan, S.; Chapline, M. G.; Franklin, N. R.; Tombler, T. W.; Cassell, A. M.; Dai, H. Self-Oriented regular arrays of carbon nanotubes and their field emission properties [J]. Science,1999,283:512-514.
    [288]Bower, C.; Zhu, W.; Jin, S. Plasma-induced alignment of carbon nanotubes [J]. Applied Physics Letters,2000,77(6):830-832.
    [289]Chhowalla, M.; Teo, K. B. K.; Ducati, C. Growth process conditions of vertically aligned carbon nanotubes using plasma enhanced chemical vapor deposition [J]. Journal of Applied Physics,2001,90(10):5308-5317.
    [290]Yang, Q.; Xiao, C.; Chen, W.; Singh, A. K.; Asai, T.; Hirose, A. Growth mechanism and orientation control of well-aligned carbon nanotubes [J]. Diamond and Related Materials,2003,129(9):1482-1487.
    [291]Srivastava, A.; Srivastava, A. K.; Srivastava, O. N. Curious aligned growth of carbon nanotubes under applied electric field [J]. Carbon,2001,39(2):201-206.
    [292]Pal, A. K.; Roy, R. K.; Mandal, S. K.; Gupta, S.; Deb, B. Electrodeposited carbon nanotube thin films [J]. Thin Solid Films,2005,476(2):288-294.
    [293]Lee, K. H.; Cho, J. M. Control of growth orientation for carbon nanotubes [J]. Applied Physics Letter,2002,82(3):448-450.
    [294]Kaneko, T. Matsuoka, H.; Hirata, T.; Hatakeyama. R.; Tohji, K. Effects of strong magnetic field on carbon nanotube formation using rf glow-discharge plasma [J]. Thin Solid Films,2006,506-507:259-262.
    [295]Kim, C. D.Jang, H. S.; Lee, H. R.; Kim, D. H. Low temperature growth of carbon nanotubes in a magnetic field [J]. Materials Letters,2007,61(10):2075-2078.
    [296]Vander Wai, R. L.; Ticich, T. M.; Curtis, V. E. Diffusion flame synthesis of single-walled carbon nanotubes [J]. Chemical Physics Letters,2000,323(3-4): 217-223.
    [297]Yuan, L. M.; Saito, K.; Pan, C. Williamsc, F. A.; Gordon, A. S. Nanotubes from methane flames [J]. Chemical Physics Letters,2001,340(3-4):237-241.
    [298]Li, W. Z.; Zhang, H.; Wang, C. Y.; Zhang, Y.; Xu, L. W.; Zhu, K.; Xie, S. S. Raman characterization of aligned carbon nanotubes produced by thermal decomposition of hydrocarbon vapor [J]. Applied Physics Letters,1997.70 (20):2684-2686.
    [299]Ferrari, A. C.; Robertson, J., Interpretation of Raman spectra of disordered and amorphous carbon [J]. Physical Review B,2000,61 (20):14095-14107.
    [300]Rao, A. M.; Richter, E.; Bandow, S.; Chase, B.; Eklund, P. C.; Williams, K. A.; Fang, S.; Subbaswamy, K. R.; Menon, M.; Thess, A.; Smalley, R. E.; Dresselhaus, G.; Dresselhaus, M. S. Diameter-selective Raman scattering from vibrational modes in carbon nanotubes [J]. Science,1997,275 (5297):187-191.
    [301]Odom, T. W.; Huang, J. L.; Kim, P.; Lieber, C. M. Atomic structure and electronic properties of single-walled carbon nanotubes [J]. Nature,1998,391:62-64.
    [302]Reich, S.; Thomsen, C.; Maultzsch, J. Carbon nanotubes:basic conceptsand physical properties [C]. Germany:Wiley-VCH,2004, Chapter 3.
    [303]Bae, J. C.; Yoon, Y. J.; Lee, S. J.; Song, K. M.; Baik, H. K. Diameter control of single-walled carbon nanotubes by plasma rotating electrode process [J]. Carbon,2002, 40:2905-2911.
    [304]Farhat, S.; La Chapelle, M. L.; Loiseau, A.; Scott, C. D.; Lefrant, S.; Journet, C. Bernier, P. Diameter control of single-walled carbon nanotubes using argon-helium mixture gases [J]. Journal of Chemical Physics,2001,115:6752-6759.
    [305]Kataura, H.; Kumazawa, Y.; Maniwa, Y.; Ohtsukab, Y.; Senb, R.; Suzukib, S.; Achiba, Y. Dameter control of single-walled carbon nanotubes [J]. Carbon,2000,38: 1691-1697.
    [306]Yamada, M.; Kawana, M.; Miyake, M. Synthesis and diameter control of multi-walled carbon nanotubes over gold nanoparticle catalysts [J]. Applied Catalysis A:General, 2006,302:201-207.
    [307]Chai, S. P.; Sharif Zein, S. H.; Mohamed, A. R. The effect of catalyst calcinations temperature on the diameter of carbon nanotubes synthesized by the decomposition of methane [J]. Carbon,2007,45:1535-1541.
    [308]Jeong, G. H.; Suzuki, S.; Kobayashi, Y.; Yamazaki, A.; Yoshimura, H.; Homma, Y. Size control of catalytic nanoparticles by thermal treatment and its application to diameter control of single-walled carbon nanotubes [J]. Applied Physics Letters,2007, 90:043108.
    [309]Willems, I.; Konya, Z.; Colomer, J. F.; Van Tendeloo, G.; Nagaraju, N.; Fonseca, A.; Nagy, J. B. Control of the outer diameter of thin carbon nanotubes synthesized by catalytic decomposition of hydrocarbons [J]. Chemical Physics Letters,2000,317: 71-76.
    [310]Kim, L.; Lee, E.; Cho, S.; Suh, J. S. Diameter control of carbon nanotubes by changing the concentration of catalytic metal ion solutions [J]. Carbon,2005,43:1453-1459.
    [311]Jung, H. Y.; Jung, S. M.; Kim, L.; Suh, J. S. A simple method to control the diameter of carbon nanotubes and the effect of the diameter in field emission [J]. Carbon,2008, 46:969-973.
    [312]Liu, X.; Bigioni, T. P.; Xu, Y.; Cassell, A. M.; Cruden, B. A. Vertically aligned dense carbon nanotube growth with diameter control by block copolymer micelle catalyst templates [J]. The Journal Physical Chemistry B,2006,110:20102-20106.
    [313]Chopra, N.; Kichambare, P. D.; Andrews, R.; Hinds, B. J. Control of multiwalled carbon nanotube diameter by selective growth on the exposed edge of a thin film multilayer structure [J]. Nano Letters,2002,2:1177-1181.
    [314]Inoue, T.; Gunjishima, I.; Okamoto, A. Synthesis of diameter-controlled carbon nanotubes using centrifugally classified nanoparticle catalysts [J]. Carbon,2007,45: 2164-2170.
    [315]Okamoto, A.; Shinohara, H. Control of diameter distribution of single-walled carbon nanotubes using the zeolite-CCVD method at atmospheric pressure [J]. Carbon 2005, 43:431-436.
    [316]Kuo, C. S.; Bai, A.; Huang, C. M.; Li, Y. Y.; Hu, C. C.; Chen, C. C. Diameter control of multiwalled carbon nanotubes using experimental strategies [J]. Carbon,2005,43: 2760-2768.
    [317]Kaatza, F. H.; Siegalb, M. P.; Overmyerb, D. L.; Provenciob, P. P.; Jackson, J. L. Diameter control and emission properties of carbon nanotubes grown using chemical vapor deposition [J]. Materials Science and Engineering:C,2003,23:141-146.
    [318]Barreiro, A.; Kramberger, C.; Rummeli, M. H.; Gruneis, A.; Grimm, D.; Hampel, S.; Gemming, T.; Buchner, B.; Bachtold, A.; Pichler, T. Control of the single-wall carbon nanotube mean diameter in sulphur promoted aerosol-assisted chemical vapour deposition [J]. Carbon,2007,45:55-61.
    [319]Hiraoka, T.; Bandow, S.; Shinohara, H.; Iijima, S. Control on the diameter of single-walled carbon nanotubes by changing the pressure in floating catalyst CVD [J]. Carbon,2006,44:1845-1869.
    [320]Vander Wai, R. L.; Ticich, T. M.; Curtis, V. E. Substrate-support interaction in metal-catalyzed carbon nanofiber growth [J]. Carbon,2001,39:2277-2289.
    [321]Takenaka, S.; Kobayashi, S.; Ogihara, H.; Otsuka, K. Ni/SiO2 catalyst effective for methane decomposition into hydrogen and carbon nanofibers [J]. Journal of Catalysis, 2003,217:79-87.
    [322]Liu, Y.; Fu, Q.; Pan, C. Synthesis of carbon nanotubes on pulse plated Ni nanocrystalline substrate in ethanol flames [J]. Carbon,2005,43:2264-2271.
    [323]Krivoruchko, O. P.; Zaikovskii, V. I. Formation of liquid phase in the carbon-metal system at unusually low temperature [J]. Kinetics and Catalysis,1998,39:561-570.
    [324]Sun, X.; Li, R.; Stansfield, B.; Dodelet, J. P.; Menard, G.; Desilets, Sylvain. Controlled synthesis of pointed carbon nanotubes [J]. Carbon,2007,45:732-737.
    [325]Daoud, W. A.; Xin, J. H. Microstructural evolution of titania nanocrystallites by a hydrothermal treatment:a HRTEM study [J]. Journal of the American Ceramic Society, 2005,88 (2):443-446.
    [326]Ohno, T.; Sarukawa, K.; Tokieda, K.; Matsumura, M. Morphology of a TiO2 photocatalyst (Degussa, P-25) consisting of anatase and rutile Crystalline Phases [J]. Journal of Catalysis,2001,203:82-86.
    [327]Bredow, T. Jug, K. Theory and range of modern semiempirical molecular orbital methods [J]. Theoretical Chemistry Accounts,2005,113:1-14.
    [328]Ahlswede, B. Jug, K. Consistent modifications of SINDO1:Ⅰ. Approximations and parameters [J]. Journal of Computational Chemistry,1999,20:563-571.
    [329]Jug, K.; Geudtner, G.; Homann, T. MSINDO parameterization for third-row main group elements [J]. Journal of Computational Chemistry,2000,21:974-987.
    [330]Bredow, T.; Geudtner, G.; Jug, K. MSINDO parameterization for third-row transition metals [J]. Journal of Computational Chemistry,2001,22:861-887.
    [331]Pongor, G On the application of Saunders' level shifting technique to CMDO/2 calculations [J]. Chemical Physics Letters,1974,24:603-605.
    [332]Csaszar, P.; Pulay, P. Geometry optimization by direct inversion in the iterative subspace. Journal of Molecular Structure:THEOCHEM,1984,114:31-34.
    [333]Yu. Z.; Chuang, S. S. C. Probing methylene blue photocatalytic degradation by adsorbed ethanol with in situ IR [J]. The Journal of Physical Chemistry C,2007,111: 13813-13820.
    [334]Zhang, J.; Pan, C.; Fang, P.; Wei, J.; Xiong. R. Mo+C codoped TiO2 using thermal oxidation for enhancing photocatalytic activity [J]. ACS Applied Materials & Interfaces,2010,2:1173-1176.
    [335]Zhang, Q.; Fan, W.; Gao, L. Anatase TiO2 nanoparticles immobilized on ZnO tetrapods as a highly efficient and easily recyclable photocatalyst [J]. Applied Catalysis B: Environmental,2007,76:168-173.
    [336]Tada, H.; Hattori, A.; Tokihisa, Y.; Imai, K.; Tohge, N.; Ito, S. A patterned-Ti02/Sn02 bilayer type photocatalyst [J]. The Journal Physical Chemistry B,2000,104: 4585-4587.
    [337]Banerjee, S.; Mohapatra, S. K.; Das, P. P.; Misra, M. Synthesis of coupled semiconductor by filling 1D TiO2 nanotubes with CdS [J]. Chemistry of Materials, 2008,20:6784-6791.
    [338]Li, J.; Liu, L.; Yu, Y.; Tang, Y.; Li, H.; Du, F. Preparation of highly photocatalytic active nano-size TiO2-Cu2O particle composites with a novel electrochemical method [J]. Electrochemistry Communications,2004,6:940-943.
    [339]Bessekhouad, Y.; Robert, D.; Weber, J. V. Photocatalytic activity of Cu2O/TiO2, Bi2O3/TiO2 and ZnMn2O4/TiO2 heterojunctions [J]. Catalysis Today,2005,101: 315-321.
    [340]Huang, L.; Peng, E.; Wang, H.; Yu, H.; Li, Z. Preparation and characterization of Cu2O/TiO2 nano-nano heterostructure photocatalysts [J]. Catalysis Communication, 2009,10:1839-1843.
    [341]Xiu, F. R.; Zhang, F. S. Preparation of nano-Cu2O/TiO2 photocatalyst from waste printed circuit boards by electrokinetic process [J]. Journal of Hazardous Materials. 2009,172:1458-1463.
    [342]Han, C.; Li, Z.; Shen, J. Photocatalytic degradation of dodecyl-benzenesulfonate over TiO2-Cu2O under visible irradiation [J]. Journal of Hazardous Materials,2009,168: 215-219.
    [343]Yong, G.; Li. L.; Jia, L.; Yin, G. In situ fenton reagent generated from TiO2/Cu2O composite film:a new way to utilize TiO2 under visible light irradiation [J]. Environmental Science & Technology,2007,41:6264-6269.
    [344]Zhang, J.; Zhu, H.; Zheng, S.; Pan, F.;Wang,T.TiO2 film/Cu2O microgrid heterojunction with photocatalyic activity under solar light irradiation[J].ACS Applied Materials & Interfcaes 2009,1:2111-2114.
    [345]Hou,Y.;Li,X.Y.;Zhao,Q.D.;Quan,X.;Chen,G.H.Fabricication of Cu2O/TiO2 nanotube heterojuntion arrarys and investigation of its photoelectrochemical behavior [J].Applied Physics Letters,2009,95:093108.
    [346]Li, D.; McCann, J. T.; Xia, Y.; Marquez, M. Electrospinning:a simple and versatile technique for producing Ceramic Nanofibers and Nanotubes [J]. Journal of the American Ceramic Society,2006,89:1861-1869.
    [347]Spurr, R. A.; Myers, H.; Quantitative analysis of anatase-rutile mixtures with an X-Ray diffractometer [J]. Analytical Chemistry,1957,29:760-762.
    [348]Bickley,R.I.;Gonzalez-Carrenob,T.;Lee,J.S.;Palmisanod,L.;Tilley,R.J.D.A structural investigation of titanium dioxide photocatalysts [J]. Journal of Solid State Chemistry,1991,92 (1):178-190.
    [349]Bacsa, R. R.; Kiwi, J. Effect of rutile phase on the photocatalytic properties of nanocrystalline titania during the degradation of p-coumaric acid [J]. Applied Catalysis B:Environmental,1998,16 (1):19-29.
    [350]Yu, J. C.; Yu, J.; Ho, W.; Jiang, Z.; Zhang, L. Effects of F-doping on the photocatalytic activity and microstructures of nanocrystalline TiO2 powders [J]. Chemistry of Materials,2002,14 (9):3808-3816.
    [351]Zhang, W. F.; Zhang, M. S.; Yin, Z.; Chen, Q. Photoluminescence in anatase titanium dioxide nanocrystals [J].Applied Physics B:Lasers and Optics,2000,70:261-265.
    [352]Wijnhoven, E. G. J.; Vos, W. L. Preparation of photonic crystals made of air spheres in titania [J]. Science,1998,281:802-804.
    [353]Thompson, T. L.; Yates, J. T. Surface science studies of the photoactivation of TiO2s new photochemical processes [J]. Chemical Reviews,2006,106:4428-4453.
    [354]Chen, X.; Mao, S. S. Titanium dioxide nanomaterials:synthesis, properties, modifications, and applications [J]. Chemical Reviews,2007,107:2891-2959.
    [355]Fujishima, A.; Zhang, X.; Tryk, D. A. TiO2 photocatalysis and related surface phenomena [J]. Surface Science Reports,2008,63:515-582.
    [356]Diebold, U. The surface science of titanium dioxide [J]. Surface Science Reports,2003, 48:53-229.
    [357]Lazzeri, M.; Vittadini, A.; Selloni, A. Structure and energetics of stoichiometric TiO2 anatase surfaces [J]. Physical Review B,2002,65:119901.
    [358]Ihara, X.; Miyoshi, M.; Iriyama, Y.; Matsumoto. O.; Sugihara, S. Visible-light-active titanium oxide photocatalyst realized by an oxygen-deficient structure and by nitrogen doping [J]. Applied Catalysis B:Environmental,2003,42:403-409.
    [359]Umebayashi, T.; Yamaki, T.; Itoh, H.; Asai, K. Band gap narrowing of titanium dioxide by sulfur doping [J]. Applied Physics Letters,2002,81:454-456.
    [360]Janus, M.; Tryba, B.; Inagaki, M.; Morawski, A. W. New preparation of a carbon-TiO2 photocatalyst by carbonization of n-hexane deposited on TiO2[J]. Applied Catalysis B: Environmental,2004,52:61-67.
    [361]Yu, J.; Xiang Q.; Zhou M. Preparation, characterization and visible-light-driven photocatalytic activity of Fe-doped titania nanorods and first-principles study for electronic structures [J]. Applied Catalysis B:Environmental,2009,90:595-602.
    [362]Devi, G. L.; Kumar, G. S.; Murthy, N. B.; Kottam N. Influence of Mn2+ and Mo6+ dopants on the phase transformations of TiO2 lattice and its photo catalytic activity under solar illumination [J]. Catalysis Communications,2009,10:794-798.
    [363]Umebayashi, T.; Yamaki, T.; Itoh, H.; Asai, K. Analysis of electronic structures of 3d transition metal-doped TiO2 based on band calculations [J]. Journal of Physics and Chemistry of Solids,2002,63:1909-1920.
    [364]Teruhisa, O.; Zenta, M.; Kazumoto, N.; Hidekazu, K.; Feng, X. Sensitization of photocatalytic activity of S-or N-doped TiO2 particles by adsorbing Fe3+ cations [J]. Applied Catalysis A:General,2006,302:62-68.
    [365]Yan, J.; Zhang, Y.; Huang, W.; Tu, M. Effect of Mo-W Co-doping on semiconductor metal phase transition temperature of vanadium dioxide film [J]. Thin Solid Films, 2008,516:8554-8558.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700