小麦三雌蕊突变体幼穗中基因的差异表达分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
小麦是世界上最重要的粮食作物之一。随着人口的剧增,可耕种土地的减少,目前世界小麦的产量已呈逐年下滑的趋势,因此当前小麦育种的主要目标仍然是增加小麦产量。增加小麦穗粒数是增加产量的一条有效途径,而小麦穗粒数是小麦花分化、发育、退化与结实等一系列生理过程的最终体现。小麦三雌蕊突变体(TP)是由彭正松先生培育出的一新的突变体,TP是由一对显性核基因控制,与细胞质遗传无关。三雌蕊突变体与Murai等发现的雄蕊雌蕊化品系不同,三雌蕊突变体具有3个正常的雄蕊和3个可育的雌蕊,一朵小花可结三粒种子,能显著的增加穗粒数,因而具有一定的育种学价值。利用微卫星(SSR)分析已将控制三雌蕊性状的Pis1基因定位于2D染色体的长臂上。小麦三雌蕊突变体是研究小麦雌蕊发育的理想材料,虽然目前小麦三雌蕊突变体的遗传基础基本清楚,但控制三雌蕊发生的Pis1基因的DNA序列信息尚不清楚。三雌蕊性状的发生是受一显性单基因控制,但该基因会引发一系列基因的表达差异。因此可以肯定的是三雌蕊性状的形成是一系列基因的差异表达的结果,因此本研究的目的是分离小麦三雌蕊突变体在幼穗发育过程中差异表达的基因。
     主要研究结果如下:
     1.以三雌蕊突变体(TP)为供体,单雌蕊地方品种中国春(CS)、川麦28(CM28)、绵阳29(MY29)、内麦9号(NM9)为轮回亲本,经7代回交,4代自交,初步培育出三雌蕊近等基因系CSTP, CM28TP, MY29TP, NM9TP。利用128对SRAP引物对培育的近等基因系及轮回亲本进行SRAP分析,结果表明:(1)128对引物共扩增出978个条带。其中有120对引物的扩增产物具有多态性,占所用引物的93.8%。这120对引物共扩增出638个差异条带,占总条带数的65.2%;(2)利用128对SRAP引物计算9个材料之间的遗传相似系数。其中CS与CSTP的相似系数为0.9346,MY29与MY29TP的遗传相似系数为0.9070,CM28与CM28TP的遗传相似系数为0.9397,NM9与NM9TP的遗传相似系数为0.8732。(3)通过聚类分析筛选出两对遗传相似性大于0.93的近等基因系,即CM28TP与CM28、CSTP与CS。
     2.利用两对三雌蕊性状的近等基因系CM28TP和CSTP以及它们的轮回亲本构建了小麦三雌蕊性状的正向抑制性差减杂交cDNA文库。从CM28TP cDNA文库中分离出62个差异表达基因,其中30个基因为已知基因,它们编码的蛋白质主要用于调控蛋白合成、信号转导以及离子运输等。其余32个基因为未知基因。从CSTP cDNA文库中分离出161个差异表达基因,其中67%的基因为未知基因,剩下的33%的基因为已知基因。通过序列比对发现有四个基因,即:硫氧还蛋白H,泛素连接酶,微小染色体维持蛋白2(MCM2),和泛醇细胞色素C还原酶复合体14kD蛋白在两个近等基因系CM28TP和CSTP中均过量表达。虽然CM28TP和CSTP具有不同的遗传背景,但它们都表现为三雌蕊性状,因此推测这四个基因与三雌蕊的发育相关。
     3.利用引物退火控制技术对小麦三雌蕊性状的两对近等基因系CM28TP和CSTP及其轮回亲本CM28和CS幼穗中差异表达基因进行分离。利用120条ACP引物,我们从CM28TP和CSTP中分离出3个差异表达基因,并将其分别命名为DETP-1, DETP-2和DETP-3。通过Blastx比对分析发现,DETP-1与玉米中的细胞质膜蛋白基因同源,而细胞质膜蛋白在细菌中的功能是调控细胞分化。DETP-3与玉米的内切-1,4-β-葡聚糖酶(EGases)基因同源。EGases基因在植物的发育、细胞壁的收缩、花轴及根的延长方面起作重要的作用。DETP-2在Genebank中没有找到与之同源的基因,可能是一新的基因。通过Real-time PCR分析,DETP-1, DETP-2和DETP-3在CM28TP和CSTP中的表达量均高于其轮回亲本CM28和CS,因此推测这三个基因可能与三雌蕊的发育有关。
     4.利用RT-PCR技术从小麦三雌蕊突变体(TP)中克隆出一个RING finger泛素蛋白连接酶基因的全长cDNA,我们将其命名为TaZFP-1.对该cDNA核苷酸序列、氨基酸序列、理化性质、疏水/亲水性、二级结构、结构域、与其它植物的RING finger泛素蛋白连接酶的同源比较和系统进化树进行了预测和分析。结果表明:TaZFP-1基因共759个核苷酸编码252个氨基酸,蛋白质的分子量为27.9 kD,理论等电点PI为6.23;TaZFP-1蛋白的大部分氨基酸为亲水性氨基酸,因此推测TaZFP-1是一可溶性蛋白;二级结构预测表明,TaZFP-1蛋白以α螺旋、β折叠和无规则卷曲为主;通过结构域分析发现,TaZFP-1蛋白在196~233位氨基酸之间有一保守的结构域,该结构域中富含半胱氨酸,形成典型的C3HC4锌指结构;同源序列比对发现不同植物的RING finger泛素蛋白连接酶的氨基酸序列差异较大,但在C端都具有C3HC4锌指结构的保守区;进化树分析表明TaZFP-1蛋白与水稻的RING finger泛素蛋白连接酶的相似性最高,为73%。推测TaZFP-1与水稻的RING finger泛素蛋白连接酶具有相似的功能。
     5.利用RT-PCR与RACE相结合的方法,我们从小麦三雌蕊突变体(TP)幼穗中克隆出一内切-1,4-β-葡聚糖酶(EGases)基因的全长cDNA序列,并将其命名为TaEG。对该序列的核苷酸序列、氨基酸序列、.理化性质、疏水/亲水性、二级结构和三级结构、跨膜结构域以及与其他植物EGases的同源性进行了预测和分析。结构表明:TaEG的全长cDNA序列由2174个核苷酸组成,编码622个氨基酸,蛋白质的分子量为69.07kD,理论等电点PI为9.39;TaEG的大部分氨基酸序列为亲水性氨基酸,因此推测TaEG蛋白为一可溶性蛋白;二级结构预测表明,TaEG蛋白以α螺旋、β折叠和无规则卷曲为主;跨膜结构分析发现,在TaGE蛋白的N端74~96位氨基酸处形成一跨膜区域,因此推测TaGE是一跨膜蛋白型EGase。聚类分析.结果同样证实TaGE是一跨膜蛋白型EGase。本研究为深入探讨TaGE的性质及其在小麦雌蕊发育中的作用奠定了基础。
Wheat(Triticum aestivum L.) is the most important food crop in the world and becomes even more important as the global population increases. Because the arable land is very limited, improving the yield is essential. One way to improve wheat yield potential is to increase grain number per spike. The grain number of per spike is the ultimate embodiment of the floral differentiation, degeneration and grain-setting. The common wheat line three pistils (TP), which selected by Peng from the'trigrain' wheat variety, is a valuable mutant for the wheat breeding. Because the TP mutation has normal spike morphology but produces 3 pistils per floret, it has potential to increase grain number per spike. Homeotic transformation of stamens into pistil-like structures (pistillody) is caused by nuclear-cytoplasm interaction in wheat. The TP mutation is different from the pistillody, because the 3 stamens and 3 pistils are all fertile. Genetic analysis indicated that the three pistils trait is controlled by a single dominant gene Pis1 which was located on chromosome 2DL. Up to now, the genetic basis of the three pistils trait has been clearly, but the sequence information of Pis1 is still unclear. Although the three pistils controlled by a single gene locus, the mutation causes changes of a series of genes at the transcription level and affect various metabolism processes in three pistils plants. So the aim of this study was to identify differentially expressed genes in young spikes of three pistils plants, in order to reveal the molecular mechanism controlling the three pistils characters. The main results are summarized as follows:
     1. In this study, three pistils (TP) was used as donor parent, and Chinese spring (CS), Chuanmai 28 (CM28), Mianyang 29 (MY29) and Neimai 9 (NM9) were used as recurrent male parent, after 7 times successive backcrossing and then self-crossing for four generations, four near isogentic lines (NILs), CSTP, CM28TP, MY29TP and NM9TP were bred. Genetic similarity and genetic distance of 4 near isogentic lines and their recurrent parents were compared and analysised by SRAP. The results showed:(1) All the 128 pairs of SRAP primers amplified 978 bands,120 pairs (93.8%) of primers were polymorphic and 638 bands (65.2%) were polymorphic. (2) The genetic similarity coefficient of CSTP, CM28TP, MY29TP, NM9TP and their recurrent parents were 0.9346,0.9397,0.9070 and 0.8732, respectively. (3) Cluster analysis revealed that CSTP and CM28TP have least different with the recurrent parent, and was clustered into a small class with the similarity coefficient of 0.93,
     2. Two forward subtractive cDNA libraries from two pairs of near-isogenic wheat lines, Chuanmai 28 TP (CMTP) and Chinese Spring TP (CSTP), were constructed using suppression subtractive hybridization (SSH). A total of 68 clones in CMTP lines and 197 clones in CSTP lines were identified as potentially overexpressed clones. Thirty-two out of 68 clones in CMTP lines belonged to unknown proteins; while, the remaining 30 clones shared homology to diverse classes of genes involved in protein modulation. and protein synthesis, signal transduction, and ion transporters. Approximately 67% of genes in CSTP lines were either unclassified or had no matches ("no hits") in the database and about 33% of identified genes encoded polypeptides with known functions. Sequence comparisons of cDNA clones between the two forward cDNA libraries revealed that four genes, encoding thioredoxin H, ubiquitin protein ligases, MCM2, and ubiquinol-cytochrome C reductase complex 14 kD proteins, were overexpressed in both libraries. These genes would likely play an important role in determining the three pistils trait in the mutant wheat line.
     3. The annealing control primer system was used to identify the different expressed genes in three pistils mutation. Using 120 arbitrary ACP primers, we identified 3 differentially expressed genes (DEGs) in young spikes between two near-isogenic lines that are Chuanmai 28 TP (CMTP) and Chinese Spring TP (CSTP) and their recurrent parents. We tentatively designated the three differentially expressed genes as DETP-1, DETP-2 and DETP-3. DETP-1 showed similar function with maize cytoplasmic membrane protein. The cytoplasmic membrane protein involved in cell division in bacteria. DETP-3 is homology to maize endo-1,4-beta-glucanase (EGases). The EGases associated with plant development, cell wall loosening, flowering stem and root expending. DETP-2 showed no significant hit with any sequence found in the database and encodes unknown protein. These genes would likely play an important role in determining the three pistils trait in wheat.
     4. Full length cDNA sequence of RING domain ubiquitin protein ligase gene TaZFP-1 was acquired by RT-PCR methods. Then, analysis and prediction on the acquired sequences and its amino acids, physicochemical properties, hydrophobicity/hydrophilicity, secondary structure, functional domains, sequence alignment and phylogenetic tree. The results showed that TaZFP-1 gene cDNA was 759 bp in length, encoding 252 amino acids. Molecular weight of the putative TaZFP-1 protein is 27.9 kD with a theoretical PI=6.23. Most amino acids in TaZFP-1 protein are hydrophilic amino acids, so the protein may be a soluble protein. Secondary structure of TaZFP-1 was mainly composed ofα-helices and random coils. Functional domains analysis indicated that the TaZFP-1 is a RING finger domain protein and containing a C3HC4 motif. The molecular evolution threes showed that the TaZFP-1 was clustered into the monocotyledon group and high genetic relationship with O. sativa RING domain E3 ligases.
     5. The full cDNA sequence of endo-beta-1,4-glucanase gene TaEG was acquired by RT-PCR and RACE methods. Then, analysis and prediction on the acquired sequences and its amino acids, physicochemical properties, hydrophobicity/hydrophilicity, secondary structure, three-dimensional structure, transmembrane domains, sequence alignment and phylogenetic tree. The results showed tha TaEG gene cDNA was 2174 bp in length, encoding 622 amino acids. Molecular weight of the putative TaEG protein is 69.07 kD with a theoretical PI=9.39. Most amino acids in TaEG protein are hydrophilic amino acids, so the protein may be a soluble protein. Secondary structure of TaEG was mainly composed ofα-helices and random coils. Transmembrane domains analysis indicated that TaEG contain a transmembrane domains in 74-96 amino acids, so we prediced the TaEG is a membrane anchored EGase. The cluster analysis also comfirmed that TaEG is a membrane anchored EGase. This study has laid a foundation for further investigate the function of TaEG in wheat pistil development.
引文
1. Adam H, Jouannic S, Morcillo F, et al. Determination of flower structure in Eeaeis guineesis:Do palms use the same homoetic genes as other species. Annual of Botany,2007:1-12
    2. Alagu M, Takato K, Kohei M, et al. Identification of differential gene expression for Krl gene in bread wheat using annealing control primer system. Molecular Biology Repeprts,2009,36: 2111-2118
    3. Alvarez-Buylla ER, Liljegren SJ, Pelaz S, et al. MADS-box gene evolution beyond Xowers: expression in pollen, endosperm, guard cells, roots and trichomes. The Plant Journal,2000,24.:457-466
    4. Ambrose BA, Lerner DR, Ciceri P, et al. Molecular and genetic analyses of the Silkyl gene reveal conservation in floral organ specification between eudicots and monocots. Molecular Cell,2000,5: 569-579
    5. Angenent GC, Stuurman J, Snowden KC, et al. Use of petunia to unravel plant meristem functioning.Trends in Plant Science,2005,10(5):1360-1385
    6. Balachandran S, Xiang Y, Schobert C, et al. Phloem sap proteins from cucurbita maxima and ricinus communis have the capacity to traffic cell to cell through plasmodesmata. Proceedings of the National Academy of Sciences USA,1997,94:14150-14155
    7. Barlow PN, Luisi B, Milner A, et al. Structure the C3HC4 domain by 1H-nuclear magnetic resonance spectroscopy.A new structure class of Zinc-finger. Journal of Molecular Biology, 1994,237(2):201-211.
    8. Bassanim, Neumann PM, Gepstein S. Differentialexpression profiles of growth-related genes in the elongation zone of maize primary roots. Plant Molecular Biology,2004,56:367-80
    9. Bates PW, Vierstra RD. UPL1 and 2, two 450kD ubiquitin-protein ligases from Arabidopsis thaliana related to the HECT-domain protein family. The Plant Journal,1999,20:183-195
    10. Borden KL. RING domains:master builders of moleeulars caffolds. Journal of Molecular Biology,2000,295(5):1103-1112
    11. Brevis JC, Chicaiza O, Khan IA, et al. Agronomic and quality evaluation of common wheat near-isogenic lines carrying the leaf rust resistance gene Lr47. Crop Science,2008,48:1441-1451
    12. Brummeli DA, Catala C, Lashbrook CC, et al. A membrane-anchored E-type endo-l,4-beta-glucanase is localized on Golgi and plasma membranes of higher plants. Proceedings of the National Academy of Sciences USA,1997a,94(9):4794-4799
    13. Brummell DA, Bird CR, Schuch W et al. An endo-1,4-beta-glucanase expressed at high levels in rapidly expanding tissues. Plant Molecular Biology,1997,33(1):87-95
    14. Brummell DA, Bird CR, Schuch W, et al. An endo-1,4-β-glucanase expressed at high levels in rapidly expanding tissues. Plant Molecular Biology,1997,33:87-95
    15. Cass LG, Kirven KA, Christoffersen RE. Isolation and characterization of a cellulase gene family member expressed during avocado fruit ripening. Molecular Genetics and Genomics,1990,223(1): 76-86
    16. Christoffersen RE, Tucker ML, Laties GG. Cellulase gene expression in ripening avocado fruit:the accumulation of cellulase mRNA and protein as demonstrated by cDNA hybridization and immunodetection. Plant Molecular Biology,1984,3:385-391
    17. Coen ES, Meyerowitz EM. The war of the whorls:genetic interactions controlling flower development. Nature,1991,353,31-37
    18. Colombo L, Franken J, Koetje E, et al. The petunia MADS box gene FBP11 determines ovule identity. Plant Cell,1995,7:1859-1868
    19. Danyluk J, Kane NA, Breton G, et al. TaVRT-1, a Putative Transcription Factor Associated with Vegetative to Reproductive Transition in Cereals. Plant Physiology,2003,132:1849-1860
    20. Davies B, Schwarz-Sommer Z. Control of floral organ identity by homeotic MADS-box transcription factors. In Nover L (eds), Plant promoters and transcription factors. New York: Springer, Berlin Heidelberg.1994,235-258
    21. del Campillo E. Multiple endo-beta-l,4-glucanase (Cellulose) genes in A rabidopsis. Current Topics in Developmental Biology,1999,46:39-61
    22. Diatchenko L, Chris LY, Campbell AP, et al. Suppression subtractive hybridization:a method for generation differentially regulated or tissue-specific cDNA probes and libraries. Proceedings of the National Academy of Sciences USA,1996,93:6025-6039
    23. Diatchenko L, Lukyanov S, Lau YF, et al. Suppression subtractive hybridization:a versatile method for identifying differentially expressed genes. Methods Enzymol,1999,303:349-380
    24Ditta G,Pinyopich A, Rabies P, et al. The SEP4 gene of Arabidopsis thaliana functions in floral organ and meristem identity. Current Biology,2004,14:1935-1940
    25. Doyle JJ, Doyle JL. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bulletin,1987,19:11-15
    26. Favaro R, Pinyopich A, Battaglia R, et al. MADS-box protein complexes control carpel and Ovule development in Arabidopsis. Plant Cell,2003,15:2603-2611
    27. Ferrarese L, Trainotti L, Moretto P, et al. Differential ethyleneinducible expression of cellulase in pepper plants. Plant Molecular Biology,1995,29:735-747
    28. Gelhaye E, Rouhier N, Jacquot JP. The thioredoxin h system of higher plants. Plant Physiology and Biochemistry,2004,42:265-71
    29. Gonzalez-Bosch C, Del Campillo E, Bennett AB. Immunodetection and characterization of tomato endo-[beta]-1,4-glucanase cell protein in flower abscission zones. Plant Physiology,1997,114: 1541-1546
    30. Goto K, Meyerowitz EM. Function and regulation of the Arabidopsis floral homeotic gene PISTILLATA. Genes & Development,1994,8:1548-1560
    31. Guzman LM, Barondess JJ, Beckwith J. FtsL, an essential cytoplasmic membrane protein involved in cell division in Escherichia coli. Journal of bacteriology,1992,174:7717-7728
    32. Hama E, Takumi S, Ogihara Y, et al. Pistillody is caused by alterations to the class-B MADS-box gene expression pattern in alloplasmic wheats. Planta,2004,218,712-720
    33. Hardtke CS, Gohda K, Osterlund MT, et al. HY5 stability and activity in Arabidopsis is regulated by phosphorylationin is COP1 binding domain. The EMBO Journal,2000,19: 4997-5006
    34. Harrach BD, Fodor J, Pogany M, et al. Antioxidant, ethylene and membrane leakage responses to powdery mildew infection of near-isogenic barley lines with various types of resistance. European Journal of Plant Pathology,2008,121:21-33
    35. Hayashi T, Wong YS, Maclachlan G. Pea xyloglucan and cellulose 1 Ⅱ. hydrolysis by pea endo-1, 4-β-glucanases. Plant Physiology,1984,75(3):605-610
    36. Hellmann H, Estelle M. Plant development:regulation by protein degradation. Science,2002,297: 793-797
    37. Hirabayashi C, Murai K. Class C MADS-box gene AGAMOUS was duplicated in the wheat genome. Wheat Information Service,2009,107:13-16
    38. Holm M, Ma LG, Qu LJ, et al. Two interacting bZIP proteins are direct targets of COP1-mediated control of light-dependent gene expression in Arabidopsis. Genes & Development,2002,16:1247-1259
    39. Ho.nma T, Goto K. Complexes of MADS-box proteins are sufficient to convert leaves into floral organs. Nature,2001,409:525-529
    40. Hwang IT, Kim YJ, Kim SH, et al. Annealing control primer system for improving specificity of PCR amplification. Biotechnology,2003,35:1180-1184
    41. Ingram GC, Doyle S, Carpenter R, et al. Dual role for fimbriata in regulating floral homeotic genes and cell division in Antirrhinum. The EMBO Journal,1997,16:6521-6534
    42. Ishiwatari Y, Honda C, Kawashima I, et al. Thioredoxin h is one of the major proteins in rice phloem sap. Planta,1995,195:456-463
    43. Jack T, Brockman LL, Meyerowitz EM. The homeotic gene APETALA3 of Arabidopsis thaliana encodes a MADS box and is expressed in petals and stamens. Cell,1992,68:683-697
    44. Jong WH, Minchul Y, Key Pyoung L, et al. Identification and Isolation of Differentially Expressed Gene in Response to Cold Stress in a Green Alga, Spirogyra varians (Zygnematales). Algae,2007, 22(2):131-139
    45. Kang HG, Jeon JS, Lee S, et al. Identification of class B and class C floral organ identity genes from rice plants. Plant Molelcular Biology,1998,38:1021-1029
    46. Kang HG, Noh YS, Chung YY, et al. Phenotypic alterations of petal and sepal by ectopic expression of a rice MADS box gene in tobacco. Plant Molecular Biology,1995,29,1-10
    47. Kater MM, Dreni L, Colombo L. Functional conservation of MADS-box factors controlling floral organ identity in rice and Arabidopsis. Journal of Experimental Botany,2006,57:3433-3444
    48. Kater MM, Dreni L, Colombo L. Functional conservation of MADS-box factors controlling floral organ identity in rice and Arabidopsis. Journal of Experimental Botany,2006,57:3433-3444
    49. Katrin H, Ulrike Z. Identification of a transcription factor specifically expressed at the onset of leaf senescence. Planta,2001,213:469-473
    50. Kawakami N, Miyake Y, Noda K. ABA insensitivity and low ABA levels during seed development of non-dormant wheat mutants. Journal of Experimental Botany,1997,48: 1415-1421
    51Kim M Kim S Islation of cDNA clones differentially accumulated in the placenta of pungent papper by suppression subtractive hybridization. Molecules and Cells,2001,11:213-219
    52. Kim YJ, Kwak CI, Gu YY, et al. Annealing control primer system for identification of differentially expressed genes on agarose gels. BioTechniques,2004,36:424-434
    53. Kyozuka J, Kobayashi T, Morita M, et al. Spatially and temporally regulated expression of rice MADS box genes with similarity to Arabidopsis class A, B and C genes. Plant Cell Physiology, 200,41:710-718
    54. Lashbrook CC, Gonzalez-Bosch C, Bennett AB. Two divergent endo-β-1,4-glucanase genes exhibit overlapping expression in ripening fruit and abscising flowers. Plant Cell,1994, 6:1485-1493
    55. Lea PJ, Leegood RC. Plant Biochemistry and Molecular Biology. Buckinghamshire:John Wiley and Sons Ltd,1993,15-20
    56. Lee I, Wolfe DS, Nilsson O, et al. A LEAFY co-regulator encoded by UNUSUAL FLORAL ORGANS. Current Biology,1997,7:95-104
    57. Li G, Quiros CF. Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction:its application to mapping and gene tagging in Brassica. Theoretical and Applied Genetics,2001,103:455-461
    58. Liang P, Pardee AB. Differential display of eukaryotic messenger RNA by means of polymerase chainreaction. Science,1992,14:967-71
    59. Libertini E, Li Y, McQueen-Mason SJ. Phylogenetic analysis of the plant endo-b-1,4-glucanase gene family. Journal of Molecular Evolution,2004,58:506-515
    60. Ma H. The unfolding drama of flower development:recent results from genetic and molecular analyses. Genes & Development,1994,8:745-756
    61. Malcomber ST, Kellogg EA. SEPALLATA gene diversification:brave new whorls. Trends in Plant Science,2005,10,427-435
    62. Mandel MA, Gustafson-Brown C, Savidge B, et al. Molecular characterization of the Arabidopsis floral homeotic gene APETALA1. Nature,1992,360:273-277
    63. Martin S, Ulrike N, Jon MN. Protein ubiquitination involving an E1-E2-E3 enzyme ubiqutin thioester cascade. Nature,1995,373:81-83
    64. McClelland M, Mathieu-Daude F, Welsh J. RNA fingerprinting and differential display using arbitrarily primed PCR. Trends in Genetics,1995,11(6):242-246
    65. Meguro A, Takumi S, Ogihara Y, et al. WAG, a wheat AGAMOUS homolog, is associated with development of pistil-like stamens in alloplasmic wheats. Sex Plant Reprod,2003,15,221-230
    66. Mena M, Ambrose B, Meeley RB, et al. Diversification of C-function activity in maize flower development. Science,1996,274:1537-1540
    67. Meng Z, Liu GZ, Xu ZH, et al. Cloning and characterization of rice genomic MADS box DNA. Science in China,1998,28(5):450-456
    68. Milligan SB, Gasser CS. Nature and regulation of pistil-expressed genes in tomato. Plant Molecular Biology,1995,28:691-711
    69. MφlhφJ M, Pagant S, Hofte H. Towards understanding the role of membrane-bound endo-b-1,4-lucanases in cellulose biosynthesis. Plant and Cell Physiology,2002,43:1399-1406
    70. Montagnoli A, Valsasina B, Brotherton D, et al. Identification of Mcm2 phosphorylation sites by S-phase-regulating kinases. The Journal of Biological Chemistry,2006,281:10281-10290
    71. Mumtaz S, Khan I A, Ali S, et al. Development of RAPD based markers for wheat rust resistance gene cluster (Lr37-Sr38-Yr17) derived from Triticum ventricosum L.. African Journal of Biotechnology,2009,8(7):1188-1192
    72. Murai K, Miyamae M, Kato H, et al. WAP1, a wheat APETALA1 homolog, plays a central role in the phase transition from vegetative to reproductive growth. Plant Cell Physiology,2003,44: 1255-1265
    73. Murai K, Murai R, Takumi S, et al. Cloning and characterization of cDNAs corresponding to the wheat MADS box genes. In:Slinkard AE (eds), Proceedings of the 9th International Wheat Genetic Symposium,1998,1:89-94
    74. Murai K, Takumi S, Koga H, et al. Pistillody, homeotic transformation of stamens into pistil-like structures, caused by nuclear-cytoplasm interaction in wheat. The Plant Journal,2002,29: 169-182
    75. Nei M, & Li W. Mathematical model for studying genetic variation in terms of restriction endouncleases. Proceedings of the National Academy of Sciences USA,1979,76:5269-5273
    76. Ni DA, Sozzani R, Blanchet S, et al. The Arabidopsis MCM2 gene is essential to embryo development and its over-expression alters root meristem function. New Phytologist,2009,184: 311-322
    77 Nicol F,Jauneau A,et al.A plasma membrane-bound putative endo-1,4-beta-D-glucanase is required for normal wall assembly and cell elongation in Arabidopsis. The EMBO Journal,1998, 17(19):5563-5576
    78. Paolacci AR, Tanzarella OA, Porceddu E, et al. Molecular and phylogenetic analysis of MADS-box genes of MIKC type and chromosome location of SEP-like genes in wheat (Triticum aestivum L.). Molecular Genetics & Genomics,2007,278:689-708
    79. Pelaz S, Ditta GS, Baumann E, et al. B and C floral organ identity functions require SEPALLATA MADS-box genes. Nature,2000,405:200-203
    80. Pelaz S, Tapia-Lopez R, Alvarez-Buylla ER, et al. Conversion of leaves into petals in Arabidopsis. Current Biology,2001,11:182-184
    81. Pelucchi N, Fornara F, Favalli C, et al. Comparative analysis of rice MADS-box genes expressed during Xower development. Sex Plant Reprod,2002,15:113-122.
    82. Peng ZS, Martinek P, Kosuge K, et al. Genetic mapping of a mutant gene producing three pistils per floret in common wheat. Journal of Applied Genetics,2008,49:135-139
    83. Peng ZS, Yang J, Wei SH, et al. Characterization of common wheat(Triticum aestivum L.) mutation line producing three pistils in a floret. Hereditas,2004,141:15-18
    84. Peng ZS. A new mutation in wheat producing three pistils in a floret. Journal of Agronomy and Crop Science,2003,189:270-272
    85. Pinyopich A, Ditta GS, Savidge B, et al. Assesing the redundancy of MADS-box genes during carpel and ovule development. Nature,2003,424:85-88
    86. Real MD, Company P, Garcia-Agustin P et al. Characterization of tomato endo-beta-1,4-glucanase cell protein in fruit during ripening and after fungal infection. Planta,2004,220(1):80-86
    87. Reichhele JP, Mestres-Ortega D, Laloi C, er al. The multigenic family of thioredoxin h in Arabidopsis thaliana:specific expression and stress response. Plant Physiology and Biochemistry, 2002,40:685-690
    88. Ruiz JJ, Garcia-Martinez S, Pico B, et al. Genetic variability and relationship of closely related Spanish traditional cultivars of tomato as detected by SRAP and SSR markers. J Am Soc Horticult Sci,2005,130(1):88-94
    89. Santandrea G, Guo Y, Connell TO, Thompson RD. Post-phloem protein trafficking in the maize caryopsis:zmTRXh1, a thioredoxin specifically expressed in the pedicel parenchyma of Zea mays L., is found predominantly in the placentochalaza. Plant Molecular Biology,2002,50:743-756
    90. Schena M, Shalon D, Davis R, et al. Quantitative monitoring of gene expression patterns with a complimentary DNA microarray. Science,1995,270:467-470
    91. Shani Z, Dekel M, Tsabary G, et al. Cloning and characterization of elongation specific endo-1,4-β-glucanase (cell) from Arabidopsis thaliana. Plant Molecular Biology,1997,34: 837-842
    92. Shani Z, Dekel M, Tsabary G, et al. Cloning and characterization of elongation specific endo-1,4-beta-glucanase (cell) from Arabidopsis thaliana. Plant Molecular Biology,1997,34(6): 837-842
    93. Shitsukawa N, Tahira C, Kassai KI, et al. Genetic and Epigenetic Alteration among Three Homoeologous Genes of a Class E MADS Box Gene in Hexaploid Wheat. The Plant Cell,2007, 19:1723-1737
    94. Shore P, Sharrocks AD. The MADS-box family of transcription factors. European Journal of Biochemistry,1995,229:1-13
    95. Sommer H, Beltran JP, Huijser P, et al. Deficiens, a homeotic gene involved in the control of flower morphogenesis in Antirrhinum majus:the protein shows homology to transcription factors. The EMBO Journal,1990,9:605-613
    96. Stone SL, Hauksdottir H, Troy A, et al. Functional analysis of the RING-type ubiquitin ligase family of Arabidopsis thaliana. Plant Physiology,2005,137:13-30
    97. Theissen G, Strater T, Fischer A, et al. Structural characterization, chromosomal localization and phylogenetic evaluation of two pairs of AGAMOUS-like MADS-box genes from maize. Gene, 1995,156:155-166
    98. Theissen G. Development of floral organ identity:stories from the MADS house. Current Opinion in Plant Biology,2001,4:75-85
    99. Trainotti L, Ferrarese L, Casadoro G. Characterization of cCe13, a member of the pepper endo-beta-1,4-glucanase multigene family. Hereditas,1998,128 (2):121-126.
    100.Tranquilli G, Dubcovsky J. Epistatic interaction between vernalization genes Vrn-Am1 and Vrn-Am2 in diploid wheat. Heredity,2000,91:304-306
    101.Trobner W, Ramirez L, Motte P, et al. GLOB-OSA:a homeotic gene which interacts with DEEIGIENS in the control of Antirrhinum floral organogenesis. The EMBO Journal,1992,11: 4693-4704
    102 Urbanowicz BR,CatalaC,lrwin D,et al.A tomato endo-b-1,4-glucanase, SlCel9Cl, represents a distinct subclass with a new family of carbohydrate binding modules (CBM49). The Journal of Biological Chemistry,2007,282:12066-12074
    103.Waddington SR, Carwringht PM. A quantitative scale of spike initial and pistil development in barley and wheat. Annual of Botany,1985,51:119-130
    104. Wang H, Ma LG, Li JM, et al. Direct interaction of Arabidopsis cryptochromes with COP1 in light control development. Science,2001,294,154-158
    105. Weigel D, Meyerowitz E M. The ABCs of floral homeotic genes. Cell,1994,78:203-209
    106. West AG, Causier BE, Davies B, et al. DNA binding and dimerisation determinants of Antirrhinum majus MADS-box transcription factors. Nucleic Acids Research,1998,26:5277-5287
    107. Wilkinson MD, Haughn GW. UNUSUAL FLORAL ORGANS controls meristem identity and floral organ primordia fate in Arabidopsis. Plant Cell,1995,7:1485-1499
    108. Wong Y, Fincher GB, Maclachlan GA. Cellulases can enhance beta-glucari synthesis. Science, 1977,195:679-681
    109.Xiang YZ, Zhi JC, Xian SZ. Overexpression of TaMADSl, a SEPALLATA-like gene in wheat, causes early flowering and the abnormal development of floral organs in Arabidopsis. Planta,2006, 223:698-707
    110. Yamada K, Saraike T, Shitsukawa N, et al. Class D and Bsister MADS-box genes are associated with ectopic ovule formation in the pistil-like stamens of alloplasmic wheat (Triticum aestivum L.). Plant Molecular Biology,2009,71:1-14
    111. Yamaguchi T, Hirano HY. Function and diversification of MADS-box genes in rice. The Scientific World Journal,2006,6:1923-1932
    112.Yan L, Loukoianov A, Tranquilli G, et al. Positional cloning of wheat vernalization gene VRN1. Proceedings of the National Academy of Sciences USA,2003,100:6263-6268
    113. Young ND, Zamir DG, Ganal MW, et al. Use of isogenic lines and simultaneoue probing to identify DNA markers tightly linked to the Tm-2a gene in tomato. Genetics,1988,120:579-585
    114.Zhang W, Yu L, Zhang Y, et al. Phospholipase D in the signaling networks of plant response to abscisic acid and reactive oxygen species. Biochimica et Biophysica Acta, 2005,1736:1-9.
    115.Zhou LL, Song-GQ, Li HY, et al. A MADS-Box Transcription Factor Related to Fertility Conversion in Male Sterile Wheat Lines. Acta Agronomica Sinica,2008,34:598-604
    116. Zhou RH, Zhu ZD, Kong XY, et al. Development of wheat near-isogenic lines for powdery mildew resistance. Theoretical and Applied Genetics,2005,110:640-648
    117.Zhou W, Takeda H, Liu X, et al. A novel endo-beta-1,4-glucanase (L pCell) is exclusively expressed in pollen and pollen tubes of L ilium longiflorum. Acta Botanica Sinica,2004,46 (2): 142-147
    118. Zhu H, Han X, Lv J, et al. Structure, expression differentiation and evolution of duplicated fiber developmental genes in Gossypium barbadense and G. hirsutum. BMC Plant Biology,2011,11: 40-55
    119. Zhu S, Walker DR, Boerma HR, et al. Effects of defoliating insect resistance QTLs and a cry1Ac transgene in soybean near-isogenic lines. Theoretical and Applied Genetics,2008,116:455-463
    120.陈济世,张岭华,吴秉礼.“三雌蕊小麦”的发现及选育初报作物学报,1983,9(1):69-72.
    121.方宣钧,吴为人,唐纪良.作物DNA标记辅助育种.北京:科学出版社,2002:1-9
    122.胡承霖.氮素营养条件对小麦小花发育成花和结实的影响.南京农学院学报,1983,1:27-33
    123.李广存;金黎平;谢开云;抑制差减杂交(SSH)技术及其在植物基因分离上的应用.中国生物工程杂志,2004,24(9):26-32
    124.李巧燕,林瑞庆,朱兴金.SRAP分子标记及其应用概述.热带医学杂志,2006,6(4):467-469
    125.李文雄.小麦研究四十年回顾.第五次全国作物栽培生理研讨会,1995,14-20
    126.刘军,袁自强,刘建东等.应用抑制差减杂交法分离水稻幼穗发育早期特异表达的基因.科学通报,2000,45(13):1392-1397
    127.刘丽华,林玲,鲁国东,等.水稻一个C3HC4型锌指蛋白编码基因的克隆表达分析.中国农学通报,2009,25(1):35-39
    128.刘旭.我国小麦种质资源价值的分析.无形资产评估,2009,3:26-29
    129.马守才,张改生,李红茹等.小麦品系多Ⅱ多子房性状的遗传分析.麦类作物学报,2006,26(1):35-37
    130.马守才,张改生,刘宏伟等.多子房性状应用于杂种小麦的研究Ⅰ.多子房性状基因和细胞质效应.西北植物学报,2000,20(6):949-953
    131.马守才,张改生,牛娜.小麦多子房性状近等基因系的选育及遗传背景的检测.核农学报,2007,21(6):585-588
    132.马元喜.协调小麦幼穗发育三个两极分化过程增加穗粒数//卢良怒.中国小麦栽培研究进 展.北京:中国农业出版社,1993,119-126
    133.马云,骆莹莹,李芬,等.牛ANGPTL4基因结构和功能的生物信息学分析.江西农业大学学报,2010,32(1):135-140
    134.萨姆布,鲁克,弗里奇,等(金冬雁,黎孟枫,等译).分子克隆实验指南(第二版).北京:科学出版社,1992,516-520
    135.沈光华,童一中,沈革志.普通小麦多子房基因单体分析的染色体定位及双端体分析的染色体壁定位.遗传学报,1992,19(6):513-516
    136.史铁生,李勇,韩冰,等.扁穗冰草PLD基因cDNA序列克隆及生物信息学分析.浙江大学学报(理学版),2010,37(6):691-699
    137.宋素胜,谢道听.泛素蛋白酶体途径及其对植物生长发育的调控.植物学通报,2006,23(5):564-577
    138.田清震,周荣华,贾继增.小麦抗白粉病近等基因系遗传背景的分子标记检测.作物学报,2004,30(3):205-209
    139.田笑明.新疆冬小麦品种更替中农艺性状演变和发展方向的研究.作物学报,1991,17(4):297-307
    140.王俊英,赵春江,杨宝祝.小麦小花发育与退化研究华.北农学报,1996,11(2):9-13
    141.王树安,王纪华,王志敏.玉米、小麦的花粒发育及穗粒数调控.第五次全国作物栽培生理研讨会,1995,10-13
    142.王沅,田正国.小麦小花发育不同时期土壤干早对成花与成粒的影响.作物学报,1982,8(4):229-236
    143.王兆龙,曹卫星,戴廷波,等.不同穗型小麦品种小花发育与结实特性研究.南京农业大学学报,2000,23(4):9-12
    144.王兆龙.小麦小花发育的生理基础及调控研究.南京农业大学博士论文,2000,5-6
    145.王志敏,王树安,苏宝林.小麦穗粒数的调节,Ⅱ开花前遮光对炭水化合物代谢和内源激素水平的影响.华北农学报,1997,12(4):42-47
    146.吴兆苏,魏燮中.长江下游地区小麦品种更替中产量及有关性状的演变与发展方向.中国农业科学,1984,17(3):14-22
    147.武军,李邦琴,赵继新.三粒小麦多子房性状的遗传分析.西北农业大学学报,2000,28(6):58-60
    148.徐锋,杨勇,谢馥交,等.激活蛋白处理水稻引发基因差异表达的研究.生物技术通报,2006, 4:82-85
    149.谢芳靖,张子平,林鹏,等.引物退火控制技术在差异表达基因克隆中的应用.海洋科学,2007,31(5):70-75
    150.杨传平,魏志刚,杨文慧.特异性表达基因克隆的策略.东北林业大学学报,2002,30(5):1-4
    151.叶新媛,毛振荣.淮北地区小麦产量构成因素分析.现代农业科技,2008,23:204-206
    152.于振文.不同密度条件对冬小麦小花发育的影响.作物学报,1984,10(3):185-194
    153.张国泰.小麦顶小穗形成特点及其与大穗形成的关系.作物学报,1989,11:349-354。
    154.张毅,李云峰,谢戎,等.水稻小穗簇生性近等基因系的构建及其近等性评价.作物学报,2006,32(3):397-401
    155.朱德峰.国际水稻研究所水稻新株型的研究现状与新动向.作物研究,1996,4:1-2
    156.朱东旭,马守才,张改生,等.小麦多子房性状近等基因系遗传背景的分子标记检测.麦类作物学报,2010,30(3):406-410

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700