雷公藤有效成分的提取分离和麻疯树籽的开发利用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超临界流体萃取(SFE)是环境友好的化工分离技术,在天然产物和中药领域被视为提取分离现代化的关键技术之一。本文采用超临界流体萃取结合其它分离技术分别对雷公藤有效成分的提取分离和麻疯树籽的综合开发利用进行了研究。
     雷公藤是我国传统中药,具有抗炎抗菌、免疫抑制和抗生育等药理作用,其中雷公藤甲素被公认为最主要的活性成分,雷公藤红素被认为具有较大毒副作用,但又具有明显的抗癌作用。
     本文在实验室成员前期研究基础上,采用100升超临界流体萃取工业化装置分别对从雷公藤根芯和根皮中提取有效成分的SFE小试工艺的放大进行了研究。结果表明,当以雷公藤根芯为原料,以增加雷公藤甲素的提取率和降低雷公藤红素的提取率为研究目标,按优化的小试工艺条件,以75%乙醇水溶液为夹带剂进行超临界二氧化碳萃取时,放大工艺下的雷公藤甲素和雷公藤红素的提取率分别为传统提取方法的1.56和2.27倍;与SFE小试实验结果相比具有相同数量级,表明放大工艺可行。当以雷公藤根皮为原料,以提高雷公藤红素的提取率为研究目标,按优化的小试工艺条件,以乙醇为夹带剂进行超临界二氧化碳萃取时,放大工艺下的雷公藤红素的提取率是传统提取方法的1.28~2.56倍;是SFE小试实验的1.02倍,表明了放大实验与小试实验结果的一致性和放大的可行性。
     本文还利用上述工业规模超临界流体萃取所得的雷公藤根芯和根皮的浸膏为原料,对其中的雷公藤甲素与雷公藤红素的进一步分离进行了研究,优化得到了“酸沉-碱化-溶剂萃取”的工艺路线和各步骤的适宜工艺条件。采用高效液相(HPLC)仪器对分离后的三种产品的检测结果表明,在优化条件下,雷公藤红素产品中检测不到雷公藤甲素;雷公藤甲素产品中检测不到雷公藤红素;总生物碱产品中也未检测出雷公藤甲素和雷公藤红素,表明优化的分离工艺路线可使雷公藤红素、雷公藤甲素、总生物碱三种有效成分均得到较好的分离和富集。
     上述研究表明,本文建立的超临界流体萃取-酸沉-碱化-有机溶剂萃取的工艺路线既能高效提取雷公藤甲素和雷公藤红素又能有效地将雷公藤红素、雷公藤甲素和总生物碱三种有效成分分离,从而为中药制剂雷公藤根芯和根皮的合理利用提供了新的途径和技术支持。
     麻疯树是一种籽油含量很高的非食用油料植物,为世界公认的最有可能成为未来替代化石能源的具有巨大开发潜力的树种。为实现对麻疯树籽资源的合理利用,本文采用超临界二氧化碳萃取技术对从麻疯树籽中提取籽油进行了研究,同时还对麻疯树籽中具有杀虫活性的皂苷的提取条件进行了考察。
     首先采用超临界二氧化碳萃取技术从麻疯树籽中提取麻疯树籽油。对工艺参数(如原料粒度、提取温度和提取压力等)对麻疯树籽油提取率的影响进行了实验研究,结果表明,当麻疯树籽仁粉的粒度为40~60目、萃取压力40MPa、萃取温度55℃时,可使麻疯树籽油达到最大提取率为51.5%,回收率为92.1%。其次进行了中试放大实验研究,结果麻疯树籽油的提取率为47.25%,回收率为84.5%。虽然中试的提取率低于小试结果,但优于一般传统的提取方法,表明超临界二氧化碳萃取工艺的可行性。
     另外,本文还以超临界萃取除油后的籽仁为原料,采用乙醇回流法对籽仁中皂苷成分的提取进行了研究。设计正交实验考察了水浴温度、乙醇浓度、料液比和提取次数对总皂苷提取率的影响。由极差分析知影响因素的排列顺序为:提取次数>料液比>乙醇浓度>水浴温度;最佳的提取条件为水浴温度80℃,乙醇浓度80%,料液比1:10,提取3次。在所选实验范围内,总皂苷的最大提取率为1.955%,回收率为88.64%。
     最后,本文还基于超临界二氧化碳萃取麻疯树籽油的实验数据,计算了麻疯树籽油在超临界流体中的溶解度,并采用Chrastil方程和修正的Chrastil方程对溶解度数据进行关联,关联结果的平均相对误差分别为10.10%和3.468%,表明关联结果较好;采用破碎-完整细胞模型和两步扩散模型对SC-CO_2萃取麻疯树籽油的传质过程进行了模拟,拟合的平均相对误差分别为1.08%~3.67%和3.01%~10.24%,表明模拟结果良好。上述理论研究为麻疯树籽油的超临界二氧化碳萃取工艺的工业放大与设计提供基础数据和技术支持。
Supercritical fluid extraction (SFE) is an environmentally friendly chemical separation technology, which is considered as one of the key technologies in the modernization of extracting and separating natrual products and traditional Chinese medicine. In this paper, SFE combined with other advanced technologies was used to make both the extraction and separation of active components from Tripterygium Wilfordii Hook.f. (T. Wilfordii) and the utilization of the seeds of Jatropha curcas (J. curcas).
     T. Wilfordii is a traditional Chinese medicine, which has many pharmacological actions such as anti-inflammatory, antibacterial, immunosuppressive and antifertility. Triptolide is considered as the main active component while tripterine as the main toxic component. Besides, tripterine is reported to be strongly anticancer.
     Based on the results of preliminary studies, industrial SFE equipment was used for the sacle-up of SFE processes of T. Wilfordii. The peeled roots of T. Wilfordii were extracted with supercritical CO_2 (SC-CO_2) +75% ethanol, aiming to increase the yield of triptolide and decrease the yield of tripterine. The yields of triptolide and tripterine were 1.56 and 2.27 times as much as those of traditional methods, respectively. The yeilds were lower but still in the same magnitude compared to those of pilot experiments, indicating the scale-up process was feasible. The root bark of T. Wilfordii was extracted with SC-CO_2 + ethanol, aiming to increase the yield of tripterine. The yield of tripterine was 1.28-2.56 and 1.02 times as much as those of traditional methods and pilot experiments, respectively. The results were consistent to pilot experiments, indicating the feasibility of the scale-up process.
     An“acidification–alkalization–organic solvent extraction”process was designed and investigated for further separation of triptolide and tripterine in the extracts obtained from the scale-up SFE experiments. High performance liquid chromatography was performed for the detection of triptolide and tripterine in the products. Under optimal separation condtions, the following results could be obtained: no triptolide was detectable in the product of tripterine, no tripterine was detectable in the product of triptolide, and neither triptolide nor tripterine was detectable in the product of total alkaloids. Therefore triptolide, tripterine and total alkaloids were well separated and enriched with the optimal separation process.
     Above results showed the process of“SFE-acidification-alkalization-organic solvent extraction”can efficiently extract triptolide and tripterine, and well separate triptolide, tripterine and total alkaloids in the extracts. It provided a new approach and technology support for the appropriate utilization of T. Wilfordii. With a high content of non-edible seed oil, J. curcas is world recognized as the most potential plant to be the substitute of fossils. In this study, jatropha seed oil was extracted with SC-CO_2 and the extraction of molluscacidal saponins from the seeds was explored.
     Firstly, seed oil was extracted from the seed kernels of J. curcas by SC-CO_2. The effect of some factors such as particle size, extraction temperature and pressure on the yield of seed oil was investigated. A maximum yield of 51.5% (recovery 92.1%) can be obtained under the optimal conditions (particle size: 250-380μm, 55℃and 40MPa). The scale-up experiment of the optimal conditions gave a yield of 47.25% (recovery 84.5%), which was lower than that of pilot experiemnts but higher than that of traditional methods, indicating the SC-CO_2 extraction process was feasible.
     Secondly, saponins were extracted from the de-oiled seed kernels by heat reflux extraction with ethanol solution. The influences of water temperature, concentration of ethanol solution, solid-liquid ratio and extraction times on the yield of total saponins were investigated by an orthogonal design. The range analysis showed the factors were in an order of extraction times > solid-liquid ratio > concentration of ethanol solution > water temperature. And the optimal extraction conditions were extraction with 80% ethanol with a solid-liquid ratio of 1:10 under the water temperature of 80℃for 3 times. The maximum yield of total saponins was 1.955% (recovery 88.64%) among the experiments.
     Lastly, the solubilities of jatropha seed oil in SC-CO_2 at definite temperatures and pressures were caculated from the initial slope of the extraction curve of yield versus volumes of SC-CO_2 and correlated with the Chrastil equation and modified Chrastil equation with AARDs of 10.10 % and 3.468 %, respectively. In addition, the SC-CO_2 extraction process of jatropha seed oil was simulated with the broken and intact cell model and two-stage diffusion model, respectively. The values of AARDs were in the range of 1.08-3.67 % and 3.01%-10.24%, respectively, indicating that both models had good simulation results. The above theoretical studies therefore provide basic data and technoglogy support for the industrial scale-up and process design of the SC-CO_2 extraction of jatropha seed oil.
引文
[1]诚静容,黄普华.中国植物志(第45卷),北京:科学出版社, 1999, 178~180.
    [2]马伟光,张滔,张超,等.有毒药物雷公藤的研究及展望,中华中医药杂志, 2006, 21(2): 117-120.
    [3]张崇璞,郑启泰.雷公藤叶中二萜化合物的研究,药学学报, 1993, 28(2): 110-115.
    [4]崔维利,梁伟.雷公藤研究概况,天津药学, 1999, 11(2): 37~38.
    [5]罗都强,张兴,冯俊涛,杀虫植物雷公藤研究进展,西北农业大学学报, 2000, 28(3): 84~89.
    [6]李艳芳,徐玉东,刘兰涛,等.雷公藤多甙对佐剂性关节炎模型大鼠ICAM-1的影响,解剖与临床, 2007, 12(3): 167~170.
    [7]胡永红,黄黎黎,涂胜豪,等.雷公藤多甙对佐剂性关节炎大鼠关节软骨的保护作用,天津医药, 2007, 35(5): 350~353.
    [8]秦卫松,刘志红,曾彩虹,等.雷公藤甲素对heymann肾炎模型足细胞病变的影响,肾脏病与透析肾移植杂志, 2007, 16(2): 101~109.
    [9]张壤之,孙先进,王宗泽.雷公藤多甙片配合中药治疗寻常型银屑病67例,皮肤病与性病, 2007, 29(1): 22~23.
    [10] Zhen Q S, Ye X, Wei Z J, Recent progress in research on tripterygium: A male antifertility plant, Contraception, 1995, 51(2): 121-129.
    [11]张蕊,雷公藤药材中生物碱类成分质量研究: [硕士学位],中国协和医科大学, 2006.
    [12] Kupchan S M, Court W A, Jr. R G D, et al. Tumor inhibitors. Lxxiv. Triptolide and tripdiolide, novel antileukemic diterpenoid triepoxides from Tripterygium Wilfordii, J. Am. Chem. Soc., 1972, 90(20): 7194-7195.
    [13]程自珍,林贤琦,芦平,等.雷公藤有效成分研究概况,中国医院药学杂志, 1986, 6(9): 26~28.
    [14]马鹏程,吕燮余,杨晶晶,等.雷公藤中16-羟基雷公藤内酯醇的分离与鉴定,药学学报, 1991, 26(10): 759~763.
    [15]吕燮余,马鹏程,陈沄,等.雷公藤中雷藤氯内酯醇(t4)的分离与结构测定,中国医学科学院学报, 1990, 12(3): 157~161.
    [16] Li K, Duan H, Kawazoe K, et al. Terpenoids from Tripterygium Wilfordii, Phytochemistry, 1997, 45(4): 791-796.
    [17] Duan H, Takaishi Y, Momota H, et al. Immunosuppressive diterpenoids from Tripterygium Wilfordii, Journal of Natural Products, 1999, 62(11): 1522-1525.
    [18] Shen Q, Yao Z, Takaishi Y, et al. Immunosuppressive terpenoids from Tripterygium Wilfordii, Chinese Chemical Letters, 2008, 19(4): 453-456.
    [19] Yang G, Feng H, Li Y. Di-and triterpenoids from Tripterygium Wilfordii, Natural Product Research, 2001, 15(2): 103-110.
    [20]阙慧卿,耿莹莹,林绥,等.雷公藤化学成分的研究,中草药, 2005, 36(11): 1624~1625.
    [21]龚苏晓,江纪武.雷公藤中新的倍半萜类生物碱和二萜类,国外医学中医中药分册, 2000, 22(6): 330~331.
    [22]马鹏程,吕燮余,贺存恒,等.雷藤内酯三醇的分离与结构研究,植物学报, 1991, 33(5): 370~377.
    [23]陈玉,杨光忠,赵松,等.雷公藤二萜成分研究,林产化学与工业, 2005, 25(2): 35~38.
    [24]马鹏程,闫玮,吕杨,等.新雷公藤内酯四醇的研究,植物学报, 1995, 37(10): 822~828.
    [25] Guo F, Xi M, Li Y. Triptotin a and b, two novel diterpenoids from Tripterygium Wilfordii, Tetrahedron Letters, 1999, 40(5): 947-950.
    [26] Luo D, Zhang X, Tian X, et al. Triptowilfolide, a novel compound from Tripterygium Wilfordii, Helvetica Chimica Acta, 2003, 86(8): 2784-2786.
    [27] Zhao S, Chen G R, Yang G Z, et al. A novel diterpenoid, 11-o-β-d-glucopyranosylneo-triptophenolide, from Tripterygium Wilfordii Hook. F, Chinese Chemical Letters, 2002, 13(7): 641-644.
    [28] Zhou B N, Zhu D Y, Deng F X, et al. Studies on new components and stereochemistry of diterpenoids from Tripterygium Wilfordii, Planta Med., 1988, 54(4): 330-332.
    [29]邓福孝,黄寿卿,王振登,等.雷公藤化学成分的研究—Ⅱ.雷公藤新二萜内酯—雷酚酮内酯的结构测定,药学学报, 1981, 16(2): 155~157.
    [30]邓福孝,周炳南,宋国强,等.雷公藤化学成分的研究ⅲ.两种新二萜内酯-雷酚内酯甲醚和雷酚新内酯的分离及结构,药学学报, 1982, 17(2): 146~150.
    [31]马鹏程,闫玮,吕扬,等.双氯雷公藤内酯四醇的分离与结构研究,植物学报, 1996, 38(3): 234~240.
    [32]马鹏程,杨长林.雷公藤中12-表雷公藤内酯三醇的分离与物质研究,植物学报, 1993, 35(8): 637~643.
    [33] Chou T, Mei P. Study on chinese herb Lei Gong Teng, Tripterygium Wilfordii Hook F, the colouring substance and sugers, Chinese Journal of Physiology, 1936, 10: 529-534.
    [34]杨光忠,李援朝.雷公藤抗肿瘤三萜成分的研究,林产化学与工业, 2006, 26(4): 19~22.
    [35]杨光忠,李春玉,李援朝.雷公藤新三萜成分的研究,有机化学, 2006, 26(11): 1529~1532.
    [36]陈玉.雷公藤三萜成分的研究,湖北工学院学报, 2000, 15(4): 42~44.
    [37] Yang G-Z, Xia M-L, Li Y-C. Two novel phenolic triterpenes from Tripterygium Wilfordii, Journal of Asian Natural Products Research, 2001, 3(2): 82-88.
    [38] Ushiro S, Ono M, Nakayama J, et al. New nortriterpenoid isolated from anti-rheumatoid arthritic plant, Tripterygium Wilfordii, modulates tumor growth and neovascularization, International Journal of Cancer, 1997, 72(4): 657-663.
    [39]杨光忠,郭夫江,李援朝.雷公藤多苷三萜类成分的研究,中国药学杂志, 2000, 35(1): 50~51.
    [40] Duan H, Takaishi Y, Momota H, et al. Triterpenoids from Tripterygium Wilfordii, Phytochemistry, 2000, 53(7): 805-810.
    [41]苗抗立,张晓康,董颖.雷公藤根皮三萜成分研究,天然产物研究与开发, 2000, 12(4): 1~7.
    [42] Morota T, Yang C-X, Ogino T, et al. D:A-friedo-24-noroleanane triterpenoids from Tripterygium Wilfordii, Phytochemistry, 1995, 39(5): 1159-1163.
    [43] Yang G, Yin X, Li Y. Chemical constituents of Tripterygium Wilfordii, Helvetica Chimica Acta, 2000, 83(12): 3344-3350.
    [44] Huang Y, Zhou Y, Fan Y, et al. Celastrol inhibits the growth of human glioma xenografts in nude mice through suppressing vegfr expression, Cancer Letters, 2008, 264(1): 101-106.
    [45] Yang H, Chen D, Cui Q C, et al. Celastrol, a triterpene extracted from the chinese "thunder of god vine", is a potent proteasome inhibitor and suppresses human prostate cancer growth in nude mice, Cancer Res, 2006, 66(9): 4758-4765.
    [46] Li H, Zhang Y-y, Huang X-y, et al. Beneficial effect of tripterine on systemic lupus erythematosus induced by active chromatin in BALB/C mice, European Journal of Pharmacology, 2005, 512(2-3): 231-237.
    [47] Wu F, Han M, Wilson J X. Tripterine prevents endothelial barrier dysfunction by inhibiting endogenous peroxynitrite formation, British Journal of Pharmacology, 2009, 157(6): 1014-1023.
    [48] Acree Jr. F, Haller H L. Wilfordine, an insecticidal alkaloid from Tripterygium Wilfordii Hook, J. Am. Chem. Soc., 1950, 72(4): 1608-1611.
    [49] Beroza M. Alkaloids from Tripterygium Wilfordii Hook.—wilforine and wilfordine, J. Am. Chem. Soc., 1951, 73(8): 3656-3659.
    [50] Beroza M. Alkaloids from Tripterygium Wilfordii Hook: Wilforgine and wilfortrine, J. Am. Chem. Soc., 1952, 74(6): 1585-1588.
    [51] Beroza M. Alkaloids from Tripterygium Wilfordii Hook. The structure of wilforine, wilfordine, wilforgine and wilfortrine, J. Am. Chem. Soc., 1957, 75(1): 44-49.
    [52]林绥,樱井信子,郑幼兰,等.免疫抑制成分异雷公藤春碱的分离与结构,药学学报, 1994, 29(8): 599~602.
    [53] Beroza M. Alkaloids from Tripterygium Wilfordii Hook. Isolation and structure of wilforzine, J. Am. Chem. Soc., 1957, 75(9): 2136-2138.
    [54]何直昇,洪山海,李亚,等.新生物碱雷公藤碱戊的结构,化学学报, 1985, 43(6): 593~596.
    [55]邓福孝,曹剑虹,夏志林,等.雷公藤倍半萜生物碱的研究,植物学报, 1987, 29(5): 523~526.
    [56]林绥,樱井信子,刘丹红.雷公藤倍半萜生物碱的分离与结构,中草药, 1995, 26(9): 458~461.
    [57]林绥,李援朝,樱井信子,等.雷公藤倍半萜生物碱的分离与结构,药学学报, 1995, 30(7): 513~516.
    [58] Duan H, Takaishi Y, Jia Y, et al. Sesquiterpene alkaloids from extracts of Tripterygium Wilfordii, Chemical & Pharmaceutical Bulletin, 1999, 47(11): 1664-1667.
    [59]林绥,李援朝,郭舜民,等.雷公藤倍半萜生物碱的研究(Ⅳ),植物学报, 2001, 43(6): 647~649.
    [60]林绥,李援朝,樱井信子,等.雷公藤倍半萜生物碱的研究,药学学报, 2001, 36(2): 116~119.
    [61]井莉,柯昌强,李希强,等.雷公藤中倍半萜生物碱的分离与结构鉴定,中国药物化学杂志, 2008, 18(3): 210~214.
    [62] Horiuch M, Murakami C, Fukamiya N, et al. Tripfordines a-c, sesquiterpenepyridine alkaloids from Tripterygium Wilfordii, and structure anti-hiv activity relationships of tripterygium alkaloids, J. Nat. Prod., 2006, 69: 1271-1274.
    [63]舒孝顺,高中洪,杨祥良.雷公藤生物碱的化学和药理活性研究进展,广东药学院学报, 2003, 19(2): 150~152.
    [64]刘子皎,朱惠,林建峰,等.雷公藤明碱、异雷公藤春碱及异雷公藤内酯四醇的免疫抑制作用,中国药理学通报, 1999, 15(2): 189.
    [65] Duan H-Q, Takaishi Y, Jia Y-F, et al. Sesquiterpene polyol esters from Tripterygium Wilfordii, Phytochemistry, 2001, 56(4): 341-346.
    [66] Yang G-z, Li Y-c. Cyclopeptide and terpenoids from Tripterygium Wilfordii Hook. F., Helvetica Chimica Acta, 2002, 85(1): 168-174.
    [67]陈玉,杨光忠,李援朝.雷公藤化学成分的研究,天然产物研究与开发, 2005, 17(3): 301~302.
    [68]陈玉,杨光忠,李援朝.雷公藤酚性成分研究,中南民族大学学报(自然科学版), 2005, 24(1): 8~10.
    [69]陈利欣.李晶,雷公藤的肾毒性作用及其防治,山东医药, 2009, 49(37): 113~114.
    [70]郭艳红,谭垦.雷公藤的毒性及其研究概况,中草药, 2007, 30(1): 112~117.
    [71]贾春伶.雷公藤不良反应的文献调查与分析,北京中医, 2006, 25(1): 45~48.
    [72]程自珍,肖银生,方义杰,等.雷公藤提取工艺的探讨,中国医药工业杂志, 1990, 21(10): 435~436.
    [73]陈俊元,夏志林,邓福孝.雷公藤内酯醇提取工艺的改进,中国医药工业杂志, 1989, 20(5): 195, 200.
    [74]程敬丽,朱烈,朱国念,等.雷公藤甲素的提取工艺,农药, 2005, 44(7): 316~318.
    [75]王曙东,汤淏,李克.不同提取工艺对雷公藤内酯醇含量的影响,南京中医药大学学报, 2009, 25(4): 289~290.
    [76]陈列忠,王开金,陈建明,等.雷公藤植物源农药的制备工艺及优化,现代农药, 2006, 5(1): 26~28.
    [77]佟连生,刘云利.雷公藤综合利用的探讨,黑龙江医药科学, 2004, 27(5): 4.
    [78]周小慧,廉玉利,郭金剑,等.雷公藤总生物碱的提取及对东亚飞蝗的生物活性检测,中南林业科技大学学报, 2009, 29(6): 79~81.
    [79]王诗宏,杨祥良,韩定献,等.超临界二氧化碳萃取雷公藤中有效成分的研究,时珍国医国药, 2002, 13(11): 641~642.
    [80]李红茹.超临界流体在中药雷公藤制剂中的应用及其溶解度的理论研究: [博士学位],天津大学, 2008.
    [81]李红茹,李淑芬,段宏泉,等.超临界流体萃取雷公藤中有效成分的工艺优化,天津大学学报, 2007, 40(3): 269~274.
    [82]顾志鹏.中药材雷公藤中有效成分的提取与分离: [硕士],天津大学, 2009.
    [83]马鹏程,吕燮余,王莉莉.雷藤氯内酯醇的半合成研究——雷公藤内酯醇和雷公藤内酯酮的结构改造,中国药科大学学报, 1992, 23(3): 135~139.
    [84] Li Z, Zhou Z-L, Miao Z-H, et al. Design and synthesis of novel C14-hydroxyl substituted triptolide derivatives as potential selective antitumor agents, J. Med. Chem., 2009, 52(16): 5115-5123.
    [85] Aoyagi Y, Hitotsuyanagi Y, Hasuda T, et al. Fluorination of triptolide and its analogues and their cytotoxicity, Bioorg. Med. Chem. Lett., 2008, 18(7): 2459-2463.
    [86] Li W, Liu Y, He Y, et al. Characterization of triptolide hydroxylation by cytochrome p450 in human and rat liver microsomes, Xenobiotica, 2008, 38(12): 1551-1565.
    [87] Qi Y M, Musser J H. Immunosuppressive compounds and methods, US Pat, 5663335, 1997-09-02.
    [88] Dai D, Fidler J M, Musser J H. Amino acid derivatives of triptolide compounds as immunemodulators and anticancer agents, US Pat, 6569893, 2003-05-27.
    [89] Musser J H. Triptolide prodrugs having high aqueous solubility, US Pat, 6150539, 2000-11-21.
    [90] Nakano K, Yoshida C, Furukawa W, et al. Terpenoids in transformed root culture of Tripterygium Wilfordii Phytochemistry, 1998, 49(6): 1821-1824.
    [91] Nakano K, Oose Y, Masuda Y, et al. A diterpenoid and triterpenes from tissue cultures of Tripterygium Wilfordii, Phytochemistry, 1997, 45(2): 293-296.
    [92] Ning L, Han J, Zhang X, et al. Biotransformation of triptolide and triptonide by cell suspension cultures of catharanthus roseus, J Asian Nat Prod Res, 2004, 6(2): 93-97.
    [93] Milanova R, Han K, Moore M. Oxidation and glucose conjugation of synthetic abietane diterpenes by cunninghamella sp. Ii. Novel routes to the family of diterpenes from Tripterygium Wilfordii, Journal of Natural Products, 1995, 58(1): 68-73.h
    [94]苏明声,谢小梅,罗闳丹,等.雷公藤解毒持效双向发酵工艺的建立,菌物学报, 2010, 29(2): 294~299.
    [95]王曙东,汤淏,李克.不同树脂富集雷公藤内酯醇的比较,医学研究生学报, 2007, 20(6): 572~573, 577.
    [96]王曙东,陶建生. D101树脂对雷公藤内酯醇的吸附性能研究,中草药, 2005, 25(2): 211~223.
    [97]王曙东,滕英博,谢虞.不同吸附条件对雷公藤内酯醇含量的影响,南京中医药大学学报, 2005, 21(5): 326~327.
    [98]江再茂,李遐方,王曙东,等.不同极性洗脱液对雷公藤内酯醇含量的影响,中国药业, 2008, 17(2): 41~42.
    [99]徐小勇.雷公藤有效成分的提取及分离研究——萃取、柱层析: [硕士学位],浙江大学, 2005.
    [100]徐小勇,陈欣,何潮洪,等.工业柱层析分离雷公藤内酯醇的软测量模型,仪器仪表学报, 2004, 25(4): 665~666.
    [101]王曙东,滕英博,谢虞昇,等.大孔吸附树脂富集雷公藤内酯醇的研究,医学研究生学报, 2005, 18(3): 204~205.
    [102]刘逆夫.雷公藤多甙生产柱层析工序质量改进的研究: [硕士学位],天津大学, 2004.
    [103]何维.雷公藤初提物中萜类化合物分离及鉴别,儿科药学杂志, 2009, 15(5): 48~50.
    [104] Wu S, Sun C, Wang K, et al. Preparative isolation and purification of celastrol from Celastrus Orbiculatus thunb. by a new counter-current chromatography method with an upright coil planet centrifuge, Journal of Chromatography A, 2004, 1028(1): 171-174.
    [105]沈倩.雷公藤免疫抑制活性成分研究: [硕士学位],天津医科大学, 2008.
    [106] Ye H, Ignatova S, Luo H, et al. Preparative separation of a terpenoid and alkaloids from Tripterygium Wilfordii Hook. F. Using high-performance counter-current chromatography: Comparison of various elution and operating strategies, Journal of Chromatography A, 2008, 1213(2): 145-153.
    [107] OuYang X K, Jin M C, Hea C H. Preparative separation of four major alkaloids from medicinal plant of Tripterygium Wilfordii Hook. F. using high-speed counter-current chromatography, Separation and Purification Technology, 2007, 56: 391-324.
    [108]林娟,周选围,唐克轩.麻疯树植物资源研究概况,热带亚热带植物学报, 2004, 12: 285~290.
    [109]刘杰,李黔柱,尹航,等.麻疯树植物资源的研究与开发利用进展,贵州大学学报(自然科学版), 2006, 23(2): 105~110.
    [110] Kochhar S, Singh S P, Kochhar V K. Effect of auxins and associated biochemical changes during clonal propagation of the biofuel plant--Jatropha Curcas, Biomass and Bioenergy, 2008, 32(12): 1136-1143.
    [111] Heller J. Physic nut, Jatropha Curcas L., Rome(Italy): International Plant Genetic Resources Institute, 1996.
    [112]江苏省新医学院,中药大辞典(下册),上海:上海人民出版社, 1977, 2227.
    [113] Openshaw K. A review of Jatropha Curcas: An oil plant of unfulfilled promise, Biomass and Bioenergy, 2000, 19: 1-15.
    [114]邓志军,程红焱,宋松泉.麻疯树籽的研究进展,云南植物研究, 2005, 27(6): 605~612.
    [115] Kumar A, Sharma S. An evaluation of multipurpose oil seed crop for industrial uses (Jatropha Curcas L.): A review, Industrial Crops and Products, 2008, 28(1): 1-10.
    [116] Thomas R, Sah N K, Sharma P B. Therapeutic biology of Jatropha Curcas: A mini review, Current Pharmaceutical Biotechnology, 2008, 9: 315-324.
    [117] ADOLF W, OPFERKUCH H J, HECKER E. Irritant phorbol derivatives from four Jatropha species, Phytochemistry, 1984, 23(1): 129-132.
    [118] Haas W, Sterk H, Mittelbach M. Novel 12-deoxy-16-hydroxyphorbol diesters isolated from the seed oil of Jatropha Curcas, J. Nat. Prod., 2002, 65(10): 1434-1440.
    [119] Naengchomnong W, Thebtaranonth Y, Wiriyachitra P, et al. Isolation and structure determination of four novel diterpenes from Jatropha Curcas, Tetrahedron Letters, 1986, 27(22): 2439-2442.
    [120] Naengchomnong W, Thebtaranonth Y, Wiriyachitra P, et al. Isolation and structure determination of two novel lathyrenes from Jatropha Curcas, Tetrahedron Letters, 1986, 27(47): 5675-5678.
    [121]陈梦菁,张国文.麻疯树的二萜成分,植物学报, 1988, 30(3): 308~311.
    [122]孔令义,闵知大,史剑侠.麻疯树根的化学成分研究,植物学报, 1996, 38(2): 161~166.
    [123] Ravindranath N, Ramesh C, Das B. A rare dinorditerpene from Jatropha Curcas, Biochemical Systematics and Ecology, 2003, 31(4): 431-432.
    [124] RAVINDRANATH N, REDDY M R, RAMESH C, et al. New lathyrine and podocamarpane diterpenoids from Jatropha Curcas, Chem Pharm Bull, 2004, 52(5): 608-611.
    [125] Ravindranath N, Reddy M R, Mahender G, et al. Deoxypreussomerins from Jatropha Curcas: Are they also plant metabolites, Phytochemistry, 2004, 65(16): 2387-2390.
    [126]李静.麻疯树(jatropha curcas l.)籽杀虫活性物质的分离、纯化及作用机理研究: [博士学位],四川大学, 2005.
    [127] Mitra C R, Bhatnagar S C, Sinha M K. Chemical examination of Jatropha Curcas, Ind. J. Chem, 1970, 8: 1047.
    [128]林娟.麻疯树(Jatropha Curcas)毒蛋白(curcin)的分离纯化、基因克隆及作用机理研究: [博士学位],四川大学, 2002.
    [129] Stirpe F, Pession-Brizzi A, Lorenzoni E. Studies on the proteins from the seeds of Croton Tiglium and Jatropha Curcas, Biochemical Journal, 1976, 156: 1-6.
    [130]林娟,颜钫,唐琳,等.麻疯树核糖体失活蛋白抗肿瘤作用,中国药理学报, 2003, 24(3): 241~246.
    [131]陈钰.麻疯树(Jatropha Curcas L.)蛋白质的分布、提取、保存及诱导蛋白的研究: [硕士学位],四川大学, 2004.
    [132] Nath L K, Dutta S K. Extraction and purification of curcain, a protease from the latex of Jatropha Curcas Linn, J Pharm Pharmacol, 1991, 43(2): 111-114.
    [133] Berg A J J v d, Horsten S F A J, Bosch J J K-v d, et al. Curcacycline a - a novel cyclic octapeptide isolated from the latex of Jatropha Curcas L., FEBS Letters, 1995, 358(3): 215-218.
    [134] Auvin C, Baraguey C, Blond A, et al. Curcacycline b, a cyclic nonapeptide from Jatropha Curcas enhancing rotamase activity of cyclophilin, Tetrahedron Letters, 1997, 38(16): 2845-2848.
    [135] Khafagy S, Mohamed Y, Abdel-salam N. Phytochemistry study of Jatropha Curcas, Planta Medical, 1977, 31(3): 274-277.
    [136] Subramanian S S, Nagarajan S, Sulochana N. Flavonoids of some euphorbiaceous plants, Phytochemistry, 1971, 10(10): 2548-2549.
    [137]李维莉,彭永芳,马银海,等.云南麻烘罕的化学成分研究,中草药, 2004, 35(4): 385~386.
    [138] Gübitz G M, Mittelbach M, Trabi M. Exploitation of the tropical oil seed plant Jatropha Curcas L., Bioresource Technology, 1999, 67: 73-82.
    [139] Staumann R, Schubert-zsilavecz M, Hierman A. A complex of 5-hydroxypyrolidin-2-dione and pyrimidine-2, 4-dione isolated from Jatropha Curcas, Phytochemistry, 1999, 50(2): 337-338.
    [140]李化.西南地区麻疯树籽的化学成分和种苗离体快繁研究: [硕士学位],四川大学, 2006.
    [141] Gandhi V M, Cherian K M, Mulky M J. Toxicological studies on ratanjyot oil, Fd Chem. Toxic., 1995, 33(1): 39-42.
    [142] Sharma G D, Gupta S N, Khabiruddin M, Cultivation of Jatropha Curcas as a future source of hydrocarbon and other industrial products, in: Gubitz G M, Mittelbach M, Trabi M, Eds. Biofuels and industrial products from Jatropha Curcas, DBV Graz: Austria. 1997, 19-21.
    [143] Wink M, Koschmieder C, Sauerwein M, et al. Phorbol esters of J. Curcas-biological activities and potential applications, in: Gubitz G M, Mittelbach M, Trabi M, Eds. Biofuels and industrial products from Jatropha Curcas, DBV Graz: Austria. 1997, 160-166.
    [144] Makkar H P S, Becker K. Potential of J. Curcas seed meal as a protein supplement to livestock feed, constraints to its utilisation and possible strategies to overcome constraints, in: Gubitz G M, Mittelbach M, Trabi M, Eds. Biofuels and industrial products from Jatropha Curcas, DBV Graz: Austria. 1997, 190-205.
    [145] Makkar H P S, Becker K, Sporer F, et al. Studies on nutritive potential and toxic constituents of different provenances of Jatropha Curcas, J. Agric. Food Chem., 1997, 45: 3152.
    [146] Akintayo E T. Characteristics and composition of parkia biglobbossa and Jatropha Curcas oils and cakes, Bioresource Technology, 2004, 92(3): 307-310.
    [147] Devappa R K, Makkar H P S, Becker K. Optimization of conditions for the extraction of phorbol esters from jatropha oil, Biomass and Bioenergy, 2010, 34(8): 1125-1133.
    [148] Hirota M, Suttajit M, Suguri H, et al. A new tumor promoter from the seed oil of Jatropha Curcas L., an intramolecular diester of 12-deoxy-16-hydroxyphorbol, Cancer Research, 1998, 48: 5800-5804.
    [149] Rug M, Sporer F, Wink M, et al. Molluscicidal properties of J. Curcas against vector snails of the human parasites schistosoma mansoni and S. Japonicum, in: Gubitz G M, Mittelbach M, Trabi M, Eds. Biofuels and industrial products from Jatropha Curcas, DBV Graz: Austria. 1997, 227-232.
    [150] Aderibigbe A O, Johnson C O L E, Makkar H P S, et al. Chemical composition and effect of heat on organic matter- and nitrogen-degradability and some antinutritional components of jatropha meal, Animal Feed Science Technology, 1997, 67: 223-243.
    [151] Devappa R K, Swamylingappa B. Biochemical and nutritional evaluation of jatropha protein isolate prepared by steam injection heating for reduction of toxic and antinutritional factors, Journal of the Science of Food and Agriculture, 2008, 88: 911-919.
    [152]闵恩泽,唐忠,杜泽学,等.发展我国生物柴油产业的探讨,中国工程科学, 2005, 7(4): 1~4.
    [153]刘芳,兰翠玲,蔡成翔,等.麻疯树生物柴油的研究进展,广州化工, 2009, 37(4): 25~27.
    [154]尹航.贵州麻疯树籽油生产生物柴油新工艺研究: [硕士],贵州大学, 2006.
    [155] Willems P, Kuipers N J M, de Haan A B. Gas assisted mechanical expression of oilseeds: Influence of process parameters on oil yield, The Journal of Supercritical Fluids, 2008, 45(3): 298-305.
    [156] Shah S, Sharma A, Gupta M N. Extraction of oil from Jatropha curcas L. Seed kernels by combination of ultrasonication and aqueous enzymatic oil extraction, Bioresource Technology, 2005, 96: 121-123.
    [157] Shah S, Sharma A, Gupta M N. Extraction of oil from Jatropha curcas L. Seed kernels by enzyme assisted three phase partitioning, Industrial Crops and Products, 2004, 20: 275-279.
    [158]曾虹燕,方芳,苏杰龙,等.麻疯树籽油提取技术,江苏农业学报, 2005, 21(1): 69~70.
    [159]周慧.以麻疯树油为原料制备生物柴油的工艺研究: [硕士],四川大学, 2006.
    [160]李静,吴芬宏,陈延燕,等.麻疯树籽提取物对几种害虫的杀虫活性,农药, 2006, 45(1): 57~59.
    [161]李静,颜钫,吴芬宏,等.麻疯树籽提取物对萝卜蚜的杀虫活性,植物保护学报, 2004, 31(3): 289~293.
    [162]李静,颜钫,何文兴,等.麻疯树萜醇Ⅰ对家蚕的毒性及作用机理研究,农药学学报, 2005, 7(1): 29~34.
    [163] Kumar S, Kaushik N. Jatropha curcas L. Silviculture and uses, Jodhpur: Agrobios (India), 2008.
    [164]黄四喜,曾庆海,程忠跃,等.麻疯树素现场毒杀钉镙的研究,中华卫生杀虫药械, 2006, 12(3): 210~211.
    [165] Yasuraoka K, Hashiguchi J, Blas B L. Laboratory assessment of the molluscicidal activity of the plant Jatropha Curcas against oncomelania snail, in: Proceedings of the Philippine-Japan joint conference on schistosomiasis research and control, Manila, 1980, 110-112.
    [166] Liu S Y, Sporer F, Wink M, et al. Anthraquinones in Rheum Palmatum and Rumex Dentatus (Polygonaceae), and phorbol esters in Jatropha Curcas (Euphorbiaceae) with molluscicidal activity against the schistosome vector snails oncomelania, biomphalaria and bulinus, Tropical Medicine and International Health, 1997, 2(2): 179-188.
    [167] Rug M, Ruppel A. Toxic activities of the plant Jatropha Curcas against intermediate snail hosts and larvae of schistosomes, Tropical Medicine and International Health, 2000, 5(6): 423-430.
    [168] Abdu-Aguye, Sannusi A, Alafiya-Tayo R A, et al. Acute toxicity studies with Jatropha Curcas L., Hum. Exp. Toxicol., 1986, 5(4): 269-274.
    [169]宋维.急性麻疯树果中毒86例临床分析,海南医学, 2002, 13(11): 3~4.
    [170]谭逢枚.阿托品抢救重症麻疯树果中毒4例,广东医学院学报, 1998, 16(3): 277~278.
    [171] Staubmann R, Foidl G, Foidl N, et al. Biogas production from Jatropha Curcas press-cake, Applied Biochemistry and Biotechnology, 1997, 63(1): 457-467.
    [172] Messmore H E. Process for producing asphaltic materials, US Pat, 2420185, 1947-5-6.
    [173]韩布兴.超临界流体科学与技术,北京:中国石化出版社, 2005.
    [174]王松汉.石油化工设计手册,北京:化学工业出版社, 2002.
    [175]刘晓庚,陈梅梅,谢亚桐.夹带剂及其对超临界CO_2萃取效能的影响,食品科学, 2004, 25(11): 353~357.
    [176] Johnston K P, Harrison K L, Clarke M J, et al. Water-in-carbon dioxide microemulsions: An environment for hydrophiles including proteins, Science, 1996, 271(5249): 624-626.
    [177] Ewald A H, Jepson W B, Rowlinson J S. The solubility of solids in gases, Discussions of the Faraday Society, 1953, 15: 238-243.
    [178] King A D, Robertson W W. Solubility of naphthalene in compressed gases, Journal of Chemical Physics, 1962, 37(7): 1453-1455.
    [179] van der Waals J. Over de continuiteit van den gas- en vloeistoftoestand (on the continuity of the gas and liquid state): [Ph. D. thesis], Leiden, 1873.
    [180] Redlich O, Kwong J N S. On the thermodynamics of solutions. V. An equation of state. Fugacities of gaseous solutions, Chemical reviews, 1949, 44(1): 233-244.
    [181] Soave G. Equilibrium constants from a modified redlich-kwong equation of state, Chemical Engineering Science, 1972, 27(6): 1197-1203.
    [182] Peng D-Y, Robinson D B. A new two-constant equation of state, Industrial & Engineering Chemistry Fundamentals, 1976, 15(1): 59-64.
    [183] Patel N C, Teja A S. A new cubic equation of state for fluids and fluid mixtures, Chemical Engineering Science, 1982, 37(3): 463-473.
    [184] Anderko A. Equation of state methods for the modeling of phase equilibria, Fluid Phase Equilibria, 1990, 61(1-2): 145-225.
    [185] Johnston K P, Eckert C A. An analytical carnahan-starling-van der waals model for solubility of hydrocarbon solids in supercritical fluids, AIChE Journal, 1981, 27(5): 773-779.
    [186] Johnston K P, Ziger D H, Eckert C A. Solubilities of hydrocarbon solids in supercritical fluids. The augmented van der waals treatment, Industrial & Engineering Chemistry Fundamentals, 1982, 21(3): 191-197.
    [187] Mansoori G A, Carnahan N F, Starling K E, et al. Equilibrium thermodynamic properties of the mixture of hard spheres, The Journal of Chemical Physics, 1971, 54(4): 1523-1525.
    [188] Mart C J, Papadopoulos K D, Donohue M D. Application of perturbed-hard-chain theory to solid-supercritical-fluid equilibria modeling, Industrial & Engineering Chemistry Process Design and Development, 1986, 25(2): 394-402.
    [189] Brennecke J F, Eckert C A. Phase equilibria for supercritical fluid process design, AIChE Journal, 1989, 35(9): 1409-1427.
    [190] Brignole E A, Skjold-J?rgensen S, Fredenslund A A. Application of a local composition equation of state to supercritical fluid phase equilibrium problems, Berichte der Bunsengesellschaft für physikalische Chemie, 1984, 88(3): 801-806.
    [191]胡英.近代化工热力学,上海:上海科学技术文献出版社, 1994.
    [192] Soave G. Improvement of the van der waals equation of state, Chemical Engineering Science, 1984, 39(2): 357-369.
    [193] Plocker U, Knapp H, Prausnitz J. Calculation of high-pressure vapor-liquid equilibria from a corresponding-states correlation with emphasis on asymmetric mixtures, Industrial & Engineering Chemistry Process Design and Development, 1978, 17(3): 324-332.
    [194] Panagiotopoulos A Z, Reid R C. Multiphase high pressure equilibria in ternary aqueous systems, Fluid Phase Equilibria, 1986, 29: 525-534.
    [195] Stryjek R, Vera J H. PRSV—an improved peng-robinson equation of state with new mixing rules for strongly nonideal mixtures, The Canadian Journal of Chemical Engineering, 1986, 64(2): 334-340.
    [196] Schwartzentruber J, Galivel-Solastiouk F, Renon H. Representation of the vapor---liquid equilibrium of the ternary system carbon dioxide --- propane --- methanol and its binaries with a cubic equation of state : A new mixing rule, Fluid Phase Equilibria, 1987, 38(3): 217-226.
    [197] Wilczek-Vera G, Vera J H. A comparative study of mixing rules for cubic equations of state, Fluid Phase Equilibria, 1987, 37: 241-253.
    [198] Vetere A. A predictive method for calculating the solubility of solids in supercritical gases application to apolar mixtures, Chemical Engineering Science, 1979, 34(12): 1393-1400.
    [199] Ikushima Y, Goto T, Arai M. Modified solubility parameter as an index to correlate the solubility in supercritical fluids, Bulletin of the Chemical Society of Japan, 1987, 60(11): 4145-4147.
    [200] Gurdial G S, Macnaughton S J, Tomasko D L, et al. Influence of chemical modifiers on the solubility of o- and m-hydroxybenzoic acid in supercritical carbon dioxide, Industrial & Engineering Chemistry Research, 1993, 32(7): 1488-1497.
    [201]刘延成.固体溶质在含夹带剂超临界CO_2中溶解度的研究: [硕士学位],北京化工大学, 2003.
    [202] Tsuboka T, Katayama T. Modified wilson equation for vapor-liquid and liquid-liquid equilibria, Journal of Chemical Engineering of Japan, 1975, 8(3): 181-187.
    [203]金君素,李群生,张泽廷,等.含夹带剂的超临界流体中固体溶解度的研究,石油化工, 2004, 33(5): 441~446.
    [204] Chrastil J. Solubility of solids and liquids in supercritical gases, Journal of physics Chemistry, 1982, 86: 3016-3021.
    [205] Valle J M D, Aguilera J M. An improved equation for predicting the solubility of vegetable oils in supercritical carbon dioxide, Industrial & Engineering Chemistry Research, 1988, 27(8): 1551-1553.
    [206] Yongyue S, Shufen L. Measurement and correlation of the solubility of ligusticum chuanxiong oil in supercritical co2, Chinese J. Chem. Eng., 2005, 13(6): 796-799.
    [207] Yu Z-R, Singh B, Rizvi S S H, et al. Solubilities of fatty acids, fatty acid esters, triglycerides, and fats and oils in supercritical carbon dioxide, Journal of Supercritical Fluids, 1994, 7(1): 51-59.
    [208] Gordillo M D, Blanco M A, Molero A, et al. Solubility of the antibiotic penicillin g in supercritical carbon dioxide, Journal of Supercritical Fluids, 1999, 15(3): 183-190.
    [209] Jouyban A, Chan H-K, Foster N R. Mathematical representation of solute solubility in supercritical carbon dioxide using empirical expressions, Journal of Supercritical Fluids, 2002, 24(1): 19-35.
    [210] Méndez-Santiago J, Teja A S. The solubility of solids in supercritical fluids, Fluid Phase Equilibria, 1999, 158-160: 501-510.
    [211] Inomata H, Saito S, Debenedetti P G. Molecular dynamics simulation of infinitely dilute solutions of benzene in supercritical CO_2, Fluid Phase Equilibria, 1996, 116(1-2): 282-288.
    [212] Kier L B, Hall L H. Molecular connectivity in chemistry and drug research, New York: Academic Press, 1976.
    [213] Kier L B, Hall L H. Molecular connectivity in structure-activity analysis, England: Research Studies Press, 1986.
    [214]田国华,金君素,李群生,等.分子连接性指数法的改进及其应用,北京化工大学学报, 2006, 33(5): 6~9.
    [215] Li H, Li S. Molecular connectivity indices method for correlating and estimating solubility of fatty acids, alcohols, esters and triglycerides in supercritical carbon dioxide, Fluid Phase Equilibria, 2008, 268(1-2): 153-158.
    [216]马海乐,姚忠,吴守一.Α-生育酚在超临界CO_2中溶解度神经网络模型的建立,农业工程学报, 2001, 17(1): 129~132.
    [217]胡德栋,王威强,魏东,等.固体在超临界流体中溶解度的bp人工神经网络模拟,山东大学学报(工学版), 2006, 36(2): 8~11.
    [218]胡德栋,王威强,杜爱玲,等.含提携剂超临界二氧化碳中固体溶解度的bpann计算,精细化工, 2005, 22(6): 455~457.
    [219] Ferreira S R S, Meireles M A A. Modeling the supercritical fluid extraction of black pepper(piper nigrum l.) essential oil, J. Food Eng., 2002, 54(4): 263-269.
    [220] Naik S N, Lentz H, Maheshwari R C. Extraction of perfumes and flavours from plant materials with liquid carbon dioxide under liquid—vapor equilibrium conditions, Fluid Phase Equilibria, 1989, 49: 115-126.
    [221] Esquível M M, Bernardo-Gil M G, King M B. Mathematical models for supercritical extraction of olive husk oil, The Journal of Supercritical Fluids, 1999, 16(1): 43-58.
    [222] Barton P, Jr. R E H, Hussein M M. Supercritical carbon dioxide extraction of peppermint and spearmint, The Journal of Supercritical Fluids, 1992, 5(3): 157-162.
    [223] Reverchon E, Donsi G, Osseo L S. Modeling of supercritical fluid extraction from herbaceous matrices, Ind. Eng. Chem. Res., 1993, 32(11): 2721-2726.
    [224] Subra P, Castellani S, Jestin P, et al. Extraction ofβ-carotene with supercritical fluids: Experiments and modelling, The Journal of Supercritical Fluids, 1998, 12(3): 261-269.
    [225] Bartle K D, Clifford A A, Hawthorne S B, et al. A model for dynamic extraction using a supercritical fluid, The Journal of Supercritical Fluids, 1990, 3(3): 143-149.
    [226] Gaspar F, T. Lu R S, Al-Duri B. Modelling the extraction of essential oils with compressed carbon dioxide, The Journal of Supercritical Fluids, 2003, 25(3): 247-260.
    [227]关文强.丁香油在超临界萃取及在果蔬保鲜中的应用研究: [博士学位],天津,天津大学, 2006.
    [228]侯彩霞,李淑芬,关文强,等.超临界CO_2萃取丁香油的数值模拟,化工学报, 2007, 58(12): 3086-3091.
    [229]侯彩霞.柴胡药用成分的超临界CO_2萃取工艺及模型研究: [博士学位],天津,天津大学, 2007.
    [230]贾冬冬,桑叶与莲子心药用成分的分离及关键技术的应用研究: [博士学位],天津,天津大学, 2009.
    [231] SovováH. Rate of the vegetable oil extraction with supercritical CO_2—i. Modelling of extraction curves, Chemical Engineering Science, 1994, 49(3): 409-412.
    [232] (?)(?)astováJ, Jez J, BártlováM, et al. Rate of the vegetable oil extraction with supercritical CO_2—Ⅲ. Extraction from sea buckthorn, Chemical Engineering Science, 1996, 51(18): 4347-4352.
    [233] Reverchon E, Marrone C. Modeling and simulation of the supercritical co2 extraction of vegetable oils, The Journal of Supercritical Fluids, 2001, 19(2): 161-175.
    [234] Goto M, Smith J M, McCoy B J. Kinetics and mass transfer for supercritical fluid extraction of wood, Ind. Eng. Chem. Res., 1990, 29(2): 282-289.
    [235] Goto M, Roy B C, Hirose T. Shrinking-core leaching model for supercritical-fluid extraction, The Journal of Supercritical Fluids, 1996, 9(2): 128-133.
    [236] Roy B C, Goto M, Hirose T. Extraction of ginger oil with supercritical carbon dioxide: Experiments and modeling, Ind. Eng. Chem. Res., 1996, 35(2): 607-612.
    [237] D(o|¨)ker O, Salg(?)n U, (?)anal (?), et al. Modeling of extractionβo f -carotene from apricot bagasse using supercritical CO_2 in packed bed extractor The Journal of Supercritical Fluids, 2004, 28(1): 11-19.
    [238] Machmudah S, Sulaswatty A, Sasaki M, et al. Supercritical CO_2 extraction of nutmeg oil: Experiments and modeling, The Journal of Supercritical Fluids, 2006, 39(1): 30-39.
    [239] Reverchon E. Mathematical modeling of supercritical extraction of sage oil, AIChE Journal, 1996, 42(6): 1765-1771.
    [240] Goodarznia I, Eikani M H. Supercritical carbon dioxide extraction of essential oils: Modeling and simulation, Chemical Engineering Science, 1998, 53(7): 1387-1395.
    [241] Valle J M d, Napolitano P, Fuentes N. Estimation of relevant mass transfer parameters for the extraction of packed substrate beds using supercritical fluids, Ind. Eng. Chem. Res., 2000, 39(12): 4720-4728.
    [242] Goto M, Sato M, Hirose T. Extraction of peppermint oil by supercritical carbon dioxide, J. Chem. Eng. Japan, 1993, 26(4): 401-407.
    [243] Goto M, Roy B C, Kodama A, et al. Modeling supercritical fluid extraction process involving solute-solid interaction, J. Chem. Eng. Japan, 1998, 31(2): 171-177.
    [244] Mongkholkhajornsilp D, Douglas S, Douglas P L, et al. Supercritical CO_2 extraction of nimbin from neem seeds----a modelling study, Journal of Food Engineering, 2005, 71(4): 331-340.
    [245] (?)kerget M, Knez (?). Modelling high pressure extraction processes, Computers & Chemical Engineering, 2001, 25(4-6): 879-886.
    [246] Peker H, Srinivasan M P, Smith J M, et al. Caffeine extraction rates from coffee beans with supercritical carbon dioxide, AIChE Journal, 1992, 38(5): 761-770.
    [247] Li Z, Liu X, Chen S, et al. An experimental and simulating study of supercritical CO_2 extraction for pepper oil, Chemical Engineering and Processing, 2006, 45(4): 264-267.
    [248] Martínez J, Monteiro A R, Rosa P T V, et al. Multicomponent model to describe extraction of ginger oleoresin with supercritical carbon dioxide, Ind. Eng. Chem. Res., 2003, 42(5): 1057-1063.
    [249] Biscaia D, Ferreira S R S. Propolis extracts obtained by low pressure methods and supercritical fluid extraction, The Journal of Supercritical Fluids, 2009, 51(1): 17-23.
    [250] Fiori L, Basso D, Costa P. Supercritical extraction kinetics of seed oil: A new model bridging the 'broken and intact cells' and the 'shrinking-core' models, The Journal of Supercritical Fluids, 2009, 48(2): 131-138.
    [251]张玉.雷公藤中有效成分的提取分离与微球制剂的制备: [硕士学位],天津,天津大学, 2008.
    [252]夏焱,王文燕,张彦文,等, HPLC法测定雷公藤及其片剂中雷公藤红素,中草药, 2005, 36(8): 1154~1156.
    [253]夏志林,陈俊元,徐榕青,等.柱层析—紫外分光光度法测定雷公藤中总碱的含量,中草药, 1992, 23(11): 579~580.
    [254]张亮,张正行,盛龙生,等.毛细管气相色谱法测定不同产地雷公藤中雷公藤甲素的含量,中国药科大学学报, 1992, 23(3): 158~160.
    [255]杨春欣,周庭川,秦万章.雷公藤内酯醇不同季节的含量变化,中国医院药学杂志, 2001, 21(1): 25~26.
    [256]孙乙铭,徐建中,王志安,等. HPLC测定不同采收年限雷公藤根及不同部位雷公藤甲素含量,中国现代应用药学杂志, 2009, 26(11): 904~906.
    [257]管咏梅,张霄潇,朱卫丰,等.雷公藤提取物溶解性能的研究,中成药, 2008, 30(4): 501~504.
    [258]安家驹,包文滁,王伯英,等.实用精细化工辞典,北京:中国轻工业出版社, 2000.
    [259]中华人民共和国国家技术监督局, Gb/t5530-1998,中华人民共和国国家标准,北京:中国标准出版社, 1998-12-1.
    [260]中华人民共和国国家技术监督局, Gb/t5534-1995,中华人民共和国国家标准,北京:中国标准出版社, 1996-1-1.
    [261]陈丽,吴军,曾妮,等.用GC-MS分析不同采收和贮存时期的麻疯树籽油的脂肪酸,热带亚热带植物学报, 2007, 15(5): 443~446.
    [262]李化,陈丽,唐琳,等.西南部分地区麻疯树种子油的理化性质及脂肪酸组成分析,应用与环境生物学报, 2005, 12(5): 643~646.
    [263]佘珠花,刘大川,刘金波,等.麻疯树籽油理化特性和脂肪酸组成分析,中国油脂, 2005, 30(5): 30~31.
    [264]佘珠花,刘大川,潭蓓玉,麻疯树籽油甲酯化工艺的研究,中国油脂, 2005, 30(9): 34~36.
    [265]杨浩,刘晔,佘珠花.麻疯树籽油超声波辅助酯交换反应的研究,中国油脂, 2006, 31(11): 69~71.
    [266] Tiwari A K, Kumar A, Raheman H. Biodiesel production from jatropha oil (jatropha curcas) with high free fatty acids: An optimized process, Biomass and Bioenergy, 2007, 31: 569~575.
    [267]马鸿宾,固体碱催化合成生物柴油的基础研究: [博士学位],天津,天津大学, 2008.
    [268] Foidla N, Foidla G, Sancheza M, et al. Jatropha curcas l. As a source for the production of biofuel in nicaragua, Bioresource Technology, 1996, 58(1): 77-82.
    [269] Kandpal J B, M. M. Jatropha curcus: A renewable source of energy for meeting future energy needs, Renewable Energy, 1995, 6(2): 159-160.
    [270]李敏晶,韩艳玲,刘远,等.超声波提取法对海燕总皂苷提取工艺的研究,广东化工, 2010, 37(8): 69~70,74.
    [271]胡尚力,王义强.三七花总皂苷的微波辅助提取,中南林业科技大学学报(自然科学版), 2010, 30(9): 137~140.
    [272]张黎黎,王栋.水提取人参茎叶皂苷最佳工艺的研究,云南中医中药杂志, 2008, 29(3): 48~49.
    [273]孟宪军,鄂柳欣,冯颖.牛尾菜总皂苷最佳提取工艺,食品研究与开发, 2010, 31(7): 79~82.
    [274]穆启运,阮新民.护心颗粒中人参和三七的皂苷成分的提取工艺研究,时珍国医国药, 2010, 21(7): 1636~1638.
    [275]张玉婵,刘金福,张平平,等.苦瓜茎、叶中皂苷类物质的提取及分离纯化,食品研究与开发, 2010, 31(4): 53~56.
    [276]魏永春,张卫,李冲.皂苷的提取与纯化工艺研究进展,广东化工, 2008, 35(11): 58~61.
    [277]张凤春,毛富春,李红.香草醛溶液的化学稳定性研究,西北林学院学报, 2001, 16(4): 60~61.
    [278]杨燕军,邓永燕,赵南,等.枫香槲寄生总皂苷提取工艺研究及含量测定,广州中医药大学学报, 2007, 24(1): 62~65.
    [279]甄会贤,齐烨,扬陈,等.白英中总皂苷的含量测定,时珍国医国药, 2008, 19(6): 1402~1403.
    [280]熊山,陈玉武,叶祖光.楮实子中总皂苷含量测定,中国现代中药, 2009, 11(7): 26~28.
    [281]刘玉凤,王保国,温新民,等.比色法测定麦冬果实中总皂苷元含量,济宁医学院学报, 2009, 32(5): 310~311.
    [282]吴红,梁恒,刘永红,等.山茱萸总皂苷的提取分离与含量测定,第四军医大学学报, 2003, 24(5): 430~432.
    [283]唐韶坤,超临界二氧化碳萃取葡萄籽中食用及药用成分的工艺和模型研究: [博士学位],天津,天津大学, 2003.
    [284] Westerman D, Santos R C D, Bosley J A, et al. Extraction of Amaranth seed oil by supercritical carbon dioxide, The Journal of Supercritical Fluids, 2006, 37(1): 38-52.
    [285] Machmudah S, Kawahito Y, Sasaki M, et al. Supercritical CO_2 extraction of rosehip seed oil: Fatty acids composition and process optimization, The Journal of Supercritical Fluids, 2007, 41(3): 421-428.
    [286]孙永悦.超临界二氧化碳萃取当归与川芎单复方中的药效成分研究: [博士学位],天津,天津大学, 2005.
    [287] Gupta R B, Shim J-J. Solubility in supercritical carbon dioxide, Alabama: CRC Press, 2006.
    [288] Chimowitz E H, Pennisi K J. Process synthesis concepts for supercritical gas extraction in the crossover region, AIChE Journal, 1986, 32(10): 1665-1676.
    [289] Chimowitz E H, Kelley F D, Munoz F M. Analysis of retrograde behavior and the cross-over effect in supercritical fluids, Fluid Phase Equilibria, 1988, 44(1): 23-52.
    [290]邵荣,云志,秦金平,等.改进的Chrastil模型关联及推算物质在超临界流体中的溶解度,南京化工大学学报, 2001, 23(1): 30~37.
    [291]刘乃汇.桐油的超临界CO_2萃取及三个传质模型的应用研究: [博士学位],天津,天津大学, 2010.
    [292]崔德福.药剂学,北京:中国医药科技出版社, 2002, 272~274.
    [293] Fenghour A, Wakeham W A, Vesovic V. The Viscosity of Carbon Dioxide, J. Phys. Chem. Ref. Data, 1998, 27(1): 31-44.
    [294] Catchpole O J, King M B. Measurement and correlation of binary diffusion coefficients in near critical fluids, Ind. Eng. Chem. Res., 1994, 33(7): 1828-1837.
    [295] Germain J C, Valle J M d, Fuente J C d l. Natural convection retards supercritical CO_2 extraction of essential oils and lipids from vegetable substrates, Ind. Eng. Chem. Res., 2005, 44(8): 2879-2886.
    [296] Valle J M d, Fuente J C D L. Supercritical CO_2 extraction of oilseeds: Review of kinetic and equilibrium models, Crit Rev Food Sci Nutr., 2006, 46(2): 131-160.
    [297] Wakao N, Funazkri T. Effect of fluid dispersion coefficients on particle-to-fluid mass transfer coefficients in packed beds: Correlation of sherwood numbers, Chemical Engineering Science, 1978, 33(10): 1375-1384.
    [298] Tan C-S, Liang S-K, Liou D-C. Fluid-solid mass transfer in a supercritical fluid extractor, The Chemical Engineering Journal, 1988, 38(1): 17-22.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700