栉孔扇贝(Chlamys farreri)EST-SNP的开发及其应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
栉孔扇贝(Chlamys farreri)是我国重要经济海水养殖贝类之一,近年来养殖过程中出现了病害频发、大规模死亡、个体小型化等问题,为此,进行品质优良、高产、生长迅速、抗病、抗逆新品种的选育成为其养殖产业健康可持续发展的基础。分子标记辅助育种技术和基于分子标记的功能基因研究为优良品种的培育提供了理论基础和有效途径。为此,本研究以栉孔扇贝为主要研究材料,探讨了栉孔扇贝EST-SNP标记的有效筛选条件及其在栉孔扇贝遗传育种中的应用。
     1.栉孔扇贝EST-SNP分型技术的建立及标记的筛查和评价
     本研究针对HRM非标记探针技术进行改进,利用3’端非配对碱基进行探针的末端封闭,并对利用HRM非标记探针技术进行EST-SNP筛查的流程进行优化,建立了一套高灵敏度、低成本筛查EST-SNP的技术体系。利用该技术体系,首次进行了大规模EST-SNP标记的开发,从栉孔扇贝5630个候选SNP位点中,成功筛选出1696个多态性SNP标记,并利用青岛群体对其进行了评价,次要等位基因频率在0.010-0.500之间,观测杂合度和期望杂合度分别介于0.000-0.942和0.020-0.507,所有的位点均处于连锁平衡状态,102个位点偏离哈代-温伯格平衡。这些位点将为栉孔扇贝的遗传连锁图谱构建、功能基因分析、QTL定位等奠定坚实的基础。
     同时以本研究结果为依据,提出了进行EST-SNP筛选时,为提高多态性位点的筛选比例,应优先选择含4条以上EST序列的contig大小、次要等位基因频数在2以上并且次要等位基因频率高于25%的位点作为候选位点进行验证实验。
     2. EST-SNP的种间通用性研究
     本研究进行了扇贝中EST-SNP的通用性研究,利用在栉孔扇贝中筛选得到的34个多态性EST-SNP标记,在五个近源种扇贝(华贵栉孔扇贝Chlamysnobilis、海湾扇贝Argopectens irradias、日月贝Amusium pleuronectes、虾夷扇贝Patinopecten yessoensis、紫扇贝Argopecten purpuratus)中进行了通用性验证。结果显示有19个位点可以在至少一种近源扇贝中表现出多态性,其中2个位点在4种扇贝中保持多态性。研究结果表明,EST来源的SNP标记具有较好的通用性,并且统计显示通用性较好的SNP位点多位同义突变,而非同义突变则在种间较难通用。
     3.栉孔扇贝任意BSA群体选择性基因分型
     为了进行与表型相关基因的发掘,为分子标记辅助提供理论基础和参考数据,本研究在栉孔扇贝两个自然群体中选择壳高极大和极小的个体组成任意BSA群体,利用1696个EST-SNP标记,进行了选择性基因分型,扫描与壳高相关的基因。研究发现,有12个位点在壳高极大和壳高极小群体间存在基因频率和(或)基因型频率差异,其中6个位点存在基因频率的差异,6个位点基因频率差异不显著但基因型频率差异显著。扫描结果对于进行栉孔扇贝壳高决定基因的研究、以壳高性状为目标的选种选育奠定了基础。
     4.栉孔扇贝EST-SNP雄性遗传连锁图谱的构建
     利用具有共父关系的三个全同胞家系、一个父系半同胞家系和285个EST-SNP标记成功进行了栉孔扇贝雄性遗传连锁图谱的构建。所构建的图谱图谱总长度为2025.4cM,图谱覆盖度约为87.1%。标记间最大间隔为25.8cM,最小间隔为0.0cM,平均间隔为7.70cM;最长连锁群234.5cM,连锁群最短22.3cM,平均长度为106.6cM;连锁群上的分子标记数目最多为44个,最少为3个,每个连锁群平均定位标记数目为15.0个。并初步进行了栉孔扇贝主要生长性状的QTL定位,共定位到16个影响栉孔扇贝壳高、壳长、壳宽、总重和肉柱重的QTL,这些QTL成簇分布于6个连锁群上,单个QTL可以解释的表型变异方差界于4.2%-17.9%。这是栉孔扇贝第一张SNP遗传连锁图谱,该图谱的建立将极大的便利栉孔扇贝QTL定位、图位克隆及功能基因定位研究。
Zhikong scallop (Chlamys farreri) is one of the most economic mariculturespecies in China. Cultivating strains with good quality, high yield, fast-growth,resistance to diseases and stress are the basis for sustainable development ofaquaculture of this species, since various problems have risen recent years, such asfrequenct brokeout of disease, mass mortalities, individual miniaturization andso on. Marker-assist selection (MAS) and molecular marker based functionalresearch provided theories and effective approaches for the development ofnew strains. Here in this study, we validated and characterized a panel ofEST-SNPs and studied their applications in genetic breeding of C. farreri.
     1. Establishment of EST-SNP genotyping technology, validation andcharacterization of EST-SNPs in C. farreri
     In this study, using two mistaches at the3’ end to block the probe, we modifiedHRM unlabelled probe technology, optimizated the screeing process, and establisheda high sensitivity, low-cost genotyping sestem for EST-SNP validation. With thissystem, the first massive EST-SNP development of C. farreri wrer conducted.5,630candidate loci were chosen for validation, of which1,696proved to bepolymorphism. Evaluated with48individuals from Qingdao population, all thepolymorphic loci had two alleles with the minor allele frequency ranged between0.010and0.500. The expected and observed heterozygosities ranged from0.0625to0.7447and from0.0998to0.5046, respectively. No significant linkage disequilibriawere detected and102loci exhibited significant departures from Hardy-Weinbergequilibrium. These novel polymorphic loci presented here will facilitatethe followingresearches, such as linkage map construction, functional genetic analysis and QTL mapping. And based on the results here, contig size of≥4sequences with the minorsequence allele at least twice and minor allele frequency above20%, were highlyrecommended as candidate sites for validation test when similar researches wereconducted.
     2. Inter-species transferibility of EST-SNP
     In this study, the first transferability test of SNP between scallops was reported.Thirty-four EST-SNPs developed from C. farreri were chosen to test theirtransferability in in other five bivalve scallops in China: Noble Scallop (Chlamysnobilis), bay scallop (Argopectens irradias), moon scallop (Amusium pleuronectes),yesso scallop (Patinopecten yessoensis) and purple scallop (Argopecten purpuratus).And19maintained polymorphism in at least one relative species, of which two lociexihibited good transferability in four of the five scallops tested. The results heresuggested the good transferability of EST-SNPs, especially those synonymoussubstitutions, while the nonsynonymous substitutions were kind of species-specific.
     3. Scanning of shell height related genes in C. farreri
     In order to search out phenotype-determing genes and provide theoretical basisand pratical experieces, we selected the individuals from two wild populations withmaximum or minimum shell height, and genotyped with1,696EST-SNPs. Allelefrequencies of six loci were different between the two extreme phenotype groups.Allele frequencies of another six loci did not significantly differ but the genotypefrequencies were significantly different between the two extreme phenotype groups.The scan results laid the foundation for research of shell height-determining genes andshell height-oriented breeding scheme.
     4. Construciton of EST-SNP linkage map of a male C. farreri
     A linkage map of a male C. farreri was constructed with three full-sib families, aparental half-sib family and285EST-SNP markers. The total length of the map was 2,025.4cM and the genome coverage was about87.1%. The maximum intervalbetween markers was25.8cM, while the minimum interval was0.0cM, with anaverage interval of7.70cM. The linkage group length was between22.3cM and234.5cM with an average of106.6cM. The number of mapped markers ranged from3to44with an average of15.0. Preliminary QTL mapping were conducted for thegrowth traits of C. farreri, and a total of16QTLs affecting shell height, shell length,shell width, weight and weight of adductor muscle were located. These QTL were on5linkage groups explaining4.0%–22.2%of the trait variation. This is the first SNPgenetic linkage map of C. farreri, and it will greatly facilitate QTL mapping,positional cloning and gene mapping research.
引文
[1]陈华絮.雷州市沿海几种贝类营养成分的分析.中国食物与营养,2006,7:49-51
    [2]陈省平,包振民,潘洁,等.4种养殖扇贝的群体遗传多样性及特异性AFLP标记研究.海洋学报,2005,27(2):160-164
    [3]邓务国.物种遗传多态性研究方法的发展.生物学通报,1994,29(1):7-9
    [4]方宣钧,吴为人,唐纪良.作物DNA标记辅助育种.科学出版社,2001
    [5]冯政夫,邵明瑜,孙大鹏,等.栉孔扇贝Cf-dmrt4-like基因的克隆、序列特征及表达分析.中国水产科学,2010,17(5):930-939
    [6]高悦勉,孙洋,才慧梅.3种扇贝遗传结构的RAPD分析.海洋水产研究,2007,28(6):25-31
    [7]李红蕾,宋林生,刘保忠,等.栉孔扇贝不同种群的遗传结构及其杂种优势.海洋与湖沼,2002,33(2):188-195
    [8]李凌.栉孔扇贝抗鳗弧菌感染性状候选基因的多态性研究:[博士学位论文].青岛:中国科学院海洋研究所,2009
    [9]李宁,程洁,孙鲁阳,等.中国北方沿海6个栉孔扇贝群体的AFLP分析.中国海洋大学学报,2010,40(4):38-42
    [10]李巧燕,林瑞庆,朱兴全. SRAP分子标记及其应用概述.热带医学杂志,2006,6(4):467-469
    [11]李小白,崔海瑞,张明龙. EST分子标记开发及在比较基因组学中的应用.生物多样性,2006,14(6):541-547
    [12]李玉梅,姚纪元,吴静,等. PCR-SSCP技术的研究及应用进展.生物技术通讯,2007,6:71-74
    [13]刘卫东,鲍相渤,宋文涛,等.虾夷扇贝遗传连锁图谱的初步构建.遗传,2009,31(6):629-637
    [14]刘贤德,刘晓,张国范.皱纹盘鲍杂交F1AFLP标记偏分离现象初析.海洋科学,2007,31(10):70-75
    [15]刘亚军,喻子牛,姜艳艳,等.栉孔扇贝16S rRNA基因片段序列的多态性研究.海洋与湖沼,2002,33(5):477-483
    [16]刘祖洞,江邵慧.遗传学(上册).北京:高等教育出版社,1990.1-296
    [17]罗林广,王新望,罗绍春.分子标记及其在作物遗传育种中的应用.江西农业学报,1997,9(1):45-54
    [18]骆蒙,贾继增.植物基因组表达序列标签(EST)计划研究进展.生物化学与生物物理进展,2001,28:494-497
    [19]潘洁,包振民,赵洋,等.栉孔扇贝不同地理群体的遗传多样性分析.高技术通讯,2002,12:78-82
    [20]邱丽梅.栉孔扇贝(Chlamys farreri)Toll样受体及其信号传递相关基因的克隆与表达:
    [博士学位论文].中国科学院海洋研究所,2006
    [21]宋林生,李俊强,李红蕾,等.用RAPD技术对我国栉孔扇贝野生种群与养殖群体的遗传结果及其遗传分化的研究.高技术通讯,2002,7:83-86
    [22]苏建国,宋林生,胥炜,等.栉孔扇贝脂多糖葡聚糖结合蛋白(LGBP)基因的克隆及其特征分析.高技术通讯,2004,3:87-91
    [23]王绍宗,李莉,亓海刚,等.长牡蛎(Crassostrea gigas)17个EST-SNP标记的开发.海洋与湖沼,2010,41(2):274-281
    [24]王师,包振民,张玲玲,等.应用PCR-RFLP技术鉴别区分中国沿海四种主要养殖扇贝.食品科学,2006,27(7):210-213
    [25]吴龙涛,宋林生,胥炜,等.栉孔扇贝热休克蛋白70基因cDNA的克隆与分析.高技术通讯,2003,11:75-79
    [26]谢建平.水稻分子标记辅助育种研究进展.种子,2006,25(11):43-45
    [27]胥炜,王昊,宋林生,等.栉孔扇贝C型凝集素基因的克隆与表达研究.高技术通讯,2005,1:83-88
    [28]杨宝峰.水稻种子贮藏蛋白的多态性研究:[硕士学位论文].浙江:浙江师范大学,2005
    [29]杨璞,杨爱国,刘志鸿,等.栉孔扇贝和虾夷扇贝通用微卫星引物的筛选及其在杂种鉴定中的应用.安徽农业科学,2008,36(19):8287-8289
    [30]姚韩韩,林志华,董迎辉,等.海洋经济贝类遗传图谱的相关研究进展.水产科学,2010,29(3):178-183
    [31]袁艳鹏,林庆玲,左晓虹,等.基于等位基因特异性引物延伸的高分辨率熔解曲线基因分型方法的建立.首都医科大学学报,2010,31(6):742-747
    [32]张蕾.栉孔扇贝、海湾扇贝热休克蛋白22基因的克隆和表达及其与栉孔扇贝抗热性状相关SNP位点的筛查:[硕士学位论文].青岛:中国海洋大学,2009
    [33]张蓉,刁其玉.遗传标记的发展及其在家畜遗传育种中的应用.现代畜牧兽医,2009,9:52-55
    [34]张振.基于微卫星和SNP标记的皱纹盘鲍遗传连锁图谱及其应用:[博士学位论文].青岛:中国科学院海洋研究所,2010
    [35]周倩如,邵明瑜,张志峰. Vasa基因编码蛋白的结构特征和应用展望.海洋湖沼通报,2007,4:129-134
    [36] Adams MD, Kelley JM, Jeannine D, et al. Complementary DNA sequencing expressedsequence tags and human genome project. Science,1991,252:1651-1656
    [37] Agresti JJ, Seki S, Cnaani A, et al. Breeding new strains of tilapia: development of anartificial center of origin and linkage map based on AFLP and microsatellite loci. Aquaculture,2000,185(1-2):43-56
    [38] Arias A, Freire R, Boudry P, et al. Single nucleotide polymorphism for population studies inthe scallops Aequipecten opercularis and Mimachlamys varia. Conserv Genet,2009,10:1491-1495
    [39] Audzijonyte A, Vrijenhoek RC. Three nuclear genes for phylogenetic, SNP and populationgenetic studies of molluscs and other invertebrates. Mol Ecol Resour,2010,10(1):200-204
    [40] Bachlava E, Taylor CA, Tang S, et al. SNP discovery and development of a high-densitygenotyping array for sunflower. PLoS One,2012,7(1): e29814
    [41] Baird NA, Etter PD, Atwood TS, et al. Rapid SNP discovery and genetic mapping usingsequenced RAD markers. PLoS One,2008,3(10): e3376
    [42] Baner J, Nilsson M,Mendel-Hartvig M, et al. Signal amplification of padlock probes byrolling circle replication. Nucleic Acids Res,1998,26(22):5073-5078
    [43] Bao YB, Li L, Zhang GF. Polymorphism of the superoxide dismutase gene family in thebay scallop (Argopecten irradians). Dev Comp Immunol,2010,34:553-561
    [44] Baranski M, Loughnan S, Austin CM, et al. A microsatellite linkage map of the blacklipabalone, Haliotis rubra. Anim Genet,2006,37(6):563-570
    [45] Baranski M, Moen T, V ge DI. Mapping of quantitative trait loci for flesh colour andgrowth traits in Atlantic salmon (Salmo salar). Genet Sel Evol,2010,42:17
    [46] Baranski M, Robinson N, Loughnan S, et al. Detection of QTL for growth rate in abaloneusing selective DNA pooling. Aquaculture,2007,272: S242-243
    [47] Bester AE, Roodt-Wilding R, Whitaker HA. Discovery and evaluation of single nucleotidepolymorphisms (SNPs) for Haliotis midae: a targeted EST approach. Anim Genet,2008,39:321-324
    [48] Bester AE. Population genetic structure and demographical history of South Africanabalone, Haliotis midae, in a conservation context:[PhD Thesis]. Stellenbosch University,2009
    [49] Bi W, Stambrook PJ. CCR: a rapid and simple approach for mutation detection. NucleicAcids Res,1997,25(14):2949-2951
    [50] Botstein D, White RL, Skolnick M, et al. Construction of a genetic linkage map in manusing restriction fragment length polymorphisms. Am J Hum Genet,1980,32:314-331
    [51] Brumfield RT, Beerli P, Nickerson DA, et al. The utility of single nucleotidepolymorphisms in inferences of population history. Trends in Ecology and Evolution,2003,18(5):249-256.
    [52] Casta o-Sánchez C, Fuji K, Ozaki A, et al. A second generation genetic linkage map ofJapanese flounder (Paralichthys olivaceus). BMC Genomics,2010,11:554
    [53] Chen SL, Li J, Deng SP, et al. Isolation of female-sepcific AFLP markers and molecularidentification of genetic sex in half-smooth tongue sole (Cynoglossus semilaevis). MarBiotechnol,2007,9(2):273-280
    [54] Chistiakov DA, Hellemans B, Haley CS, et al. A Microsatellite Linkage Map of theEuropean Sea Bass Dicentrarchus labrax L. Genetics,2005,170(4):1821-1826
    [55] Chistiakov DA, Tsigenopouos CS, Lagnel J, et al. A combined AFLP and microsatellitelinkage map and pilot comparative genomic analysis of European sea bass Dicentrarchuslabrax L. Anim Genet,2008,39(6):623-634
    [56] Coimbra MRM, Kobayashi K, Koretsugu S, et al. A genetic linkage map of the Japaneseflounder, Paralichthys olivaceus. Aquaculture,2003,220:203-218
    [57] Dames S, Margraf RL, Pattison DC, et al. Characterization of aberrant melting peaks inunlabeled probe assays. J Mol Diagn,2007,9(3):290-296
    [58] Darvasi A, Soller M. Selective DNA pooling for determination of linkage between amolecular marker and a quantative trait locus. Genetics,1994,138(4):1365-73
    [59] Davey JW, Hohenlohe PA, Etter PD, et al. Genome-wide genetic marker discovery andgenotyping using next-generation sequencing. Nat Rev Genet,2011,12(7):499-510
    [60] Donis-Keller H, Green P, Helms C, et al. A genetic linkage map of the human genome. Cell,1987,51(2):319-337
    [61] Du ZQ, Ciobanu DC, Onteru SK, et al. A gene-based SNP linkage map for pacific whiteshrimp, Litopenaeus vannamei. Anim Genet,2010,41(3):286-294
    [62] Edwards A, Civitello A, Hammond HA, et al. DNA typing and genetic mapping withtrimeric and tetrameric tandem repeats. Am J Hum Genet,1991,49(4):746-756
    [63] Edwards MD, Stuber CW, Wendel JF. Molecular-marker-facilitated investigations ofquantitative-trait loci in Maize. I. Numbers, genomic distribution and types of gene action.Genetics,1987,116(1):113-125
    [64] Elfstrom CM, Gaffney PM, Smith CT, et al. Characterization of12single nucleotidepolymorphisms in weathervane scallop. Mole Ecol Notes,2005,5:406-409
    [65] Fischer SG, Lerman LS. Length-independent separation of DNA restriction fragments intwo-dimensional gel electrophoresis. Cell,1979,16(1):191-200
    [66] Fotherby HA, Moghadam HK, Danzmann RG, et al. Detection of quantitative trait loci forbody weight, condition factor and age at sexual maturation in North American Atlanticsalmon (Salno salar) and comparative analysis with rainbow trout (Oncorhynchus mykiss)and Arctic charr (Salvelinus alpinus). Aquaculture,2007,272: S256-257
    [67] Fuji K, Kobayashi K, Hasegawa O, et al. Identification of a single major genetic locuscontrolling the resistance to lymphocystis disease in Japanese flounder (Paralichthysolivaceus). Aquaculture,254:203-210
    [68] Ganguly A, Rock MJ, Prockop DJ. Conformation-sensitive gel electrophoresis for rapiddetection of single-base differences in double-stranded PCR products and DNA fragments:evidence for solvent-induced bends in DNA heteroduplexes. Proc Matl Acad Sci USA,1993,90(21):10325-10329
    [69] Gao Q, Song L, Ni D, et al. cDNA cloning and mRNA expression of heat shock protein90gene in the haemocytes of Zhikong scallop Chlamys farreri. Comp Biochem Physiol BBiochem Mol Biol,2007,147(4):704-715
    [70] Gilbey J, Verspoor E, Mo TA, et al. Identification of genetic markers associated withGyrodactylus salaris resistance in Atlantic salmon (Salmo Salar.). Dis Aquat Organ,2006,71(2):119-129
    [71] Gilbey J. Genetic mapping of Quantitative Trait Loci in influencing growth, developmentand morphology in Atlantic salmon (Salmo Salar, L.):[PhD Thesis]. University of Aberdeen,2003
    [72] Glover KA, Hansen MM, Lien S, et al. A comparison of SNP and STR loci for delineatingpopulation structure and performing individual genetic assignment. BMC Genet,2010,11:2
    [73] Grattapaglia D, Sederoff R. Genetic linkage maps of Eucalyptus grandis and Eucalyptusurophylla using a pseudo-testcross: mapping strategy and RAPD markers. Genetics,1994,137(4):1121-1137
    [74] Grattapaglia D, Silva-Junior OB, Kirst M, et al. High-throughput SNP genotyping in thehighly heterozygous genome of Eucalyptus: assay success, polymorphism and transferabilityacross species. BMC Plant Biol,2011,11:65
    [75] Gundry CN, Vandersteen JG, Reed GH, et al. Amplicon melting analysis with labeledprimers: a closed-tube method for differentiating homozygotes and heterozygotes. Clim Chem,2003,49(3):396-406
    [76] Guo H, Bao Z, Li J, et al. Molecular characterization of CFTGFBR1, a scallop TGF-betatype I receptor gene, and the association of allelic variants with growth traits. PLoS One,2012
    [77] Guo X, Ford SE, Zhang F. Molluscan auqaculture in China. J Shellfish Res,1999,18(1):19-31
    [78] Guyomard R, Mauger S, Tabet-Canale K, et al. A type I and type II microsatellite linkagemap of rainbow trout (Oncorhynchus mykiss) with presumptive coverage of all chromosomearms. BMC Genomics,2006,7:302
    [79] Haidle L, Janssen JE, Gharbi K, et al. Determination of quantitative trait loci (QTL) forearly maturation in rainbow trout (Oncorhynchus mykiss). Mar Biotechnol,2008,10(5):579-592
    [80] Hamajima N, Saito T, Matsuo K, et al. Polymerase Chain Reaction with ConfrontingTwo-pair Primers for Polymorphism Genotyping. Jpn J Cancer Res,2000,91(9):865-868
    [81] Hansson B, Kawabe A. A simple method to score single nucleotide polymorphisms basedon allele-specific PCR and primer-induced fragment-length variation. Mol Ecol Resour,2005,5(3):692-696
    [82] Hardenbol P, Baner J, Jain M, et al. Multiplexed genotyping with sequence-taggedmolecular inversion probes. Nat Biotechnol,2003,21(6):673-678
    [83] Hardenbol P, Yu F, Blmont J, et al. Highly multiplexed molecular inversion probegenotyping: over10,000targeted SNPs genotyped in a single tube assay. Genome Res,2005,15(2):269-275
    [84] He C, Chen L, Simmons M, et al. Putative SNP discovery in interspecific hybrids of catfishby compariative EST analysis. Anim Genet,2003,34(6):445-448
    [85] He F, Wen HS, Dong SL, et al. Identification of estrogen receptor alpha genepolymorphisms by SSCP and its effect on reproductive traits in Japanese flounder(Paralichthys olivaceus). Comp Biochem Physiol B Biochem Mol Biol,2008,150(3):278-283
    [86] Hedgecock D, Perry GML, Voigt ML. Mapping heterosis QTL in the Pacific oysterCrassostrea gigas. Aquaculture,2007,272: S267-268
    [87] Houston RD, Bishop SC, Hamilton A, et al. Detection of QTL affecting harvest traits in acommercial Atlantic salmon population. Anim Genet,2009,40(5):753-757
    [88] Houston RD, Gheyas A, Hamilton A, et al. Detection and confirmation of a major QTLaffecting resistance to infectious pancreatic necrosis (IPN) in Atlantic salmon (Salmo salar).Dev Biol (Basel),2008,132:199-204
    [89] Howel WM, Jobs M, Gyllensten U, et al. Dynamic allele-specific hybridization. A newmethod for scoring single nucleotide polymorphisms. Nat Biotechnol,1999,17(1):87-88
    [90] Hu X, Guo H, He Y, et al. Molecular characterization of myostatin gene from Zhikongscallop Chlamys farreri (Jones et Preston1904). Genes Genet Syst,2010,85:207-218
    [91] Huan P, Zhang X, Li F. Chromosomal localization and development of SNP markers of aserine protease gene in Farrer’s scallop (Chlamys farreri). Hereditas,2009,31:1241-1247
    [92] Huan P, Zhang X, Li F, et al. Chromosomal localization and molecular marker developmentof the lipopolysaccharide and beta-1,3-glucan binding protein gene in the Zhikong scallopChlamys farreri (Jones et preston)(Pectinoida, Pectinidae). Genet Mol Biol,2010,33(1):36-43
    [93] Hubert S, Hedgecock D. Linkage maps of microsatellite DNA markers for the Pacific oysterCrassostrea gigas. Genetics,2004,168(1):351-362
    [94] Hubert S, Higgins B, Borza T, et al. Development of a SNP resource and a genetic linkagemap for Atlantic cod (Gadus morhua). BMC Genomics,2010,11:191
    [95] Iwahana H, Yoshinoto K, Mizusawa N, et al. Multiple fluorescence based PCR-SSCPanalysis. Biotechniques,1994,16(2):296-297,300-305
    [96] Jiang G, Li J, Li L, et al. Development of44gene-based SNP markers in Zhikong scallop,Chlamys farreri. Conservation Genet Resour,2011,3(4):659-663
    [97] Jobs M, Howell WM, Stromgvist L, et al. DASH-2: flexible, low-cost, and high-throughputSNP genotyping by dynamic allele specific hybridization membrane arrays. Genome Res,2003,13(5):916-924
    [98] Kai W, Kukuchi K, Fujita M, et al. A Genetic Linkage Map for the Tiger Pufferfish,Takifugu rubripes. Genetics,2005,171(1):227-238
    [99] Kazianis S, Nairn RS, Walter RB, et al. The genetic map of Xiphophorus fishes representedby24multipoint linkage groups. Zebrafish,2004,1(3):287-304
    [100] Khlestkina EK, Salina EA. SNP markers: methods of analysis, ways of development, andcomparison on an example of common wheat. Genetika,2006,42(6):585-594
    [101] Kj glum S, Grimholt U, Larsen S. Non-MHC genetic and tank effects influence diseasechallenge tests in Atlantic salmon (Salmo Salar.). Aquaculture,2005,250:102-109
    [102] Kocher TD, Lee WJ, Sobolewska H, et al. A genetic linkage map of a cichlid fish, thetilapia (Oreochromis niloticus). Genetics,1998,148(3):1225-1232
    [103] Kozlowski P, Krzyzosiak WJ. Combined SSCP/duplex analysis by capillaryecectrophoresis for more efficient mutation detection. Nucleic Acids Res,2001,29(14): E71
    [104] Kucuktas H, Wang S, Li P, et al. Construction of genetic linkage maps and comparativegenome analysis of catfish using gene-associated markers. Genetics,2009,181(4):1649-1660
    [105] Lallias D. Genetic linkage mapping in the blue mussel Mytilus edulis and the Europeanflat oyster Ostrea edulis, and the search for Quantitative Trait Loci of the resistance to adisease in O. edulis:[PhD Thesis]. University of Wales,2007
    [106] Landegren U, Kaiser R, Sanders J, et al. A ligase-mediated gene detection technique.Science,1988,241(4869):1077-1080
    [107] Lander ES. The new genomics: global views of biology. Science,1996,274(5287):536-539
    [108] Launey S, Hedgecock D. High genetic load in the Pacific oyster Crassostrea gigas.Genetics,2001,159:155-165.
    [109] Le Bras Y, Dechamp N, Krieg F, et al. Detection of QTL with effects on osmoregulationcapacities in the rainbow trout (Oncorhynchus mykiss). BMC Genet,2011,12:46
    [110] Lebowtiez JL, Soller M, Beckmann JS. Trait-based analysis for the detection betweenmarker loci and quantative trait loci in cross between inbred lines. Theor Appl Genet,1987,73:556-562
    [111] Lee BY, Lee WJ, Streelman JT, et al. A second-generation genetic linkage map of tilapia(Oreochromis spp.). Genetics,2005,170(1):237-244
    [112] Li G, Quiros CF. Sequence-related amplified polymorphism (SRAP) a new markersystem based on a simple PCR reaction: its application to mapping and gene tagging inBrassica. Theor Appl Genet,2001,103:455-461
    [113] Li H, Ribaut JM, Li ZL, et al. Inclusive composite interval mapping (ICIM) for digenicepistasis of quantitative traits in biparental populations. Theor Appl Genet,2008,116:243-260
    [114] Li H, Zhu D, Gao X, et al. Mining single nucleotide polymorphisms from EST data ofhard clam Meretrix meretrix. Conservation Genet Resour,2010,2:69-72
    [115] Li HX, Bai JJ, Ye X, et al. Polymorphisms in the5’ flanking region of the insulin-likegrowth factor I gene are associated with growth traits in largemouth bass Micropterussalmoides. Fish Sci,2009,75:351-358
    [116] Li L, Guo X. AFLP-based genetic linkage maps of the Pacific oyster Crassostrea gigasThunberg. Mar Biotechnol,2004,6(1):26-36
    [117] Li L, Xiang J, Liu X, et al. Construction of AFLP-based genetic linkage map for Zhikongscallop, Chlamys farreri Jones et Preston and mapping of sex-linked markers. Aquaculture,2005,245:63-73
    [118] Li R, Li Q, Kong L. Characterizaiton of expressed sequence tag-derived single-nucleotidepolymorphisms in the bay scallop Argopecten irradians irradians. Fish Sci,2009,75:1389-1400
    [119] Li Y, Byrne K, Miggiano E, et al. Genetic mapping of the kuruma prawn Penaeusjaponicus using AFLP markers. Aquaculture,2003,219:143-156
    [120] Li YT, Dierens L, Byrne K, et al. QTL deteciton of production traits for the Kurumaprawn Penaeus japonicus (Bate) using AFLP markers. Aquaculture,2006,258:198-210
    [121] Li Z, Li J, Wang Q, et al. AFLP-based genetic linkage map of marine shrimp Penaeus(Fenneropenaeus) chinensis. Aquaculture,2006,261:463-472
    [122] Liao X, Ma HY, Xu GB, et al. Construction of a genetic linkage map and mapping of afemale-specific DNA marker in half-smooth tongue sole (Cynoglossus semilaevis). MarBiotechnol,2009,11(6):699-709
    [123] Lien S, Gidskehaug L, Moen T, et al. A dense SNP-based linkage map for Atlanticsalmon (Salmo salar) reveals extended chromosome homeologies and striking differences insex-specific recombination patterns. BMC Genomics,2011,12:615
    [124] Liu N, Chen L, Wang S, et al. Comparison of single nucleotide polymorphisms andmicrosatellites in inference of population structure. BMC Genetics,2005,6(Suppl I): S26
    [125] Liu Q, Sommer SS. Restriction endonuclease fingerprinting (REF): a sensitive method forscreening mutations in long, contiguous segments of DNA.Biotechniques,1995,18(3):470-477
    [126] Liu Q, Thorland EC, Heit JA, et al. Overlapping PCR for bidirectional PCR amplificationof specific alleles: a rapid one-tube method for simultaneously differentiating homozygotesand heterozygotes. Genome Res,1997,7(4):389-308
    [127] Liu W, Li H, Bao X, et al. The first set of EST-derived single nucleotide polymorphismmarkers for Japanese scallop, Patinopecten yessoensis. J World Aquacult Soc,2011,42(3):456-461
    [128] Liu Xiande, Liu X, Guo X, et al. A preliminary genetic linkage map of the Pacificabalone Haliotis discus hannai Ino. Mar Biotechonol,2006,8(4):386-397
    [129] Liu X, Grosz M: Linkage mapping software user's guide. St-Louis: Monsanto Company;2006.
    [130] Liu Z, Karsi A, Li P, et al. An AFLP-based genetic linkage map of channel catfish(Ictalurus punctatus) constructed by using an interspecific hybrid resource family. Genetics,2003,165(2):687-694
    [131] Livak KJ, Flood SJ, Marmaro J, et al. Oligonucleotides with fluorescent dyes at oppositeends provide a quenched probe system useful for detecting PCR product and nucleic acidhybridization. PCR Methods Appl,1995,4(6):357-362
    [132] Lizardi PM, Huang X, Zhu Z, et al. Mutation detection and single-molecule countingusing isothermal rolling-circle amplification. Nat Genet,1998,19(3):225-232
    [133] Lyamichev V, Mast AL, Hall JG, et al. Polymorphism identification and quantitativedetection of genomic DNA by invasive cleavage of oligonucleotide probes. Nat Biotechnol,1999,17(3):292-296
    [134] Lyamichev VI, Kaiser MW, Lyamicheva NE, et al. Experimental and theoretical analysisof the invasive signal amplification reaction. Biochemistry,2000,39(31):9523-9532
    [135] Ma H, Ma Q, Ma C, et al. Isolation and characterization of gene-derived single nucleotidepolymorphism (SNP) markers in Scylla paramamosain. Biochem Syst Ecol,2011,39:419-424
    [136] Margulies M, Egholm M, Altman WE, et al. Genome sequencing in microfabricatedhigh-density picolitre reactors. Nature,2005,437(7057):376-380
    [137] Martinez V, Thorgaard G, Robison B, et al. Posterior evidence of multiple QTLinfluencing early development in double haploid lines of rainbow trout, Oncorhynchusmykiss. Aquaculture,2005,247:25.
    [138] Maruya E, Saji H, Yokoyama S. PCR-LIS-SSCP (Low ionic strength single-strandconformation polymorphism)--a simple method for high-resolution allele typing ofHLA-DRB1,-DQB1, and–DPB1. Genome Res,1996,6(1):51-57
    [139] McDonald JH, Kreitman M. Adaptive protein evolution at the Adh locus in Drosophila.Nature,1991,351:652-654
    [140] Michelizzi VN, Wu X, Dodson MV, et al. A global view of54,001single nucleotidepolymorphisms (SNPs) on the Illumina BovineSNP50BeadChip and their transferability towater buffalo. Int J Biol Sci,2011,7(1):18-27
    [141] Miller MR, Dunham JP, Amores A, et al. Rapid and cost-effective polymorphismidentification and genotyping using restriction site associated DNA (RAD) markers. GenomeRes,2007,17(2):240-248
    [142] Moen T, Baranski M, Sonesson AK, et al. Confirmation and fine-mapping of a majorQTL for resistance to infectious pancreatic necrosis in Atlantic salmon (Salmo salar):population-level associations between markers and trait. BMC Genomics,2009,10:368
    [143] Moen T, Delghandi M, Wesmajervi MS, et al. A SNP/microsatellite genetic linkage mapof the Atlantic cod (Gadus morhua). Anim Genet,2009,40(6):993-996
    [144] Moen T, Hayes B, Baranski M, et al. A linkage map of the Atlantic salmon (Salmo salar)based on EST-derived SNP markers. BMC Genomics,2008,9:223
    [145] Moen T, Hoyheim B, Munck H, et al. A linkage map of Atlantic salmon (Salmo salar)reveals an uncommonly large difference in recombination rate between the sexes. AnimGenet,2004,35:81-92
    [146] Moen T, Sonesson AK, Hayes B, et al. Mapping of a quantitative trait locus for resistanceagainst infectious salmon anaemia in Atlantic salmon (Salmo salar): comparing survivalanalysis with analysis on affected/resistant data. BMC Genet,2007,8:53
    [147] Mogahadam HK, Poissant J, Fotherby H, et al. Quantitative trait loci for body weight,condition factor and age at sexual maturation in Arctic charr (Salvelinus alpinus):comparative analysis with rainbow trout (Oncorhynchus mykiss) and Atlantic salmon (Salmosalar). Mol Genet Genomics,2007,277(6):647-661
    [148] Morishima K, Nakayama I, Arai k. Genetic linkage map of the loach Misgurnusanguillicaudatus (Teleostei: Cobitidae). Genetica,2008,132(3):227-241
    [149] Morton NE. Sequential tests for the detection of linkage. Am J Hum Genet,1955,7(3):277-318
    [150] Myers RM, Fischer SG, Lerman LS, et al. Nearly all single base substitutions in DNAfragments joined to a GC-clamp can be detected by denaturing gradient gel electrophoresis.Nucleic Acids Res,1985,13(9):3131-3145
    [151] Nallur G, Luo C, Fang L, et al. Signal amplification by rolling circle amplification onDNA microarrays. Nucleic Acids Res,2001,29(23): E188
    [152] Naruse K, Fukamachi S, Mitani H, et al. A detailed linkage map of medaka, Oryziaslatipes: comparative genomics and genome evolution. Genetics,2000,154(4):1773-1784
    [153] Newton CR, Graham A, Heptinstall LE, et al. Analysis of any point mutation in DNA.The amplification refractory mutation system (ARMS). Nucleic Acids Res,1989,17(7):2503-2516
    [154] Nichols KM, Wheeler PA, Thorgaard GH. Quantative trait loci analyses for meristic traitsin Oncorbyncbus mykiss. Environ Biol Fish,2004,69:317-331
    [155] Nichols KM, Broman KW, Sundin K, et al. Quantitative Trait Loci×MaternalCytoplasmic Environment Interaction for Development Rate in Oncorhynchus mykiss.Genetics,2007,175(1):335-347
    [156] Ning Y, Liu X, Wang ZY, et al. A genetic map of large yellow croaker Pseudosciaenacrocea. Aquaculture,2007,264:16-26.
    [157] Nomura K, Ozaki A, Morishima K, et al. A genetic linkage map of the Japanese eel(Anguilla japonica) based on AFLP and microsatellite markers. Aquaculture,2011,310:329-342
    [158] O’Donovan MC, Oefner PJ, Roberts SC, et al. Blind analysis of denaturinghigh-performance liquid chromatography as a tool for mutation detection. Genomics,1998,52(1):44-49
    [159] Ohara E, Nishimura T, Nagakura Y, et al. Genetic linkage maps of two yellowtails(Seriola quinqueradiata and Seriola lalandi). Aquaculture,2005,244:41-48
    [160] Okayama H, Curiel DT, Brantly ML, et al. Rapid, nonradioactive detection of mutationsin the human genome by allele-specific amplification. J Lab Clin Med,1989,114(2):105-113
    [161] Olivier M. The Invader assay for SNP genotyping. Mutat Res,2005,573(1-2):103-110
    [162] O'Malley KG, Sakamoto T, Danzmann RG, et al. Quantitative trait loci for spawning dateand body weight in rainbow trout: testing for conserved effects across ancestrally duplicatedchromosomes. J Hered,2003,94(4):273-284
    [163] Orita M, Iwahana H, Kanazawa H, et al. Detection of polymorphisms of human DNA bygel electrophoresis as single-strand conformation polymorphisms. Proc Natl Acad Sci USA,1989,86(8):2766-2770
    [164] Paran I, Mchielmore RW. Development of reliable PCR based markers linked to downymildew resistance genes in lettuce. Theor Appl Genet,1993,85:985-993
    [165] Pastinen T, Kurg A, Metspalu A, et al. Minisequencing: A specific tool for DNA analysisand diagnostics on oligonucleotide arrays. Genome Res,1997,7:606-614
    [166] Pérez F, Erazo C, Zhinaula M, et al. A sex-specific linkage map of the white shrimpPenaeus (Litopenaeus) vannamei based on AFLP markers. Aquaculture,2004,242:105-118
    [167] Perry GML, Ferguson MM, Sakamoto T, et al. Sex-linked quantitative trait loci for thethermotolerance and length in the rainbow trout. J Hered,2005,96:97-107
    [168] Phode C. Development of gene-linked molecular markers in South African abalone(Haliotis midae) using an in silico mining approach:[PhD Thesis]. Stellenbosch University,2010
    [169] Pickering J, Bamford A, Godbole V, et al. Integration of DNA ligation and rolling circleamplification for the homogeneous, end-point detection of single nucleotide polymorphisms.Nucleic Acids Res,2002,30(1): e60
    [170] Poompuang S, Na-Nakorn. A preliminary genetic map of walking catfish (Clariasmacrocephalus). Aquaculture,2004,232:195-203
    [171] Qi H, Liu X, Zhang G, et al. Mining expressed sequences for single nucleotidepolymorphisms in Pacific abalone Haliotis discus hannai. Aquac Res,2009,40:1661-1667
    [172] Qi H, Liu X, Zhang G. Characterization of12single nucleotide polymorphisms (SNPs) inPacific abalone, Haliotis discus hannai. Mol Ecol Resour,2008,8(5):974-976
    [173] Qi X, Bakht S, Devos KM, et al. L-RCA (ligation-rolling circle amplification): a generalmethod for genotyping of single nucleotide polymorphisms (SNPs). Nucleic Acids Res,2001,29(22): E116
    [174] Qin Y, Liu X, Zhang H, et al. Genetic mapping of size-related quantitative trait loci (QTL)in the bay scallop (Argopecten irradians) using AFLP and microsatellite markers.Aauqculture,2007,272:281-290
    [175] Quillet E, Krieg F, Dechamp N, et al. Mapping QTLs affecting cortisol response toconfinement stress in rainbow trout.
    [176] Rafalski JA. Novel genetic mapping tools in plants: SNPs and LD-based approaches.Plant Science,2002,162(3):329-333
    [177] Rengmark A, Lingaas F. Genomic structure of the Nile tilapia (Oreochromis niloticus)transferring gene and a haplotype associated with saltwater tolerance. Aquaculture,2007,272:146-155
    [178] Rexroad CE, Coleman RL, Martin AM, et al. Thirty‐five polymorphic microsatellitemarkers for rainbow trout (Oncorhynchus mykiss). Anim Genet,2001,32(5):317-319
    [179] Riesner D, Steger G, Zimmat R, et al. Temperature-gradient gel electrophoresis of nucleicacids: analysis of conformational transitions, sequence variations, and protein-nucleic acidinteractions. Electrophoresis,1989,10(5-6):377-389
    [180] Robison BD, Wheeler PA, Sundin K, et al. Composite interval mapping reveals a majorlocus influencing embryonic development rate in rainbow trout (Oncorhynchus mykiss). JHered,2000,92(1):16-22
    [181] Rodriguez-Ramilo S, Toro MA, Bouza C, et al. QTL detection for Aeromonassalmonicida resistance related traits in turbot (Scophthalmus maximus). BMC Genomics,2011,12:541
    [182] Rozycka M, Collins N, Stratton MR, et al. Rapid Detection of DNA Sequence Variantsby Conformation-Sensitive Capillary Electrophoresis. Genomics,2000,70(1):34-40
    [183] Saiki PK, Walsh PS, Levenson CH, et al. Genetic analysis of amplified DNA withimmobilized sequence-specific oligonucleotide probes. Proc Natl Acad Sci USA,1989,86:6230-6234
    [184] Saiki RK, Bugawan TL, Horn GT, et al. Analysis of enzymatically amplified beta-globinand HLA-DQ DNA with allele-specific oligonucleotide probes. Nature,1986,324(6093):163-166
    [185] Sakamoto T, Danzmann RG, Gharbi K, et al. A microsatellite linkage map of rainbowtrout (Oncorhynchus mykiss) characterized by large sex-specific differences in recombinationrates. Genetics,2000,155(3):1331-1345
    [186] Sauvage C, Bierne N, Lapegue S, et al. Single Nucleotide polymorphisms and theirrelationship to codon usage bias in the Pacific oyster Crassostrea gigas. Gene,2007,406(1-2):13-22
    [187] Sauvage C. Development of molecular markers associated with resistance to summermortality in oyster Crassostrea gigas-QTL approach:[PhD Thesis]. University of Rochelle,2008
    [188] Sekino M, Hara M. Linkage Maps for the Pacific Abalone (Genus Haliotis) Based onMicrosatellite DNA Markers. Genetics,2007,175(2):945-958
    [189] Shen X, Yang G, Liu Y, et al. Construction of genetic linkage maps of guppy (Poeciliareticulata) based on AFLP and microsatellite DNA markers. Aquaculture,2007,271:178-187
    [190] Shi Y, Guo X, Gu Z, et al. Genetic linkage map of the pearl oyster, Pinctada martensii(Dunker). Aquac Res,2009,41(1):35-44
    [191] Shimoda N, Knapik EW, Ziniti J, et al. Zebrafish genetic map with2000microsatellitemarkers. Genomics,1999,58(3):219-232
    [192] Smith CT, Seeb LW. Number of alleles as a predictor of the relative assignment accuracyof short tandem repeat (STR) and single-nucleotide-polymorphism (SNP) baselines for chumsalmon. Transactions of the American Fisheries Society,2008,137(3):751-762
    [193] Soller M, Beckmann JS. Marker-based mapping of quantitative trait loci using replicatedprogenies. Theor Appl Genet,1990,80:205-208
    [194] Sommer SS, Cassady JD, Sobell JL, et al. A novel method for detecting point mutationsor polymorphisms and its application to population screening for carriers of phenylketonuria.Mayo Clin Proc,1989,64(11):1361-1372
    [195] Somorjai IM, Danzmann RG, Ferguson MM. Distribution of temperature tolerancequantitative trait loci in Arctic charr (Salvelinus alpinus) and inferred homologies in rainbowtrout (Oncorhynchus mykiss). Genetics,2003,165(3):1443-1456
    [196] Stickney HL, Schmutz J, Woods IG, et al. Rapid mapping of zebrafish mutations withSNPs and oligonucleotide microarrays. Genome Res,2002,12(12):1929-1934
    [197] Sun X, Liang L. A genetic linkage map of common carp (Cyprinus carpio L.) Andmapping of a locus associated with cold tolerance. Aquaculture,2004,238:165-172
    [198] Sundin K, Brown KH, Drew RE, et al. Genetic analysis of a development rate QTL inbackcrosses of clonal rainbow trout, Oncorhynchus mykiss. Aquaculture,2005,247:75-83
    [199] Syvanen AC, Aaltosetala K, Harju L, et al. A primer-guided nucleotide incorporationassay in the genotyping of apolipoprotein E. Genomics,1990,8:684-692
    [200] Tao WJ, Boulding EG. Associations between single nucleotide polymorphisms incandidate genes and growth rate in Arctic charr (Salvelinus alpinus L.). Heredity (Edinb),2003,91(1):60-69
    [201] Tian Y, Kong J, Wang WJ. Construction of AFLP-based genetic linkage maps for theChinese shrimp Fenneropaeneus chinensis. Chinese Sci Bull,2008,53(8):1205-1216
    [202] Tripathi N, Hoffmann M, Willing EM, et al. Genetic linkage map of the guppy, Poeciliareticulata, and quantitative trait loci analysis of male size and colour variation. Proc Biol Sci,2009,276(1665):2195-2208
    [203] Tyagi S, Kramer FR. Molecular beacons: probes that fluoresce upon hybridization. NatBiotechnol,1996,14(3):303-308
    [204] Vasem gi A, Gross R, Palm D, et al. Discovery and application of insertion-deletion(INDEL) polymorphisms for QTL mapping of early life-history traits in Atlantic salmon.BMC Genomics,2010,11:156
    [205] Vera M, Pardo BG, Pino-Ouerido A, et al. Characterization of single-nucleotidepolymorphism markers in the Mediterranean mussel, Mytilus galloprovincialis. Aquac Res,2010,41:568-575
    [206] Vezzulli S, Troggio M, Coppola G, et al. A reference integrated map for cultivatedgrapevine (Vitis vinifera L.) from three crosses, based on283SSR and501SNP-basedmarkers. Theor Appl Genet,2008,117(4):499-511
    [207] Vignal A, Milan D, SanCristobal M, et al. A review on SNP and other types of molecularmarkers and their use in animal genetics. Gent Sel Evol,2002,34:275-305
    [208] Waldbieser GC, Bosworth BG, Nonneman DJ, et al. A microsatellite-based geneticlinkage map for channel catfish, Ictalurus punctatus. Genetics,2001,158(2):727-734
    [209] Wallace RB, Shaffer J, Murphy RF, et al. Hybridization of syntheticoligodeoxyribonucleotides to phi chi174DNA: the effect of single base paire mismatch.Nucl Acids Res,1979,6(11):3543-3558
    [210] Walter RB, Pains JD, Russell JE, et al. A microsatellite genetic linkage map forXiphophorus. Genetics,2004,168(1):363-372
    [211] Wang CM, Bai ZY, He XP, et al. A high-resolution linkage map for comparative genomeanalysis and QTL fine mapping in Asian seabass, Lates calcarifer. BMC Genomics,2011,12:174
    [212] Wang CM, Zhu ZY, Lo LC, et al. A microsatellite linkage map of Barramundi, Latescalcarifer. Genetics,2007,175(2):907-915
    [213] Wang L, Song L, Chang Y, et al. A preliminary genetic map of Zhikong scallop (Chlamysfarreri Jones et Preston1904). Aquac Res,2005,36(7):643-653
    [214] Wang S, Bao Z, Pan J, et al. AFLP linkage map of an intraspecific cross in Chlamysfarreri. Journal of Shellfish Research,2004,23:491-499
    [215] Wang S, Sha Z, Sonstegard T, et al. Quality assessment parameters for EST-derivedSNPs from catfish. BMC Genomics,2008,9:450.
    [216] Wang S, Zhang L, Meyer E, et al. Construction of a high-resolution genetic linkage mapand comparative genome analysis for a reef-building coral Acropora millepora. Genome Biol,2009,10(11): R126
    [217] Wang XL, Meng XY, Song B, et al. SNPs in the myostatin gene of the mollusk Chlamysfarreri: Association with growth traits. Comp Biochem Physiol B,2010,155:327-330
    [218] Williams JG, Kubelik AR, Livak KJ, et al. DNA polymorphisms amplified by arbitratyprimers are useful as genetic markers. Nucleic Acids Res,1990,18:6531-6535
    [219] Wilson K, Li Y, Whan V, et al. Genetic mapping of the black tiger shrimp Penaeusmonodon with amplified fragment length polymorphism. Aquaculture,2002,204:297-309
    [220] Wittwer CT, Reed GH, Gundry CN, et al. High-resolution genotyping by Ampliconmelting analysis using LCGreen. Clin Chem,2003,49(6Pt1):853-860
    [221] Woram RA, McGowan C, Stout JA, et al. A genetic linkage map for Arctic char(Salvelinus alpinus): evidence for higher recombination rates and segregation distortion inhybrid versus pure strain mapping parents. Genome,2004,47(2):304-315
    [222] Xia JH, Liu F, Zhu ZY, et al. A consensus linkage map of the grass carp(Ctenopharyngodon idella) based on microsatellites and SNPs. BMC Genomics,201011:135-150
    [223] Xu K, Li Q, Kong L, et al. A first-generation genetic map of the Japanese scallopPatinopecten yessoensis-based AFLP and microsatellite markers. Aquac Res,2009,40(1):35-43
    [224] Xu Y, Crouch JH. Marker-assisted selection in plant breeding: from publications topractice. Crop Sci,2008,48:391-407
    [225] Ye S, Dhillon S, Ke X, et al. An efficient procedure for genotyping single nucleotidepolymorphisms. Nucleic Acids Res,2001,29(17): E88
    [226] Yu M, Cheng Y, Fothschild MF. SNP analysis of Molting related genes in Penaeusmonodon and Litopenaeus vannamei shrimp (Brief report). Archiv Fur Tierzucht,2006,4:411-412
    [227] Yu Z, Guo X. Genetic linkage map of the eastern oyster Crassostrea virginica Gmelin.Biol Bull,2003,204(3):327-338
    [228] Yu ZN, Guo XM. Identification and mapping of disease-resistance QTLs in the easternoyster, Crassostrea virginica Gmelin. Aquaculutre,2006,254:160-170
    [229] Yuan T, He M, Huang L, et al. Genetic Linkage Maps of the Noble Scallop Chlamysnobilis Reeve Based on Aflp and Microsatellite Markers. J Shellfish Res,2010,29(1):55-62
    [230] Yvan LB, Dechamp N, Krieg F, et al. Detection of QTL with effects on osmoregulationcapacities in the rainbow trout (Oncorhynchus mykiss). BMC Genet,2011,12:46
    [231] Zabeau M, Vos P. Selective restriction fragment amplification, A general method forDNA fingerprints. European Patent Application Publ,1993.
    [232] Zhan A, Hu J, Hu X, et al. Construction of microsatellite‐based linkage maps andidentification of size‐related quantitative trait loci for Zhikong scallop (Chlamys farreri).Anim Genet,2009a,40(6):821-831
    [233] Zhan A, Hu J, Hu X, et al. Fine-scale population genetic structure of zhikong scallop(Chlamys farreri): do local marine currents drive geographical differentiaion? MarBiotechnol,2009b,11:223-235
    [234] Zhang K, Calabrese P, Nordborg M, et al. Haplotype Block Structure and Its Applicationsto Association Studies: Power and Study Designs. Am J Hum Genet,2002,71(6):1386-1394
    [235] Zhang L, Yang C, Zhang Y, et al. A genetic linkage map of Pacific white shrimp(Litopenaeus vannamei): sex-linked microsatellite markers and high recombination rates.Genetica,2007,131(1):37-49
    [236] Zhang WK, Wang YJ, Luo GZ, et al. QTL mapping of ten agronomic traits on thesoybean (Glycine max L. Merr.) genetic map and their association with EST markers. TheorAppl Genet,2004,108(6):1131-1139
    [237] Zhang X, Zhao C, Huang C, et al. A BAC-based physical map of zhikong scallop(Chlamys farreri Jones et Preston). PLoS One,2011,6(11): r27612
    [238] Zhang Y, Xu P, Lu C, et al. Genetic Linkage Mapping and Analysis of MuscleFiber-Related QTLs in Common Carp (Cyprinus carpio L.). Mar Biotechnol,2011,13(3):376-392
    [239] Zhao C, Li Q. Expressed sequence tag-derived microsatellite markers for the zhikongscallop (Chlamys farreri) and their utility in two other scallop species. Aquac Res,2008,39:557-560
    [240] Zhao J, Song L, Li C, et al. Molecular cloning of an invertebrate goose-type lysozymegene from Chlamys farreri, and lytic activity of the recombinant protein. Mol Immunol,2007,44(6):1198-1208
    [241] Zhou L, Errigo RJ, Lu H, et al. Snapback primer genotyping with saturating DNA dyeand melting analysis. Clin Chem,2008,54(10):1648-1656
    [242] Zhou L, Myers AN, Vandersteen JG, et al. Closed-tube genotyping with unlabeledoligonucleotide probes and a saturating DNA dye. Clin Chem,2004,50(8):1328-1335
    [243] Zhu L, Song L, Zhao J, et al. Molecular cloning, characterization and expression of aserine protease with clip-domain homologue from scallop Chlamys farreri. Fish ShellfishImmunnol,2007,22(5):556-566
    [244] Zietkiewicz E, Rafalski A, Labuda D. Genome fingerprinting by simple sequence repeat(SSR)-anchored polymerase chain reaction amplification. Genomics,1994,20(2):176-183

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700