大菱鲆(Turbot)微卫星标记的筛选与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究利用微卫星标记,以亲缘关系较远的大菱鲆父母本杂交构建的一个F1家系为作图群体,构建了大菱鲆遗传连锁图谱并对相关生长性状如:体长,体重,体厚进行了QTL分析。本研究的具体内容如下:
     1、采用富集文库-菌落原位杂交的方法构建大菱鲆微卫星富集文库,共筛选得到952个克隆,通过序列比对和重复序列筛查,得到含有重复序列的独立克隆753个,占全部克隆数的79.10%。通过tandem repeats finder (TRF)软件的进一步筛查,得到1004个含串联重复序列的位点,其中微卫星位点831个(82.77%),小卫星序列位点173个(17.23%)。利用实验室设计的软件对序列进行分析,得到结论如下:1)微卫星重复序列中,重复序列数目所占比例与累计长度的所占比例情况基本一致,两碱基重复类型累计长度所占的比例最大,其次是四碱基、三碱基、六碱基和五碱基类型,而单碱基重复类型在本研究中鲜有发现;2)重复单位拷贝数变异能力分析表明,变异系数最大的是三碱基;3)重复序列重复单位长度与其拷贝数的相关分析表明,二者呈负相关(r = -0.5, P= 0.072),即随着重复单位的增加,其拷贝数在减少。以上结果为物种之间微卫星分布频率和丰度的比较、微卫星标记的开发及微卫星进化和功能的研究等工作提供基础。
     2、本研究利用了富集文库-菌落原位杂交的方法开发的653个微卫星标记,利用含有F1代亲本在内的多个个体对位点进行多态性评价,共得到284个多态性的位点,其中158个标记在所构建图谱家系亲本间具有多态性,分别有125个和118个标记可用于母本和父本遗传连锁图谱的构建。卡方检验显示,母本分离标记中有偏分离标记(P<0.01)10个(8.0%),其它115个标记符合孟德尔1:1分离规律可用于连锁分析;父本分离标记中有偏分离标记(P<0.01)13个(11.0%),其它105个标记符合孟德尔1:1分离规律可用于连锁分析。利用父母本的分离标记,分别对大菱鲆母本和父本作图。所构建的母本连锁图谱共30个连锁群,110个标记连锁群总长度为919.1 cM,平均标记间隔为12.9 cM。所构建的父本连锁图谱共21个连锁群,110个标记连锁群总长度为721.7 cM,平均标记间隔为9.9 cM。根据计算,母本连锁图谱的预期长度为1695.0 cM,覆盖率为35.5%;父本连锁图谱的预期长度为1137.3 cM,覆盖率为48.2%。连锁分析结果显示,大菱鲆母本遗传连锁图谱比父本遗传连锁图谱长49.0%,这可能说明大菱鲆不同性别存在不同的重组率。
     利用所构建的图谱对大菱鲆体长,体重和体厚进行QTL定位。在父本连锁图谱上仅检测得到一个可能与体长相关的QTL。QTL定位,为我们从事今后的分子标记辅助育种工作提供了参考。
Genetic linkage maps were constructed for turbot (Scophthalmus maximus L.) using microsatellite markers in an F1 family and quantitative trait loci(QTL) associated with the growth of turbot were detected and located in the maps.
     1. In present study, by construction the microsatellite enrichment libraries and colony hybridization, microsatellites were isolated for the turbot (Scophthalmus maximus L.) covering the whole genome in a large scale. By 14 different probes detection, 952 clones were sequenced and after cluster analysis, 753 individual positive clones were finally obtained. Using Vector NTI Suite 8.0 (Invitrogen) and tandem repeats finder (TRF) software, a total of 1004 tandem repeat sequences were found , including 831 microsatellites and 173 minisatellites, which accounted for 82.77% and 17.23% of total repeat sequences respectively. The results of analyzing the different nucleotide unit crossing the whole genome of turbot were also represented. It showed that: the di-nucleotide unit was the dominant repeat unit among the six repeat unit types, whose number was the most abundant, and the repeat unit cumulative length was the largest as well, while the penta-nucleotide type was disadvantage in the whole repeat unit types. The CV (Coefficient of Variation) was introduced to evaluate the ability of the repeated variation of microsatellites. The AGG (126.11) motif was the most variable repeat unit type in this research with a CV value 126.11, but the average CV of di-nucleotides was the most common type among the six repeat unit types as the basis of origin and evolution of repeat sequences. In this study, a negative correlation between the length of repeat units and the average copy number was detected (r = -0.5, P= 0.072).
     2. Six hundred and fifty-three primer pairs were designed and 284 primer pairs with high polymorphisms were screened, which were developed from the SSR-enriched libraries. The genetic linkage map of turbot was performed using an F1 family, and the map was constructed using 158 microsatellite markers among all the polymorphic markers. Of these segregating markers, 125 were mapped to the female framework map and 10 (8.0%) markers showed a significant distortion from the expected 1:1 ratio (P<0.01). final female linkage map consisted of 30 linkage groups spanning 919.1 cM with an average distance of 12.9 cM. And 118 were assigned to 22 linkage groups in male map, and 13 (11.0%) markers showed a significant distortion from the expected 1:1 ratio (P<0.01). The total length of the male map was 721.7 cM with an average distance of 9.9 cM. By using two kinds of methods to estimate the genome length, the average estimate length was 1695.0 cM for female and 1137.3 cM for male with coverage of 35.5%and 48.2% respectively. In Turbot, the female map was 49.0% larger than the male map, which may reflect sex-specific recombination rates in Turbot.
     In addition, only one possible QTL for the turbot standard length associated with the growth of Turbot was detected and located in the female and male maps. The QTL in related to the growth clustered on linkage group would be very useful for improving this trait by molecular marker-assisted selection.
引文
[1]蔡旭.植物遗传育种学.北京:科学出版社, 1988. 286-300.
    [2]崔奎青,李秀林,石德顺.利用PCR技术筛选微卫星标记及其应用.中国牛业科学, 2007, 33(3): 25-29.
    [3]崔建洲,申雪艳,杨官品,宫庆礼,顾谦群.红鳍东方鲀基因组微卫星特征分析.中国海洋大学学报, 2006, 36(2): 249-254.
    [4]杜佳垠.大菱鲆( Scophthalmus maximus)养殖现状.现代渔业信息, 2001, 16 (2): 16-21.
    [5]高焕.中国对虾基因组串联重复序列分析及其分子标记的开发和应用.中国科学院研究生院,博士学位论文, 2006.
    [6]高焕,刘萍,孟宪红,王伟继,孔杰.中国对虾(Fenneropenaeus chinensis)基因组微卫星特征分析.海洋与湖沼, 2004, 35 (5): 424-431.
    [7]郭文久.微卫星在基因组上的分布与功能及其计算方法初步研究.四川农业大学博士学位论文, 2004.
    [8]龚炎长.猪微卫星DNA的克隆,特性分析及应用研究.北京:中国农业大学, 1999.
    [9]雷霁霖,刘新富.大菱鲆Scophthalmus maximus L.引进养殖的初步研究.现代渔业信息, 1995, 10(11): 1-3.
    [10]雷霁霖.海水养殖新品种介绍-大菱鲆.中国水产,2000, (4):65-69.
    [11]雷霁霖.关于当前我国北方沿海工厂化养鱼的一些问题和建议.现代渔业信息, 2002, 17(4): 5-8.
    [12]雷霁霖.海水鱼类品种引进的问题与建议.中国水产, 2002, (2): 63-65.
    [13]雷霁霖.大菱鲆养殖技术(修订版).上海:上海科学技术出版社, 2005.
    [14]李莉.长牡蛎的分子标记筛选和遗传图谱构建.中国科学院博士学位论文. 2003.
    [15]李宁,等.畜禽基因图-中国动物遗传育种研究.北京:中国农业出版社, 1995, 135-321.
    [16]刘静霞,周莉,赵振山,桂建芳.锦鲤4个人工雌核发育家系的微卫星标记研究.动物学研究, 2002, 23(2): 97-105.
    [17]刘萍,孟宪红,孔杰,李健,王清印.中国对虾部分基因组文库构建和微卫星DNA序列的筛选.高技术通讯, 2004, 2: 87-90.
    [18]刘贤德.皱纹盘鲍遗传图谱构建及生长相关性状的QTL定位.中国科学院博士学位论文, 2005.
    [19]鲁翠云,孙效文,梁利群.鳙鱼微卫星分子标记的筛选.中国水产科学, 2005, 12(2):192-196.
    [20]栾生,孔杰,王清印,高焕,等.日本囊对虾(Marsupenaeus japonicus)基因组微卫星特征分析.自然科学进展, 2007, 17(6): 731-740.
    [21]马爱军,陈四清,雷霁霖,张秀梅,陈大刚.大菱鲆产卵季节对卵子的牛物学及生化特征的影响.海洋与湖沼, 2002, 33(1): 75-82.
    [22]宁岳.大黄鱼遗传连锁图谱的构建.集美大学硕士论文, 2007.
    [23]阮成江,何祯祥,钦佩.我国农作物QTL定位研究的现状和展望.植物学通报,2003, 20 (1): 10-22.
    [24]沈富军, Phillwatts,张志和,等. Dynal磁珠富集大熊猫微卫星标记.遗传学报, 2005, 32(5): 457-462.
    [25]申雪艳,宫庆礼,雷霁霖,孔杰,翟介明,李波.进口大菱鲆Scophthalmus maximus L.苗种的遗传结构分析.海洋与湖沼, 2004, 35(4): 332-340.
    [26]孙邵宁,刘萍,李健,孟宪红,孔杰,张秀梅. RAPD和SSR两种标记构建的中国对虾遗传连锁图谱. 2006,动物学研究, 27(3): 317-324.
    [27]孙效文等.鲤鱼的遗传连锁图谱(初报).中国水产科学, 2000, 7(1): 1-5.
    [28]汤继凤,曾永生,高丽锋,贾继增.用生物信息学技术构建cSSR分子标记开发体系.中国农业科学, 2004, 37(3): 328-333.
    [29]田燚.中国对虾育种方法研究与遗传连锁图谱的构建.中国科学院博士学位论文, 2007.
    [30]田燚,孔杰,王伟继.中国对虾遗传连锁图谱的构建.科学通报, 2008, 53(5): 544-555.
    [31]徐鹏,周岭华,相建海.中国对虾微卫星DNA的筛选.海洋与湖沼, 2001, 32(3): 255-259.
    [32]王玲玲.栉孔扇贝和海湾扇贝遗传连锁图谱的构建研究.中国科学院研究生院博士论文, 2005,北京.
    [33]王永飞,马三梅,刘翠萍,等.分子标记在植物遗传育种中的应用原理及现状.西北农林科技大学学报(自然科学版) (增刊), 2001, 29: 106-113.
    [34]王伟继. I中国对虾(Fenneropenaeus chinensis)AFLP分子标记遗传连锁图谱的构建以及相关性状的QTL定位研究II蓝鳃太阳鱼(Lepomis macrochirus)AFLP分子标记遗传连锁图谱的构建及性别决定机制初探.中国海洋大学博士, 2008.
    [35]吴为人,李维明,卢浩然.建立一个重组自交系群体所需要的自交代数.福建农业大学学报, 1997, 26(2): 129-132.
    [36]徐云碧,朱立煌.分子数量遗传学.北京:中国农业出版社. 1994.
    [37]岳志芹.中国对虾人工选育群体遗传结构分析及遗传连锁图谱的构建.中国海洋大学博士论文, 2004.
    [38]岳志芹,王伟继,孔杰,戴继勋,王清印. AFLP分子标记构建中国对虾遗传连锁图谱的初步研究.高科技通讯, 2004, 88-93.
    [39]余诞年.番茄基因的分子标记与遗传作图.园艺学报, 1998, 25(4):361-366.
    [40]战爱斌,胡景杰,胡晓丽,王明玲,彭薇,李艳,李纪勤,包振民.富集文库-菌落原位杂交法筛选栉孔扇贝(Chlamys farreri)的微卫星标记.水产学报, 2007.
    [41]战爱斌.栉孔扇贝(Chlamys farreri)微卫星标记的筛选及应用.中国海洋大学博士论文, 2007.
    [42]张德水,陈受宜. DNA分子标记、基因组作图及其在植物遗传育种上的应用.生物技术通报, 1998, 5: 15-22.
    [43]张天时,刘萍,孟宪红,王伟继,孔杰,王清印.不同对虾种间共用微卫星DNA引物的研究.高科技通讯, 2003, 11: 80-85.
    [44]张云武,张亚平.微卫星及其应用.动物学研究, 2001, 22(4): 315-320.
    [45]赵娜.基于微卫星标记的中华鲟繁殖群体遗传学分析与人工繁殖对自然幼鲟群体的贡献评估.中国科学院研究生院,博士学位论文, 2006.
    [46]赵志辉,李宁,胡晓湘,冯继东,张玉静.鸡下丘脑组织表达序列标签初步分析.中国兽医学报, 2002, 22(2): 184-186.
    [47] Agresti J J, Seki S, Cnaaani A, et al. Breeding new strains of tilapia: development of an artificial center of origin and linkage map based on AFLP and microsatellite loci. Aquaculture, 2000, 185: 43-56.
    [48] Arnheim N, Strange C and Erlich H. Use of pooled DNA samples to detect linkage disequilibrum of polymorphic restriction fragment and human disease. Proc Nat Acad Sci USA, 1985, 82: 6970-6974.
    [49] Ashie T N, Daniel G B, Edward P C. Parentage and relatedness determination in farmed Atlantic salmon (Salmon salar) using microsatellite markers. Aquaculture, 2000, 182: 73-83.
    [50] Ashley C T, Warren S T.Trinucleoride repeats expansion and human disease. Annu Rev Genet, 1995, 29: 703-728.
    [51] Avise J C, Arise J C. Polymorphism of mtDNA in populations of higher animals.In:Nei,M.& Koehn, R.K.(eds). Evolution of Genes and Proteins. Sinauer, Sunderland, 1983, 147-164.
    
    [52] Beckmann J S, Weber J L. Survey of human and rat microsatellites. Genomics, 1992, 12: 627-631.
    
    [53] Blanquer A and Alayse J P. Allozyme variation in turbot (Psetta maxima) and brill (Scophthalmus rhombus) (Osteichthyes, pleuonectonformes, Scophthalmidae) throughout their range in Europe. J Fish Biol, 1992, 41: 725-736.
    
    [54] Bostein D, White R L, Skolnick M, Davis R W. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet, 1980, 32(3): 314-31.
    
    [55] Bosteirn D, White R and Skolnick M H. Construction of a genetic map in man restriction fragment length polyrmrphism. An J HunGenet, 1980, 32: 314-331.
    
    [56] Bouza C, Sánchez L and Martínez P. Karyotypic characterization of turbot (Scophthalmus maximus) with conventional, fluorochrome, and restriction endonuclease banding techniques. Mar. Biol, 1994, 120: 609-613.
    
    [57] Bouza C, Hermida M, Pardo B G, et al. A Microsatellite Genetic Map of the Turbot (Scophthalmus maximus). Genetics, 2007, 177: 2457-2467.
    
    [58] Bouza C, Presa P, Castro J, Sanchez I and Martínez P. Allozyme and microsatellite diversity in natural and domestic populations of turbot (Scophthalmus maximus) in comparison with other Pleuronectiformes. Can. J. Fish. Aquat. Sci., 2002, 59(9): 1460-1473.
    
    [59] Brenner S, Elgar G, Sandford R, et al. Characterization of the pufferfish (Fugu) genome as a compact model vertebrate genome. Nature, 1993, 366: 265-268.
    
    [60] Callen D F, Thompson A D, Shen Y. Phillips H A. et al. Incidence of null allele in the (AC)n microsatellite markers. Am J Hum Genet, 1993. 52: 922-927.
    
    [61] Castro J, Bouza C, Presa P, et al. Potential sources of error in parentage assessment of turbot (Scophthalmus maximus) using microsatellite loci. Aquaculture, 2004, 242: 119-135.
    
    [62] Causse M A, Fulton T M, Cho Y G, et al. Saturated molecular map of the rice genome based on an interspecific backcross population. Genetics, 1994, 138: 1251-1274.
    
    [63] Chakravarti A, Lasher L K, Reefer J E. A maximum likelihood for estimating genome length using genetic linkage data. Genetics, 1991, 128: 175-182.
    
    [64] Chen S L, Ma H Y, Jiang Y, et al. Isolation and characterization of polymorphic microsatellite loci from an EST library of turbot (Scophthalmus maximus)and cross-species amplification.Molecular Ecology Notes, 2007, 7: 848-850.
    [65] Chistiakov D A, Hellemans B, Haley C S, et al. A microsatellite linkage map of the European sea bass Dicentrarchus labrax. Genetics, 2005, 170: 1821-1826.
    [66] Chistiakov D A, Hellemans B and Volckaert F A M. Microsatellites and their genomic distribution, evolution, function and applications: a review with special reference to fish genetics. Aquaculture, 2005, 255: 1-29.
    [67] Cho R J, Mindrinos M, Richard D R, Sapolsky R J, Andeson M. et al. Genome-wide mapping with biallelic markers in Arabidopsis thaliana. Nat Genet, 1999, 23: 203-207.
    [68] Coimbra M R M, Kobayashi K, Koretsugu S, et al. A genetic linkage map of the Japanese flounder, Paralichthys olivaceus. Aquaculture, 2003, 220: 203-218.
    [69] Coughlan J P, Imsland A K and Galvin P T. Microsatellites DNA variation in wild popu1ations and farmed strains of turbot from Ireland and Norway: A preliminary study. J. Fish Biology, 1998, 52: 916-922.
    [70] Coughlan J P, Mccarthy R, McGregor D. Four ploymorphic microsatellites in turbot (Scophthalmus maximus L.). Anima1 Genetic, 1996, 27(6): 441-447.
    [71] Debrauwere H, Gendrel C G, Lechat S, et al. Differences and similarities between various tandem repeat sequences: minisatellites and microsatellites. Biochimie, 1997, 79: 577-586.
    [72] Dietrich W F, Miller J, O'Connor T J, et al. A comprehensive genetic map of the mouse genome [J]. Nature, 1996, 380: 149-152.
    [73] Donis-Keller H. A gnetic linkage map of the human genome. Cell, 1987, 51: 319.
    [74] Edwards A, Civitello A, Hammond H A, Caskey C T. DNA typing and genetic mapping with trimeric and tetrameric tandem repeats. Am J Hum Genet., 1991, 49: 749-756.
    [75] Einar E, Nielsen P H, et al. Genetic population structure of turbot (Scophthalmus maximus L.) supports the presence of multiple hybrid zones for marine fishes in the transition zone between the Baltic Sea and the North Sea. Molecular Ecology, 2004, 13: 585-595.
    [76] Franch R, Louro B, Tsalavouta M, Chatziplis D, et al. A genetic linkage map of the hermaphrodite teleost fish Sparus aurata L. Genetics, 2006, 174: 851-861.
    [77] Gao H and Kong J. The microsatellites and minisatellites in the genome of Fenneropenaeus chinensis. DNA Sequence, 2005, 16(6): 426-436.
    [78] Geoffrey C, Waldbieser C, Bosworth B G, et al. A microsatellite-based genetic linkage mapfor channel catfish,Ictalurus punctatus. Genetics, 2001, 158: 727-734.
    [79] Gilmour D S, Thomas G H , Elgin S C R. Drosophila nuclear proteins bind to regions of alternating C and T residues in gene promoters. Science, 1989, 245: 1487-1490.
    [80] Grattapatlia D, Sederoff R. Genetic linkage maps od Eucalyptus grandis and Eucalyptus urophylla using a pseudo-testcross: mapping strategy and RAPD markers. Genetics 137: 1121-1137.
    [81] Grisi M C M, Blair M W, Gepts P, et al. Genetic mapping of a new set of microsatellite markers in a reference common bean (Phaseolus vulgaris) population BAT93 x Jalo EEP558. Genet. Mol. Res, 2007, 6 (3): 691-706.
    [82] Haldane J B S. The part played by recurrent mutation in evolution. Am. Nat, 1922, 67: 5-9.
    [83] Haldane J B S, Smith C A B. A new estimate of the linkage between the genes for colour-blindness and haemophilia in man. Ann Eugen, 1919, 14: 10-31.
    [84] Hamada H,Marianne G P and Kakunaga T. A Novel Repeated Element with Z-DNA-Forming Potential is Widely Found in Evolutionarily Diverse Eukaryotic Genomes. PNAS, 1982, 79: 6465-6469.
    [85] Hancock J M. The contribution of slippage-like processes to genome evolution. J Mol Evol., 1995, 41: 1038-1047.
    [86] Hancock J M. The contribution of DNA slippage to eukaryotic nuclear 18S rRNA evolution. Journal of Molecular Evolution, 1995, 40: 629-639.
    [87] Hedgecock D, Hubert S, Li G, et al. A genetic linkage map of 100 microsatellite markers for the Pacific oyster Crassostrea gigas. Journal of Shellfish Research, 2002, 21(1): 381-386.
    [88] Hoskins R A, Phan A C, Naeemuddin M, Mapa F A.et al. Single nucleotide polymorpgism markers for genetic mapping in Drosophila melanogaster. Genom Res, 2001, 11: 1100-1113.
    [89] Harushima Y, Yano M, Shomura A. A high-density rice genetic linkage map with 2275 markers using a single F2 population. Genetic, 1998, 148(1): 1-16.
    [90] Hatey F, Tosser-Klopp G, Glouscard-Martination C. Expressed sequenced tags for genes: a review. Genet Sel Evol, 1998, 30(5): 521-541.
    [91] Hubert S, Hedgecock D. Linkage maps of microsatellite DNA markers for the Pacific oyster Crassostrea gigas. Genetics, 2004, 168: 351-362.
    [92] Huxley J S. Sexual difference of linkage Grammarus chereuxi. J Genet, 1928, 20: 145-156.
    [93] Iyengar A, Piyapattanakorn S, David M Stone, et al. Identificaion of microsatellite repeats in turbot (Scophthalmus maximus) and Dover sole (Solea solea) using a RAPD-Rased technique: characterization of microsatellite markers in Dover sole and Dover. Mar Biotechnol, 2000, 2: 49-56.
    [94] Iyengar A, Piyapattanakorn S, Heipel D A, et al. A suit of highly polymorpic microsatellites markers in turbot (Scophthalmus maximus) with potential for use across several flatfish species. Molecular Ecology, 1999, 9: 365-378.
    [95] Jansen R C. Interval mapping of multiple quantitative trait loci. Genetics, 1993, 135: 205-211.
    [96] Jansen R C, Stam P. High resolution of quantitative traits into multiple loci via interval mapping. Genetics, 1994, 136: 1447-1455.
    [97] Jones A. Studies on egg development and larval rearing of turbot, Scophthalmus maximus L., in the laboratory. Journal of the Marine Biological of the Marine Biological Association of the United Kingdom. 1972, 52: 965-986.
    [98] Kai, W, Kikuchi K, Fujita M, et al. A genetic linkage map for the tiger pufferfish, Takifugu rubripes. Genetics, 2005, 171: 227-238.
    [99] Katti M V, Ranjekar P K, Gupta V S. Differential distribution of simple sequence repeats in eukaryotic genome sequences. Molecular Biology and Evolution, 2001, 18 (7): 1161-1167.
    [100] Kocher T D, Lee W, Sobolewska H, et al. A genetic linkage map of a cichlid fish, the Tilapia (Oreochromis niloticus). Genetics, 1998, 148: 1225-1232.
    [101] Kosambi D D. The estimate of map distance from recombination values. Ann Eugen, 1944, 12: 172-175.
    [102] Lander E S, Botstein D. Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics, 1989, 121: 185-199.
    [103] Lander E S, Linton L M, Birren B, Nusbaum C, et al. Initial sequencing and analysis of the human genome. Nature, 2001, 409: 860-921.
    [104] Launey S, Hedgecock D. High genetic load in the Pacific oyster Crassostrea gigas. Genetics, 2001, 159: 255-265.
    [105] Lee B Y, Lee W J, Streelman J T, Carleton K L, et al. A second-generation genetic linkage map of tilapia (Oreochromis spp). Genetics, 2005, 170: 237-244.
    [106] Levinson G, Gutman G A. Slipped-strand mispairing: a major mechanism for DNA sequence evolution. Mol. Biol. Evol., 1987, 4: 203 -221.
    [107] Lindblad-Toh K, Winchester E, Daly M J, Wang D G. et al. Large-scale discory and genotyping of single nucleodite polymorphisms in mouse. Natu Genet, 2000, 24: 381-386.
    [108] Li C, Han B. Diversity of Simple Sequence Repeats in Arabidopsis thaliana and Rice. Acta Botanica Sinica, 2004, 46(5): 603-609.
    [109] Li C Y, Li J B, Zhou X G, et al. Frequency and distribution of microsatellites in the genome of Filamentous Fungus, Neurospora crassa. Agricultural Sciences in china, 2005, 4(2): 118-124.
    [110] Lindahal K F. His and hers recombinational hotspots. Trends in Genetics, 1991, 7(9): 273-276.
    [111] Liu Y G, Liu L X, Lei Z W, Gao A Y and Li B F. Identification of polymorphic microsatellite markers from RAPD product in turbot (Scophthalmus maximus) and a test of cross-species amplification. Mol. Ecol. Notes, 2006, 6(3): 867-869.
    [112] Liu Z, Karsi A, Li P, Cao D and Dunham R. An AFLP based genetic linkage map of channel catfish (Ictalurus punctatus) constructed by using an interspecific hybrid resource family. Genetics, 2003, 165: 687-694.
    [113] Liu Z, Li P, Kucuktas H, et al. Development of Amplified Fragment Length Polymorphism (AFLP)markers suitable for genetic linkage mapping of catfish. Trans American Fish Soc, 1999, 128: 317-327.
    [114] Li Y T, Byrne K, Miggiano E, et al. Genetic mapping of the kuruma prawn Penaeus japonicus using AFLP markers. Aquaculture, 2003, 219: 143-156.
    [115] Lund G, Lauria M, Guldberg P. Duplication-dependent CG suppression of the seed storage protein genes of maize. Genetics, 2003, 165: 835-848.
    [116] Lyttle T W. Segregation distorters. Annu.Rev.Genet., 1991, 25: 511-557.
    [117] Ma Z Q, Roder M, Sorrells M E. Frequencies and sequence characteristics of di-, tri-, and tetranucleotide microsatellite in wheat. Genome, 1996, 39: 123-130.
    [118] Maddox J.Triplet repeat genes raise question.Nature, 1994, 368(647): 685.
    [119] Maguire T L, Edwards K J, Saenger P, et al. Characterization and analysis of microsatellite loci in mangrove species, Avicennia marina (Fork.) Vierh. (Avicenniaceae). Theor Appl Genet, 2000, 101: 279-285.
    [120] Moen T, Hoyheim B, Munck H, et al.A linkage map of Atlantic salmon (Salmo salar) reveals an uncommonly large difference in recombination rate between the sexes. Anim Genet, 2004, 35: 81-92.
    [121] Ohtsuka M, Makino S, Yoda K, Wada H, Naruse K. et al. Construction of a linkage map of the medaka (Oryzias latipes) and mapping of the Da mutant locus defective in dorsoventral patterning. Genome Res, 1999, 9: 1277-1287.
    [122] Olson M, Hood L, Cantor C, and Botstein D. A common language for physical mapping of the human genome. Science, 1989, 245 (4925): 1434-1435.
    [123] Pardo B G, Casas L, Fortes G G, Bouza C, Mart?ínez P, et al. New microsatellite markers in turbot (Scophthalmus maximus) derived from an enriched genomic library and sequence databases. Mol. Ecol. Notes, 2005, 5: 62-64.
    [124] Pardo B G, Hermida M, Fernández C, Bouza C, Pérez M, et al. Set of highly polymorphic microsatellites useful for kinshipand population analysis in turbot. Aquac. Res, 2006, 37: 1578-1582.
    [125] Pardo B G, Fernández C, Hermida M, Vázquez A, Pérez M. et al. Development and characterization of 248 novel microsatellitemarkers in turbot (Scophthalmus maximus). Genome, 2007, 50:329-332.
    [126] Pardo-Manuel de Villena F, Sapienza C. Nonrandom segregation during meiosis: the unfairness of females. Mammal. Gen. 1998, 12: 331-339.
    [127] Paterson A H. Resolution of quantitative traits into Mendelian factors by using a complete linkage map of restriction fragment length polymorphysiums. Nature, 1988, 335, 721-726.
    [128] Postlethwait J H,Johnson S.Midson C N.et al.J AGenetie Linkage Map for the Zebraftsh. Science, 1994, 264(29): 699-703.
    [129] Powell W, Machray G C & Provan J. Polymorphism revealed by simple sequence repeats. Trends in Plant Sci., 1996, 7: 215-222.
    [130] Prasad M D, Muthulakshmi M, Madhu M, et al. Survey and Analysis of Microsatellites in the Silkworm, Bombyx mori:Frequency, Distribution, Mutations, Marker Potential and their Conservation in Heterologous Species. Genetics, 2005, 169: 197-214.
    [131] Saito R, Tomita M. On negative selection against ATG triplets near start codons in eukaryotic and prokaryotic genomes. J Mol Evol, 1999, 48: 213-217.
    [132] Sakamoto T, Danzmann R G, Gharbi K, et al. A microsatellite linkage map of rainbow trout (Oncorhyn chusmykiss) characterized by large sex-specific differences in recombination rates. Genetics, 2000, 155: 1331-1345.
    [133] Schl?tterer C. Evolutionary dynamics of microsatellite DNA. Chromosoma, 2000, 109: 365-371.
    [134] Schlotteroer S, Amos B, Tautz D. Conservation of polymorphic simple sequence loci in cetacean species. Nature , 1991, 354, 63-65.
    [135] Schorderet D F, Gartler S M. Analysis of CpG suppression in methylated and nonmethylated species. Pfroc. Natl. Acad. Sci. USA., 1992, 89: 957-961.
    [136] Shimoda N, Knapik E W, Zinitj J, et al. Zebrafish genetic map with 2000 microsatellite markers. Genomics, 1999, 58: 219-232.
    [137] Shriver M D, Jin L, Chakraborty R et al. VNTR allele frequency distributions under the stepwise mutation model: a computer approach. Genetics, 1993, 134: 983-993.
    [138] Silva E F, Reha-Krantz I J. Dinueleotide repeat expansion catalyzed by bacteriophage T4 DNA polymerasein vitro. Journal of Biological Chemistry, 2000, 275(40): 528-535.
    [139] Singer A, Perlman H, Yan Y, et al. Sex-specific recombination rates in Zebrafish (Danio rerio).Genetics, 2002, 160: 649-657.
    [140] Soller M, Brody T, Genizi A. On the power of experimental design for the detection of linkage between marker loci and quantitative loci in crosses between inbred lines. Theor Appl Genet, 1976, 47: 35-39.
    [141] Sun X W,Liang L Q. A genetic linkage map of common carp (Cyprinus carpio L.) and mapping of a locus associated with cold tolerance. Aquaculture, 2004, 238: 165-172.
    [142] Tautz D. Hypervariability of simple sequences as a general source for polymorphic DNA markers. Nucleic Acids Res., 1989, 17: 6463-6471.
    [143] Temnykh S, DeClerck G, Lukashova A, Lipovich L, Cartinhour S, McCouch S. Computational and experimental analysis of microsatellites in rice (Oryza sativa L): frequency, length variation,transposon associations,and genetic marker potential. Genome Res, 2001, 11: 1441-1452.
    [144] Thomas M R, Scott N S. Microsatellite repeats in grapevine reveal DNA polymorphisms when analysed as sequence-tagged sites (STSs). Theoretical Applied Genetics, 1993, 94: 985-990.
    [145] Tóth G, Gáspári Z, Jurka J. Microsatellites in different eukaryotic genomes: Survey and analysis. Genome Res., 2000, 10(7): 967-981.
    [146] Tsutsui N D, Suarez A V, Holway D A, et al. Relationships among native and introduced populations of the Argentine ant (Linep ithema humile) and the source of introduced populations. Molecular Ecology, 2001, 10(9): 2151-2161
    [147] Valdes A M , Slatkin M , Freimer N B. Allele frequencies at microsatellite loci the stepwise mutation model revisit. Genetic, 1993, 13: 737-749.
    [148] Voorrips R E, Jogerius M C, Kanne H J. Mapping of two genes for resistance to clubroot (Plasmodiophora brassicas) in a population of doubled haploid lines of brassica oleracea by means of RFLP and AFLP markers. Theor. Appl. Genet, 1997, 94: 75-82.
    [149] Vos P, Hodgers R, Bleeker M, Reijans M, et al.AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res. 1995, 23: 4407-4414.
    [150] Waldbieser G C, Bosworth B G, Nonneman D J, Wolters W R. A microsatellite based genetic linkage map for channel catfish, Ictalurus punctatus. Genetics, 2001, 158: 727-734.
    [151] Walter R B, Rains J D, Russell J E, et al. A microsatellite genetic linkage map for Xiphophorus. Genetics, 2004, 168: 363-410.
    [152] Wang C M, Zhu Z Y, Lo L C, et al, A microsatellite linkage map of Barramundi, Lates calcarifer. Genetics, 2007, 175: 907-915.
    [153] Wang D G, Fan G B, Sian C J, et al. Large-scale identification, mapping, and genotyping of single nucleotide polymorphisms in the human genome. Science, 1998, 280: 1077-1082.
    [154] Wang S, Bao Z M, Pan J, Zhang L L, et al. AFLP linkage map of an intraspecific corss in Chlamysfarreri. Journal of Shellfish Research, 2004, 23: 491-499.
    [155] Wang Z, weber J L, Zhong G, Tanksley S D. Survey of plant short tandem DNA repeats. Theor Appl Genet, 1994, 88: 1-6.
    [156] Weber J L. Informativeness of human (dC-dA)n. (dG-dT)n polymorphisms. Genomics, 1990, 7(4): 524-530.
    [157] Welsh J,McClelland M.Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Res, 1990, 18:7213-7218.
    [158] Williamsj G K, Kubelik A R, Iicak K J, Livak j A, et al. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers.Nucleic Acids Res, 1990, 18: 6531-6535.
    [159] Wilson K, Li Y, Whan V, et al. Genetic mapping of the black tiger shrimp Penaeus monodon with amplified fragment length polymorphism. Aquaculture, 2002, 204: 297-309.
    [160] Woram R A, McGowan C, Stout J A, et al. Agenetic linkage map for Arctic char (Salvelinus alpinus): evidence for higher recombination rates and segregation distortion in hybrid versus pure strain mapping parents. Genome, 2004, 47: 304-315.
    [161] Young W P, Wheeler P A, Coryell V H, et al. A detailed linkage map of rainbow trout produced using doubled haploids. Genetics, 1998, 148: 1-13.
    [162] Yu Z, Guo X. A basic AFLP linkage map for the eastern oyster,Crassostrea virginica Gmelin. Journal of Shellfish Research, 2002, 21(1): 382.
    [163] Zhan A B, Hu J J, Wang X L, Lu W, Hui M, Bao Z M. A panel of polymorphic EST-derived microsatellite loci for the bay scallop (Argopecten irradians). Journal of Molluscan Studies, 2006, 72: 436-438.
    [164] Zhan A B, Bao Z M, Hui M, Hu X L, Hu J J. Characterization of 95 novel microsatellite markers for Zhikong scallop (Chlamys farreri) using the methods of FIASCO-colony hybridization and EST database mining. Fisheries Science, 2008, 74: 516-526.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700