胡枝子干旱胁迫下渗透物质变化以及外源基因Sac B对美丽胡枝子的遗传转化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
胡枝子属(Lespedeza Michx.),是优良的水土保持和饲料型豆科灌木。有关胡枝子干旱生理、遗传改良等方面研究还处于空白阶段。本研究通过干旱胁迫实验,测定了胡枝子6个种的渗透调节物质的变化,在此基础上,选择美丽胡枝子(L.formosa(Vog.)Koehne)为材料,研究了再生系统和遗传转化体系,将抗逆基因Sac B导入美丽胡枝子中,并通过分子检测以及功能验证,获得了转基因植株。
     干旱胁迫可以导致胡枝子体内可溶性蛋白含量的持续下降,热稳定蛋白含量在一个短暂的升高后,迅速下降。可溶性糖含量随着土壤相对含水量的下降逐步升高。从本试验结果来看,可溶性糖在胡枝子渗透胁迫的调节方面可能起到了重要作用。
     以美丽胡枝子为材料,研究6-BA、2.4-D以及NAA等激素条件下不定芽的分化、增殖和生根情况。实验结果表明,6-BA 0.5mg/L+2.4-D1mg/L+NAA 0.5mg/L获得的有效不定芽最多,美丽胡枝子子叶节分化不定芽受6-BA影响较显著,其比较适宜的浓度应在0.5~1mg/L之间。获得高质量的增殖不定芽的适宜6-BA浓度应在0.1~0.2
     mg/L之间。NAA浓度对不定芽生根有极显著影响,生根的最适NAA浓度在0.1~0.5mg/L之间。由此,建立了美丽胡枝子的再生系统。
     美丽胡枝子对抗生素耐性较强。当卡那霉素的浓度大于350mg/L,才可以抑制子叶节不定芽的分化。但是高浓度的卡那霉素(Kan)对美丽胡枝子不定芽生根具有较强烈的抑制作用,羧苄青霉素(Carb)对子叶节不定芽分化及茎段增殖的抑制作用更弱。据此确定了抗生素筛选培养浓度:不定芽分化培养为Kan350 mg/L+Carb500mg/L;继代培养为Kan300mg/L+Carb500mg/L;从第二次继代后,羧苄青霉素的浓度可以降到300mg/L;生根培养为150mg/L+Carb300mg/L。通过实验,确立了美丽胡枝子的遗传转化体系:(1)以生长健壮的美丽胡枝子无菌苗子叶节为材料,预培养2d;(2)将子叶节在OD_(600)值为0.5左右的农杆菌菌液中浸染30-35min;(3)吸干菌液后,在含100uM乙酰丁香酮的MS_0培养基中,黑暗共培养2天;(4)转至含有350mg/L Kan和500mg/L Carb的分化培养基中进行筛选。
     据PCR检测结果,转基因植株与载体上原基因的PCR结果在大小上是一致的;PCR-Southem检测结果显示,转基因美丽胡枝子扩增出的片段与探针能够杂交,插入美丽胡枝子基因组中的外源片段在核苷酸序列方面也与原基因一致;从RT-PCR检测结果看出,插入的cpy-Sac B基因已经正常表达。所有这些实验验证了目的基因已经整合到了美丽胡枝子的基因组中。
     通过模拟胁迫验证了转Sac B基因美丽胡枝子的功能。转基因植株的可溶性糖含量比未转化苗有较大幅度提高,可以在NaCl 200mmol/L以及PEG 5%中生长,而未转化苗停止生长并黄化及有部分植株落叶。说明转化材料携带的Sac B基因能够表
The Lespedeza Michx. is a kind of shrub with fine function of water and soil conservation and feedstuff . However, the studies on physiological responses under drought stress and enhancing the ability of drought resistance by technology of the genetic engeering were not carried out for Lespedeza Michx. In this study, regulate changes of osmoregulation material were observed in six species of Lespedeza Michx. in drought stress; On this basis, effective regeneration system of Lespedeza formosa (Vog.) Koehne was established; Sac B gene was introduced into the plants of L. formosa and the transgenic plants were analysed in molecular level. Transgenic plants can grow in medium containing more than 200 mmol/L NaCl and 5%PEGThe accumulation soluble sugar increased gradually under drought stress in Lespedeza Michx. The content of soluble protein drop gradually under drought stress. The content of heat stable protein increased while soil moisture content declined from 75-80% to 55-60%, but droped rapidly while soil moisture content declined from 55-60% to 35-40%. L. potaninii is not same as other species, its content of heat stable protein decreased gradually under drought stress. We supposed that soluble sugar play an important role in osmoregulation of The Lespedeza Michx.The establishment of effective regeneration system of L. formosa is the foundation of genetic transformation. The results indicated that there are most adventitions buds from nodosity in cotyledon in MS medium containing 6-BA 0.5mg/L, 2, 4-Dlmg/L and NAA 0.5mg/L; 6-BA play an important role in production of adventitions buds, and its optimum content is between 0.5-1 mg/L. 0.1-0.2 mg/L 6-BA is better for multiplication, NAA play an important role in rootage of buds, and its optimum content is between 0.1-0.5mg/L.L. formosa can abide high concentration of antibiotics. The growth of adventitious buds from nodosity of cotyledon is restrained when the concentration of Kanamycin is over 350mg/L. While same concentration of Kanamycin restrain intensively root development of adventitions buds. The optimum concentration of antibiotics is respectively 350mg/L +Carb500mg/L, 300mg/L+Carb500mg/L and 150mg/L+Carb300mg/L for the stage of
    
    adventitious buds growth, multiplication and rooting of L.formosa.Nodosity in cotyledon were suitable for inoculation, propaedeutic culture were 2 d; The gene transformation of Sac B with nodosity in cotyledon of L. formosa were conducted by Agrobacterium LBA4404 (OD600=0.5); Dark culture was 2d on adventitions culture medium(AS, 100umol/L); Nodosity in cotyledon were transferred to selection culture medium including 350mg/L Kan and 500mg/L Carb.Transgenic plants were identified by technology of PCR and PCR-Southern.The results indicated that the cpy-Sac B gene had been integrated into the genome of L formosa, and five transgentic plants were obtained. The cpy-Sac B gene has expressed according to RT-PCR.Transgenic plants can accumulate more soluble sugar than the control plants. Transgenic plants can grow in medium containing up to 200 mmol/L NaCl or 5%PEG. But control plants These findings shed new light on the regulation of fructan biosynthesis in plants and the role of Fructan in reducing oxidative stress induced by osmotic stress, in addition to its accepted role as an osmolyte.
引文
1.傅向东,毛碧增,李德葆.根癌农杆菌介导转化抗虫基因获得转基因烟草[J].浙江农业大学学报,1997,23(6):663-666。
    2.谷瑞升 刘群录 陈雪梅 蒋湘宁,木本植物蛋白提取和 SDS-PAGE 分析方法的比较和优化[J].1999,16(2):171-177.
    3.顾振文,程润柏,黄金明,陈玲.胡枝子林的营造技术及水保效益分析[J].中国水土保持,1996,5:16-19.
    4.管志文,张清杰,庄楚雄.农杆菌携带柞蚕抗菌肽基因转入桑树的研究[J].蚕业科学,1994,2(1):1-6.
    5.韩蕊莲,李丽霞,梁宗锁.干旱胁迫下沙棘叶片细胞膜透性与渗透调节物质研究[J].西北植物学报,2003,23(1):23-27.
    6.黄健秋,卫志明.根癌土壤杆菌介导的水稻高效转化和转基因植株的高频再生[J].植物学报,2000,42(1):1172-1178.
    7.黄萍,沈孝善,马朝宏。抗生素对猕猴桃叶柄愈伤组织诱导[J].贵州农业科学,2002,30(6):6-7.
    8.黄上志,王冬梅,卢春斌,傅家瑞.萌发中花生胚轴的耐干性与热稳定蛋白[J].植物生理学报,1999,25(2):193-198.
    9.及华,温春季,李瑞先.刺槐优良无性系组织培养快速繁殖[J].河北林业科技,1993,(1):11-12.
    10.及华.刺槐玻璃苗愈伤组织化再生正常植株[J].河北林学院学报,1994,9(2):102-104.
    11.及华.刺槐玻璃苗愈伤组织化再生正常植株.河北林学院学报,1994,9(2):102-104
    12.李昌林,陈默君.胡枝子种子萌发及幼苗生长[J].黑龙江畜牧兽医,1994,7:31-34.
    13.李昆,曾觉民,赵虹.金沙江干热河谷造林树种游离脯氨酸含量与抗旱性关系[J].林业科学研究,1999,12(1):103-107.
    14.李望丰,吕德扬,刘艳芝,刘莉,徐洪志,赵桂兰.诱导苜蓿胚性愈伤组织分化和再生[J].吉林农业科学,2002,27(2):15-16.
    15.李轶女,张中林,苏宁,孙萌,倪丕冲,沈桂芳.丙型肝炎病毒融合抗原基因NS3CE对番茄的遗传转化[J].作物学报,2003,29(3):360-363.
    16.梁峥,马德钦,汤岚.菠菜甜菜碱醛脱氢酶基因在烟草中的表达[J].生物工程学报,1997.13:236-240
    17.刘凤华,郭岩,谷冬梅,肖岗,陈正华,陈受宜.转甜菜碱醛脱氢酶基因植物的耐盐性研究[J].遗传学报,1997,24(1):54-58.
    
    18.刘俊君,黄绍兴,彭学贤等.高度耐盐双价转基因烟草的研究[J].生物工程学报,1995,11(4):381-384.
    19.刘莉,赵桂兰.大豆子叶节组织培养再生研究[J].吉林农业科学,1999,24(5):16-19.
    20.刘休圣,吕鹏怀,李辉.胡枝子对水土保持作用的研究[J].黑龙加水专学报,2000,27(2):24-28.
    21.刘艳芝,庄炳昌,赵桂兰.大豆子叶节组培耐盐突变体筛选[J].吉林农业科学,1998.4:38-39.
    22.罗建平,贾敬芬,顾月华,刘兢.沙打旺胚性原生质体培养优化及高频再生植株[J].生物工程学报,2000,16(1):17-21.
    23.罗希明,赵桂兰,简玉瑜.大豆原生质体的植株再生[J].植物学报,1990,32:616-621.
    24.年洪娟,刘玲,杨淑慎,王永健,张锡梅,李霞.胸腺肽基因转化生菜及其表达的研究[J].中国农业科学,2004,37(7):1085-1088.
    25.潘侠,祁永会,孙溜彬.胡枝子资源的开发展望[J].特种经济动植物,2002,2:15-18.
    26.斯钦巴特尔,额尔登桑,格日勒图,干旱胁迫对胡麻游离脯氨酸积累的影响[J].内蒙古大学报自然科学汉文版,1997,3:68-71.
    27.苏晓华,张冰玉,黄秦军,黄烈健,张香华.我国林木基因工程研究进展及关键领域[J].林业科学,2003,39(5):111-118.
    28.孙国荣,张睿,姜丽芬,阎秀峰.干旱胁迫下白桦实生苗叶片的水分代谢与部分渗透调节物质的变化[J].植物研究,2001,21(3):413-415.
    29.孙秀殿,李纯丽,张峰下.胡枝子的栽培利用[J].经济植物.1999,2:33-35.
    30.汤章城,吴亚华.高粱苗对干旱的反应和调节适应能力[J].植物生理学与地植物学丛刊,1984,8(1):15-23.
    31.汤章城.逆境条件下植物脯氨酸的累积及其可能的意义[J].植物生理学通讯,1984(1):15-17.
    32.汤章城.植物对水分胁迫的反应和适应性[J].植物生理学通讯,1983(4):1-7.
    33.田颖川,李太元,莽克强等,转基因欧洲黑杨的培育[J].生物工程学报,1993,9(4):291-297.
    34.王关林,方宏筠.植物基因工程[M].北京:王关林,科学出版社,2002:517-606
    35.王关林,李铁松,方宏筠,胡鸢雷,赵恢武,林忠平.番茄转果聚糖合酶基因获得抗寒植株[J].中国农业科学,2004,37(80):1193-1197.
    36.王平,温玉注,张晓梅.胡枝子水流调节林带保持水土效益研究[J].黑龙江水利科技,2000,1:24-27.
    37.王升吉,吴元华,王洪岩,刘忠智,大豆不同外植体组织培养及再生研究[J].沈阳 农业大学学报,1999,30(3):255-259.
    
    38.王威,王永奇,吴立军,王玉光.胡枝子属植物化学成分及药理活性研究进展[J].中草药,2000,31(2)35-38.
    39.王勇,陈爱玉,倪国孚.抗生素对桑树外植体生长与分化的影响[J].蚕业科学,1996,22(2):72-76.
    40.卫志明,许哲宏.大豆原生质体培养再生植株[J].植物生理学通讯,1988,(2):53-54.
    41.奚同行,林圣玉.胡枝子的开发利用价值和发展前景[J].中国水土保持,1995.2:18-22.
    42.肖岗,张耕耘,刘凤华,陈正华,陈受宜.山菠菜甜菜碱醛脱氢酶基因研究[J].科学通报,1995,40(8):741-745.
    43.阎秀峰,李晶,祖元刚.干旱胁迫对红松幼苗保护酶活性及脂质过氧化作用的影响[J].生态学报,1999,19(6):850-854.
    44.杨艳生,刘柏根,沙寄石.水土资源恢复中的先锋豆科灌木-胡枝子的栽植研究[J].长江流域资源与环境,1994,3(4):48-51.
    45.战淑敏.烟草叶组织培养直接获得再生植株[J].莱阳农学院学报,1993,10(2):131-132.
    46.张慧,董伟,周骏马,杜宝兴,谷冬梅,陈受宜.果聚糖蔗糖转移酶基因的克隆及耐盐转基因烟草的培育[J].生物工程学报,1998,14(2):181-186.
    47.张美云,钱吉,郑师章.渗透胁迫下野生大豆游离脯氨酸和可溶性糖的变化[J].复旦学报(自然科学版),2001,40(5):558-561.
    48.张松,温孚奖,朱常香等.抗生素对大白菜组织培养形态发生的影响[J].山东农业大学学报(自然科学版).2000,31(4):385-388.
    49.张贤泽,小松田,隆夫.大豆原生质体经体细胞胚胎再生植株[J].中国科学(B辑),1993,23(2):154-158.
    50.张晓娟,方小平,罗丽霞,周新安,许泽永.TDZ和BA对诱导大豆胚轴植株再生的影响[J].中国油料作物学报,2000,22(2):24-27.
    51.张亚萍,于文功,戴继勋等.条斑紫菜叶状体细胞的抗生素敏感性研究[J].青岛海洋大学学报,2002,32(2):245-250.
    52.张月民,夏萍,于连华,邵海燕.胡枝子的育苗及造林技术[J].中国林副特产,1998.2:22-24.
    53.张智俊,罗淑萍,廖康.抗生素对甜瓜植株再生的影响[J].中国西瓜甜瓜.2002,1:6-7.
    54.赵恢武,陈杨坚,胡鸢雷,高音,林忠平.干旱诱导性启动子驱动的海藻糖-6-磷酸合酶基因载体的构建及转基因烟草的耐旱性[J].植物学报,2000,42(6):616-619.
    
    55.赵恢武,刘晗,于海源,胡鸢雷,高音,李振宇,林忠平.耐旱植物厚叶旋蒴苣苔BDN1脱水素基因的克隆及表达特性分析[J].科学通报,2000,15(45):1648-1654.
    56.朱永长,韩晋,刘静.多聚酶链式反应技术研究[J].中南民族学院学报(自然科学版),1995,14(4):19-23.
    57. Abraham E, Rigo G, Szekely G, Nagy R, Koncz C, Szabados L. Light-dependent induction of proline biosynthesis by abscisic acid and salt stress is inhibited by brassinosteroid in Arabidopsis[J]. Plant Mol Biol, 2003, 51(3): 363-372.
    58. Albrecht G. Fructan content of wheat seedlings under hypoxia and following reaeration[J]. New Phytol, 1993, 123, 5(15):36-40
    59. Andrew J. Cairns. Fructan biosynthesis in transgenic plants[J]. Journal of Experimental Botany, 2003, 382:549-567.
    60. Bianchi G, Gamba A, Murelli C. Novel carbohydrate metabolism in the resurrection plant-Craterostigma plantagineum[J]. Plant Journal, 1991, 1: 355-359.
    61. Bray E A. In W J Davies, H G Jones, eds, Abseisic Acid[J]. Physiology and Chemistry BIOS Scientific Publisher, 1991.81-98.
    62. Bray E A. Molecular responses to water deficit[J]. Plant Physiol, 1993, 103: 1035-1040.
    63. Carpenter J F, Crowe L M, Arakawa T. Comparison of solute-induced protein stabibilization in aqueous solition and in the frozen and dried states[J]. Journal of Dairy Science 1990, 73: 3627-3636.
    64. Carpenter J F, Crowe L M, Arakawa T. Comparison of solute-induced protein stabibilization in aqueous solition and in the frozen and dried states[J]. Journal of Dairy Science, 1990, 73: 3627-3636.
    65. Chalup V. Effect of benzylaminopurine and thidiazuron on in vitro shoot proliferation of Tilia cordata Mill, Sorbus aucuparia L and Robinia pseudoacacia L[J]. Biologin plantarum, 1987, 29: 425-429.
    66. Chalup V. Effect of benzylaminopurine and thidiazuron on in vitro shoot proliferation of Tilia cordata Mill, Sorbus aucuparia L and Robinia pseudoacacia L[J]. Biologin plantarum, 1987, 29: 425-429.
    67. Chaudhary S, Crossland L.. Identification of tissue-specific, dehydration-responsive elements in the Trg-31 pro-moter[J]. Plant Mol Biol, 1996, 30: 1247-1257.
    68. Conley T R, Sharp R E, Walker J C. Water deficit stimulates the activity of protein kinase in the elongation zone of the maize primary root. Plant physiology[J]. 1997, 113: 219-226.
    69. Curry J, Walker-Simmons MK. Unusual sequence of group 3 LEA(Ⅱ) mRNA inducible by dehydration stress in wheat[J]. Plant Mol Biol, 1993, 21: 907-912.
    70. Dejardin A, Sokolov L N, Kleczkowski L A. Sugar/osmoticum levels modulate differential abscisic acid- independent expression of two stress-responsive sucrose synthase genes in Arabidopsis[J]. Biochemical Journal. 1999, 344: 503-509.
    
    71. Dhir S.K., Dhir S., Savka M.A., Belanger F, Kriz A.L., Farrand S.K., Widholm J.M. Regeneration of transgenic soybean (Glycine max) plants from electroporated protoplasts[J]. Plant Physiol, 1992, 99:81-88.
    72. Dure L. III. Common amino acid sequence domains among the LEA proteins of higher plants[J]. Plant Mol Biol, 1989, 12: 475-486.
    73. Ebskamp MJ, van der Meer IM, Spronk BA, Weisbeek PJ, Smeekens SC. Accumulation of fructose polymers in transgenic tobacco[J]. Biotechnology. 1994, 12(3): 272-275.
    74. Franz G Molecular and genetic analysis of an embryonic, DC8 from Daucus carota L[J]. Mol Gen Genet, 1989,218: 143-151.
    75. Frossard, J-S and Friaud, J-F. Root temperature and short term accumulation of carbohydrates in two maize hybrids at early growth stage[J]. Agronomic 1989, 9: 941-948.
    76. Geigenberger P, Reimholz R, Deiting U, Sonnewald U, Stitt M. Decreased expression of sucrose phosphate synthase strongly inhibits the water stress-induced synthesis of sucrose in growing potato tubers[J]. Plant Journal, 1999,19: 119-129.
    77. Ginzberg I, Stein H, Kapulnik Y, Szabados L, StrizhovN, SchellJ, Zilberstein A. Isolation and characterization of two different cDNAs of deltal-pyrroline-5-carboxylate synthase in alfalfa, transcriptionally induced upon salt stress[J]. Plant Mol Biol, 1998, 38(5): 755-764.
    78. Giordani T, Natali L, D'Ercole A. Expression of a dehydrin gene during embryo development and drought stress in ABA-deficient mutants of sunflower (Helianthus annuus L.) [J]. Plant Mol Biol, 1999, 39 (4): 739-748.
    79. Guerrero F D, Jones JT, Mullet JE. Turgor responsive gene transcription and RNA levels increase rapidly when pea shoots are wilted. Sequence and expression of three inducible genes[J]. Plant Mol Biol, 1990, 15:11-26.
    80. Han K H, Keathley D E, Gordon M P. Cambial tissue culture and subsequenct shoot regeneration from mature black locust(Robinia pseudoacacia L.) [J]. Plant Cell Reports, 1993a, 12(4): 185-188.
    81. HansonAD. Interpreting the metabolic responses of plants to water stress[J]. Hortscience, 1980,15: 623-629.
    82. Holmstrom K, Mantyla E, Welin B,Mandal A. Drought tolerance in tobacco[J]. Nature, 1996,379:683-684.
    83. Holmstrom K, Mantyla E, Welin B. Drought tolerance in tobacco[J]. Nature, 1996, 379: 683-684.
    84. Hu Q J, Han Y F. A study on induction of plantlets from mature leaves of Robinia pseudoacacia[J]. Hereelitas, 1985, 7(4): 20-21.
    85. Igarashi Y, Yoshiba Y, Sanada Y, Yamaguchi-Shinozaki K, Wada K, Shinozaki K. Characterization of the gene for △1-pyrroline-5- carboxylate synthetase and correlation between the expression of the gene and salt tolerance in Oryza sativa L[J]. Plant Molecular Biology, 1997, 33(5): 857-865.
    
    86. Ingram J, Chandler JW, Gallagher L, Salamini F, Bartels D.. Analysis of cDNA clones encoding sucrose-phosphate synthase in relation to sugar interconversions associated with dehydration in the resurrection plant Craterostigma plantagineum Hochst[J]. Plant Physiology, 1997, 115: 113-121.
    87. Ishitani M., Nakamura T, Han S Y, Takabe T. Expression of the betaine aldehyde dehydrogenase gene in barley in response to osmotic stress and abscisic acid[J]. Plant Mol Biol, 1995, 27 (2): 307-315.
    88. Jager W, Schafer A, Kalinowski J, Puhler A. Isolation of insertion elements from gram-positive Brevibacterium, Corynebacterium and Rhodococcus strains using the Bacillus subtilis sac B gene as a positive selection marker. FEMS Microbiol Lett[J]. 1995, 126(1): 1-6.
    89. Jager W, Schafer A, Puhler A, Labes G, Wohlleben W. Expression of the Bacillus subtilis sacB Gene Leads to Sucrose Sensitivity in the Gram-Positive Bacterium Corynebactenium glutamicum but Not in Streptomyces lividans[J]. Journal Of Bacreriology, 1992, 9: 5462-5465.
    90. Jost BH, Homchampa P, Strugnell RA, Adler B. The sacB gene cannot be used as a counter-selectable marker in Pasteurella multocida[J]. Mol Biotechnol. 1997, 8(2): 189-191.
    91. Kang JY, Choi HI, Im MY, Kim SY. Im My Min-young, et al. Arabidopsis basic leucine zipper proteins that mediate stress-responsive abscisic Acid signaling[J]. Plant Cell, 2002,14 (2): 343-357.
    92. Kishor P, Hong Z, Miao Gh, Hu C, Verma D. Overexpression of [delta]-Pyrroline-5-Carboxylate Synthetase Increases Proline Production and Confers Osmotolerance in Transgenic Plants[J]. Plant Physiol, 1995, 108: 1387-1394.
    93. Kleines M, Elster RC, Rodrigo MJ, Blervacq AS, Salamini F, Bartels D. Isolation and expression analysis of two stress-responsive sucrose synthase genes from the Craterostigma plantagineum (Hochst.) [J]. Planta, 1999, 209: 13-24.
    94. Knight H, Trewavas A J, Knight M. Calcium signalling in Arabidopsis thaliana responding to drought and salinity[J]. Plant Journal, 1997, 12: 1067-1078.
    95. Kudla J, Xu Q, Harter K, Gruissem W, Luan S. Genes for calcineurin B-link protain in Arabidopsis are differentially regulated by stress signals[J]. Proceeding of the National Academy of Sciences, 1999, 96: 4718-4723.
    96. Laurence Leloup, Arnold J M Driessen, Roland F, Regis C, and Marie-F Petit G. Differential Dependence of Levansucrase and α-Amylase Secretion on SecA (Div) during the Exponential Phase of Growth of Bacillus subtilis[J]. Journal of Bacteriology, 1999, 181(6): 1820-1826.
    97. Lazzzeri P A, Hildcbrand D F, Collins G B. Soybean snazic embryogenesis. Effects
     of nutritnal, physical and chemi-calfactors plant[J]. Cell Tissue and ofgan culture, 1997,10: 200-203.
    
    98. Li Y, Triccas JA, Ferenci T. A novel levansucrase-levanase gene cluster in Bacillus stearothermophilus ATCC12980[J]. Biochim Biophys Acta, 1997, 1353(3): 203-208.
    99. Liu Q, Kasuga M, Sakuma Y. Two transcription factors. DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought and low temperature responsive gene expression, respectively, in Arabidopsis[J]. Plant Cell, 1998,10: 1391-1406.
    100.Manival X, Aymerich S, Strub MP, Dumas C, Kochoyan M, van Tilbeurgh H. Crystallization of the RNA-binding domain of the transcriptional antiterminator protein SacY from Bacillus subtilis[J]. Proteins. 1997, 28(4): 590-594.
    101.Mariaux JB, Bockel C, Salamini F, Bartels D. Desiccation- and abscisic acid-responsive genes encoding major intrinsic proteins (MIPs) from the resurrection plant Craterostigma plantgineum[J]. Plant Molecular Biology, 1998, 38: 1089-1099.
    102.Matsuoka D, Nanmori T, Sato K, Fukami Y, Kikkawa U, Yasuda T. Activation of AtMEKl, an Arabidopsis mitogen-activated protein kinase kinase, in vitro and in vivo: analysis of active mutants expressed in E. coli and generation of the active form in stress response in seedlings[J]. Plant, 2002,29 (5): 637-647.
    103.Maurel C and Chrispeels M J. Aquaporins: a molecular entry into plant water relations[J]. Plant Physiology, 2001, 125: 135-138.
    104.McCue K F Hanson A D. Salt-inducible betaine aldehyde dehydrogenase from sugar beetxDNA cloning and expression[J]. Plant Molecular Biology, 1992, 18(1): 1-11.
    105.Meng YL, Wang YM, Zhang B, Nii N. Isolation of a choline monooxygenase cDNA clone from Amaranthus tricolor and its expressions under stress conditions [J], Cell Res, 2001,11(3): 187-193.
    106.Merkle S A, Wiecko A T. Regeneration of Robinia pseudoacacia via somatic embryogenesis[J]. Canadian Journal of Forest of Forest Research, 1989, 19(2): 285-288.
    107.Mikami K, Katagiri T, Iuchi S, Yamaguchi-Shinozaki K, Shinozaki K. A gene encoding phosphotidylinositol-4-phosphate 5-kinase is induced by water stress and abscisic acid in Arabidopsis thaliana[J]. Plant Journal, 1998,15: 563-568.
    108.Mikolajczyk M, Awotunde OS, Muszynska G, Klessig DF, Dobrowolska G. Osmotic stress induces rapid activation of a salicylic acid-induced protein kinase and a homolog of protein kinase ASK1 in in tobacco cells[J]. Plant Cell, 2000,12: 165-178.
    109.Mizoguchi T, Irie K, Hirayama T, Hayashida N, Yamaguchi-Shinozaki K, Matsumoto K, Shinozaki K. A gene encoding mitogen-actiated protein kinase kinase is induced simultaneously with genes for a mitogen-activated protein kinase and S6 ribosomal protein kinase by touch, cold and water stress in Arabidopsis thaliana[J]. Proceeding of the National Academy of Sciences, 1996,93: 765-769.
    
    110.Pelah D, Wang W, Altman A. Differential accumulation of water-stress related protein, sucrose synthase and soluble sugars in Populus species that differ in their water stress response[J]. Physiologia Plantarum, 1997, 99: 153-159.
    111 .Pereira Y, Petit-Glatron MF, Chambert R. yveB, Encoding endolevanase LevB, is part of the sacB-yveB-yveA levansucrase tricistronic operon in Bacillus subtilis[J]. Microbiology, 2001, 147(12): 3413-3419.
    112.Pilon-Smits E. A.H., Ebskamp M.J.M., Paul M.J. Improved performance of transgenic fructan-accumulating tobacco under drought stress[J]. Plant Physiol, 1995, 107: 125-130.
    113.Pilon-Smits E.A.H., Terry N., Sears Tobin K.H. Enhanced drought resistance fructan- accumulating tobacco under drought stress[J]. Plant Physiology and Biochemistry, 1993,37,313-317.
    114.Pnueli L, Hallak-Herr E, Rozenberg M, Cohen M, Goloubinoff P, Kaplan A, Mittler R. Molecular and biochemical mechanisms associated with dormancy and drought tolerance in the desert legume Retama raetam[J]. Plant Journal. 2002, 31(3): 319-330.
    115.Richard S, Morency M J, Drevet C. Isolation and characterization of a dehydrin gene from white spruce induced upon wounding, drought and cold stresses [J]. Plant Mol Biol, 2000, 43 (1): 1-10.
    116.Russell BL, Rathinasabapathi B, Hanson AD. Osmotic stress in duces expression of Choline Monooxygenase in sugar beet and amaranth[J]. Plant Physiol, 1998, 116: 859-865.
    117.Samuel S. Wu And Dale Kaiser. Markerless Deletions of pil Genes in Myxococcus xanthus generated by Counterselection with the Bacillus subtilis sacB Gene[J]. American Society for Microbiology, 1996, 178,(19): 5817-5821.
    118.Sechinbater, Erdensan. The Different in proline accumulation between the seedling of two varieties of linum usitatissimiml. With different drought resistance [J]. Journal of Inner Mongolia Normal Unversity (Natural Science Edition), 1999 28(1): 55-57.
    119.Seki M, Narusaka M, Abe H. Monitoring the Expression Pattern of 1300 Arabidopsis Genes under Drought and Cold Stresses by Using a Full-Length cDNA Microarray[J]. Plant Cell, 2001, 13(1): 61-72.
    120.Senthilkumar V, Rameshkumar N, Busby SJ, Gunasekaran P. Disruption of the Zymomonas mobilis extracellular sucrase gene (sacC) improves levan production[J]. J Appl Microbiol, 2004, 96(4): 671-676.
    121.Shen Q. Hormone response complex of a novel abscisic acid and cycloheximide inducible barley gene[J]. J Biol Chem, 1993,268: 23652-23660.
    122.Singh T N, Aspinall D, Paleg G. Proline accumulation and varietal adapt ability to drought in bareley, a potential metabolic measure of drought resistance[J]. Nature New Biol, 1972, 236: 188-190.
    123.Siripornadulsil S, Traina S, Verma Dp, Sayre Rt. Molecular Mechanisms Of
     Proline-Mediated Tolerance To Toxic Heavy Metals In Transgenic Microalgae [J]. Plant Cell, 2002,14(11): 2837-2847.
    
    124.Song KB, Joo HK, Rhee SK. Nucleotide sequence of levansucrase gene (levU) of Zymomonas mobilis ZM1 (ATCC10988) [J]. Biochim Biophys Acta, 1993, 1173(3): 320-324.
    125.Stacy RA, Espelund M, Saeboe-Larssen S, Hollung K, Helliesen E, Jakobsen KS. Evolution of the Group 1 late embryogenesis abundant (Lea) genes: analysis of the Lea B19 gene family in barley[J]. Plant Mol Biol, 1995 28:1039-1054.
    126.Steinmetz M, Aymerich S. Genetic analysis of sacR, a cis-regulator of levan-saccharase synthesis of Bacillus subtilis[J]. Ann Inst Pasteur Microbiol, 1986, 137(1): 3-14.
    127.Steinmetz M, Le Coq D, Aymerich S, Gonzy-Treboul G, Gay P. The DNA sequence of the gene for the secreted Bacillus subtilis enzyme levansucrase and its genetic control sites[J]. Mol Gen Genet, 1985, 200(2): 220-228.
    128.Steinmetz M, Le Coq D, Djemia HB, Gay P. Genetic analysis of sacB, the structural gene of a secreted enzyme, levansucrase of Bacillus subtilis Marburg[J]. Mol Gen Genet, 1983, 191(1): 138-144.
    129.Stockinger E J, Gilmour S J, & Thomashow M F Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that to the C-repeat/DRE, a cisacting DNA regulatory element that stimulates transcription in response to low temperature and water deficit[J]. Proceeding of the National Academy of Sciences USA, 1997,94:1035-1040.
    130.Strizhov N, Abraham E, Okresz L, Blickling S, Zilberstein A, Schell J, Koncz C, Szabados L. Differential expression of two P5CS genes controlling proline accumulation during salt-stress requires ABA and is regulated by ABA1, ABU and AXR2 in Arabidopsis[J]. Plant Journal, 1997, 12(3): 557-569.
    131.Sunitha K, Chung BH, Jang KH, Song KB, Kim CH, Rhee SK. Refolding and purification of Zymomonas mobilis levansucrase produced as inclusion bodies in fed-batch culture of recombinant Escherichia coli[J]. Protein Expr Purif, 2000, 18(3): 388-393.
    132.Tang LB, Lenstra R, Borchert TV, Nagarajan V. Isolation and characterization of levansucrase-encoding gene from Bacillus amyloliquefaciens[J]. Gene. 1990, 96(1): 89-93.
    133.Tognetti, JA, PL Calderon, and HG Pontis, Fructan metabolism: Reversal of cold acclimation[J]. Journal of Plant Physiology, 1989, 134: 232-236.
    134.Tortosa P, Le Coq D. A ribonucleic antiterminator sequence (RAT) and a distant palindrome are both involved in sucrose induction of the Bacillus subtilis sacXY regulatory operon[J]. Microbiology, 1995,141 (11): 2921-2927.
    135.Uno Y, Furihata T, Abe H. Arabidopsis basic leucine zipper transcription factors
     involved in an abscisic acid-dependent signal transduction pathway under drought and high-salinity conditions[J]. ProcNatl Acad Sci, 2000, 97 (21): 11632-11637.
    
    136.Urao T, Yakubov B, Satoh R, Yamaguchi-Shinozaki K, Seki M, Hirayama T, Shinozaki K.A transmembrane hybrid-type hitidine kinase in Arabidopsis thaliana. as an osmoseducer[J]. Plant Cell, 1999, 11: 1743-1754.
    137.Ursula Hettwer, Frank R. Jaeckel, Jens Boch, Manfred Meyer, Klaus Rudolph, and Matthias S. Cloning, Nucleotide Sequence, and Expression in Escherichia coli of Levansucrase Genes from the Plant Pathogens Pseudomonas syringae pv. glycinea and P. syringae pv[J]. Phaseolicola Applied and Environmental Microbiology, 1998, 64(9): 3180-3187.
    138.Vasil I. Regeneration in cereals and other grass species.. Vasil K, Cell culture and somatic cell genetics of plants[J]. Orlando Florda USA Acedemic press, 1986,4: 12-15
    139.Vladimir Pelicic, Jean-Marc Reyrat, Brigitte Gicquel. Expression of the Bacillus subtilis sac B Gene Confers Sucrose Sensitivity on Mycobacteria[J]. Journal of Bacteriology, 1996,178, (4): 1197-1199.
    140.Wrzaczek M, Hirt H. Plant MAP kinase pathways: how many and what for? [J]. Biol Cell 2001, 93: 81-87.
    141.Wu Ray, Jin S. How to obtain optimal gene expression in transgenic plants[M]. 北京: 第七次基因学术会议论文集, Wu Ray, 1999,26-40.
    142.Xu D, Duan X, Wang B, Hong B, Ho T, Wu R. Expression of a late embryogenesis abundant protein gene, HVA1, from barley confers tolerance to water deficit and salt stress in transgenic rice[J]. Plant Physiol, 1996, 110: 249-257.
    143.Yamaguchi-Shinozaki K, & Shinozaki K. The plant hormone abscisic acid mediate the drought-induced expression but not the seed-specific expression of rd22, a gene responseive to dehydration stress in Arabidopsis thaliana[J]. Molecular and General Genetics, 1993,238: 17-25.
    144.Yamaguchi-Shinozaki K, Mundy J, Chua NH. Four tightly linked rab genes are differentially expressed in rice[J]. Plant Mol Biol, 1989, 14: 29-39.
    145.Yamaguchi-Shinozaki K. Molecular cloing and characterization of 9c DNAs for genes that are responsive to desiccation in rabidopsis thaliana: Sequence analysis of one c DNA clone that encodes a putative ransmembrane channel protein[J]. Plant Cell Physiol, 1992, 33:217-224.
    146.Yannick Pereiral, Marie-Francoise Petit-Glatronl and Regis Chambert. yveB, encoding endolevanase LevB, is part of the sacB-yveB-yveA levansucrase tricistronic operon in Bacillus subtilis[J], Genetics and Molecular Biology, 2001,147: 3413-3419.
    147.Yoshiba Y, Kiyosue T, Yamaguchi-shinozaki K. Regulation of levels of proline as an osmolyte in plants under water stress[J]. Plant Cell Physiology, 1997, 38: 1095-1102.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700