重金属胁迫下柠条根系的生长及镍富集特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以金川公司尾矿库生态修复试验地穴换土、直接种植、覆土80cm、覆土50cm、覆土30cm五种栽植措施下5年生柠条为研究对象,采用钻土芯法研究柠条根系对重金属胁迫的响应情况以及不同栽植措施下柠条各器官对镍的吸收特征及规律,探讨土壤与植株体内镍元素的关系以及镍在植株体内的转运积累过程和内外循环的规律,以填补重金属胁迫下根系分布特征研究的不足,同时为利用锦鸡儿属植物治理重金属污染提供理论依据,为干旱和半干旱地区尾矿废弃地的恢复与重建提供造林技术方面的有益借鉴。主要研究结果如下:?
     1.金川公司尾矿库生态修复试验地土壤中Ni的含量大体呈现出随覆土厚度增加而减小,随土层深度增加而增大的规律。镍平均含量的对比结果为穴换土>直接种植>覆土30cm>覆土50cm>覆土80cm。与甘肃省土壤背景值比较,镍含量严重超标。与土壤环境质量标准三级对比,仅有覆土80cm小区的平均Ni含量在标准之内,其他各区的Ni含量均超标,是标准的4.74~9.20倍。
     2.在重金属胁迫下,柠条根系长度和有效根长水平方向主要集中在0~50cm。垂直方向主要分布在0~60cm,最大长度集中在0~30cm,之后随深度增加长度逐渐减小。五种栽植措施下单位面积根系总长度及平均有效根长密度的大小顺序均为:覆土50cm>覆土80cm>覆土30cm>穴换土>直接种植。
     3.不同程度重金属胁迫下,柠条根系生物量的大小顺序为:覆土50cm>覆土30cm>穴换土>覆土80cm>直接种植。水平方向,根系生物量在距树干100cm范围内均有分布;垂直方向,柠条根系生物量随着土层的加深逐渐减小,生物量集中分布在0~50cm层,并且与土层深度存在一定得函数关系;不同径级根系的生物量大小顺序为中根(2.0mm≤DR<8.0mm)>小根(1.0mm≤DR<2.0mm)>毛根(DR<0.5mm)>细根(0.5mm≤DR<1.0mm)。
     4.有效根重密度的分布大体呈现出随覆土厚度增加而降低的规律,从分布的加权平均值上看,不同栽植措施下柠条有效根重密度顺序为覆土30cm>覆土50cm>覆土80cm>穴换土>直接种植;水平方向各区有效根系干重在距树干1m范围内均有分布;垂直方向有效根重密度亦呈现出随土层深度增加而递减的趋势,集中分布在0~60cm层。
     5.柠条根系和花中Ni含量较大,而叶和茎中的含量较小。根系Ni含量随直径增加而减小、随土层深度增加而增大,在底层(70cm~90cm)出现含量的最大值。
     6.不同程度重金属胁迫下,柠条对Ni的吸收量随覆土厚度增加一定程度地降低,吸收量的顺序为:覆土30cm>穴换土>直接种植>覆土80cm>覆土50cm。各器官中,根的吸收量明显高于其它器官,其次是茎、叶,花的吸收量最小。总体而言,覆土30cm下生长的柠条对Ni的吸收量大于覆土较厚和直接栽植等措施下柠条的吸收量,是金川老尾矿库柠条修复较适宜的栽植措施。
     7.柠条各器官对Ni的富集系数大小顺序为根>花>叶>茎,各试验小区中,Ⅲ区Ni富集系数显著高于其他区,Ⅴ区其次,Ⅳ区最小。
     8.不同程度重金属胁迫下,Ni的转移系数顺序为覆土80cm>覆土50cm>直接种植>穴换土>覆土30cm,不同部位镍转移系数大体呈现花>叶>茎的顺序。而且转移系数均小于1,是一种较典型的根部囤积型植物。
     9.从根系对Ni滞留率看,覆土30cm下根系Ni富集较多,很少向茎叶花等地上部分转移,根系滞留率达85.24%;其次是穴换土、直接栽植、覆土50cm,滞留率分别为76.92%、74.96%、61.93%;而覆土80cm下,柠条根系对Ni的滞留效应较弱,滞留率仅为47.27,由根系向地上迁移较多。
     10.柠条对Ni的吸收和土壤Ni含量的关系并非均呈正相关关系,Ⅰ区柠条叶吸收Ni的能力对土壤环境的依赖性比较大,相关系数为0.993,达到了极显著水平(p<0.01);Ⅴ区柠条茎对Ni的富集受土壤环境影响也比较大,相关系数为0.766,呈显著水平(p<0.05);柠条茎和叶在一些区对Ni的富集能力与土壤Ni浓度呈负相关,其余的相关性未达到显著水平(p>0.05)。
Taking the 5-year-old Caragana korshinskii under the soil replacement of planting hole、direct planting、covering soil 30cm、50cm、80cm different planting methods in ecological restoration experimental field of tailings in Jin-chuan as the research object, the paper studied on the absorption feature and laws of each organ of Caragana korshinskii to Ni in the response of root to the heavy metal stress and in different planting measures by using soil coring method, discussed the relationship between soil and element of Ni in the plant and the process of transportation and accumulation and the law of internal and external cycle of Ni in the plant.To fill in the research blank of?root distribution under heavy metal stress.Meanwhile in order to Use Caragana plants which provide theoretical basis for remediation of heavy metal pollution.It provided the helpful reference on restoration and reconstruction of mining wasteland in arid and semiarid regions. The mainly results showed that:
     1. The content of Ni in ecological restoration experimental field of tailings in Jin-chuan experimental field decreased with the increasing of soil thickness and increased with the increasing of soil depth. The comparison results of Ni contend is soil replacement of planting hole >direct planting>covering soil 30cm>covering soil 50cm> covering soil 80cm. Compared with the soil background value, the content of Ni is over standard seriously. Compared with soil environmental quality standardⅢ, only the district of 80cm covering soil measured up to standard and others is over standard seriously which is 4.74~9.20 times than standard.
     2. Under Heavy Metal Stress, the root length and the effective root length of Caragana korshinskii in horizontal direction is mainly focus on 0~50cm, and in vertical direction mainly focus on 0~60cm which the maximum length is 0~30cm and the length decreased with the depth since the 30cm. In five planting measures, the order of the total root length and the effective root length density in unit area are covering soil 50cm> covering soil 80cm> covering soil 30cm> soil replacement of planting hole >direct planting.?
     3.Under Heavy Metal Stress in varying degrees, the order of the root biomass of Caragana korshinskii is covering soil 50cm> covering soil 30cm> soil replacement of planting hole> covering soil 80cm >direct planting. In horizontal direction, the root biomass of Caragana korshinskii distribution in the distance of 100cm from trunk; in vertical direction, the root biomass of Caragana korshinskii decreased with the depth of soil lay increasing; it focused on 0~50cm of soil lay and existing certain functional relationship with the depth of soil lay; the order of the root biomass in different diameter class is nakane(2.0mm≤DR < 8.0mm) >rootlet(1.0mm≤DR <2.0mm)>hair root(DR<0.5mm)>fine root(0.5mm     4. The distribution of effective root density decreased with the increasing of soil thickness. From the distribution of weighted mean, the order of effective root weight density is covering soil 30cm>covering soil 50cm> covering soil 80cm> soil replacement of planting hole >direct planting. Dry weight of effective root distribute in the distance of 1m from the trunk in horizontal direction; effective root weight density was a trend in decreasing with the depth increasing of soil lay and focused on 0~60cm of lay.
     5. The contend of Ni in root and flower of Caragana korshinskii is larger, but it is less in leaf and stem. The content of Ni in root decreased with the increasing of diameter and increased with the increasing of soil layers depth and appeared maximum in the best primary(70cm~90cm).
     6. Under Heavy Metal Stress in varying degrees, the uptake of Caragana korshinskii to Ni decreased in certain degree with the increasing of soil thickness and the order of the uptake is covering soil 30cm> soil replacement of planting hole >direct planting> covering soil 80cm>covering soil 50cm. In each organ, the uptake of root is higher than any other organs and the minimum is stem, leaf and flower. Generally speaking, the uptake of Caragana korshinskii of growing covering soil 30cm to Ni is more than the one of the measures of thicker covering soil and direct planting measures, which is the best planting measure of Caragana korshinskii restoration of tailings reservoir in Jin-chuan.
     7. The order of enrichment coefficient of each organ of Caragana korshinskii to Ni is root>flower>leaf>stem. In each experimental plot, the enrichment coefficient ofⅢis significant higher than others,Ⅴis second andⅤis minimum.
     8. The order of transfer coefficient of Ni under Heavy Metal Stress in varying degrees is covering soil 80cm>covering soil 50cm >direct planting> soil replacement of planting hole>covering soil 30cm. The order is flower>leaf>stem in different parts of Ni, the transfer coefficient is less than 1 and this plant is a type of root hoarding plant.
     9. From the retention ratio of root to Ni, in covering soil 30cm, enrichment of root Ni is more and it transferred seldom toward the aerial part of stem, leaf and flower and the retention ratio of root is up to 85.24%; then the retention ratio of soil replacement of planting hole, direct planting and covering soil 50cm is 76.92%,4.96%,61.93% respectively; in covering soil 80cm, the lagging effect of root to Ni is weaker and the retention ratio is 47.27% which is much more in transferring from root to above-ground.
     10. Not all relationship is a positive correlation between the absorption of Caragana korshinskii to Ni and the content of soil Ni. The dependence is quite large inⅠdistrict of absorptive capacity of Caragana korshinskii leaf to Ni for soil environment and the correlation coefficient is 0.993 which is very significant(p<0.01); the effect is large inⅤdistrict that soil environment for enrichment of Caragana korshinskii stem to Ni and the correlation coefficient is 0.766 which is significant(p<0.05); the relationship had a negative correlation between enrichment ability of Caragana korshinskii stem and leaf to Ni and concentration of soil Ni in some district and the other correlation are not up to significantly(p<0.05).
引文
[1]唐世荣.污染环境植物修复的原理与方法[M].北京:科学出版社,1985;23-88.
    [2]吴立新,侯恩科.西北五省(区)矿产资源开发与水资源保护对策[J].西安科技学院学报, 2000,15,15(51):63-67
    [3]田胜尼.铜尾矿废弃地的植被恢复[D].广州:中国科学院,2006:1-5.
    [4]胡小娜,南忠仁,刘晓文,等.金昌城市居民区土壤重金属分布特征研究[J].干旱区资源与环境,2011,25(1):180-184
    [5]赵雅芳.金昌市污染源达标现状分析[J].甘肃环境研究与监测,2000,13(4):222-223.
    [6]黄璜,南忠仁,胡小娜,等.金昌市城区土壤重金属空间分布及潜在生态危害评价[J].环境监测管理与技术,2009,21(5):30-34.
    [7]张全如.巴彦高勒地区几种沙生植物抗热性的初步研究[J].林业科技通讯,1983,8(2): 22-24.
    [8]中国科学院内蒙古宁夏综合考察队.内蒙古植被[M].北京:科学出版社,1985;146-147.
    [9]孙秀殿,李纯丽,张凤霞.胡枝子的栽培利用[J].特种经济动植物,1999(2):33.
    [10]Xiang S Q , Zhao X H , Studies on the root systems of tree species for plantation in Beijing [J].Journal of Beijing Forestry College,1981,3(2):19-32
    [11]Zhai M P .Studies on the root systems of the mixed stand of Pinus tabulaeformis and Acertruncatum in Xishan(westernhills) region , Beijing[J]. Journal of Beijing Forestry College, 1982,4(1):1-11 (in Chinese)
    [12]Liu CH J ,Guo X L ,Xu ZH Q . A preliminary study on root systems of the artificial mixed stand of Pinus tabulaeform is and Quercus varibilis in Xishan region,Beijing[J]. Journal of Beijing Forestry College , 1985,7(1):77-84(in Chinese).
    [13]Wang W Q ,Wang SH J ,Liu Y R .Distribution and growth characteristics of the root systems of popular,willow,elm and locust on site of renewed land by fineash of coal[J].Scientia Silvae Sinicae ,1994,30(1):25-33(in Chinese).
    [14]Wang W Q ,Jia Y B ,Xu L M .Study on the root distribution of Populus tomentosa[J].Journal of Agriculture University of Hebei,1997,20(1):24-29
    [15]Fan W ,Lu Q ,Gao X R.Distribution pattern and grow thdynamics of the root system in apple wheat intercropping system [J]. Acta EcologicaSinica ,1999,19(6):860-863(in Chinese).
    [16]Zhao ZH , L I P , Wang N J.Distribution patterns of root systems of main planting tree species in WeibeiLoess Plateau [J].Chinese Journal of Applied Ecology,2000,11(1):37-39
    [17]Li ZH W ,Yang Y SH , Wu ZH X. Root system of mixed stand of Chinese fir and humana[J]. Chinese Journal of cology,1993,12(1): 20-24 (in Chinese).
    [18]Xie W H , Xu X N , Li H K.Study on the characteristics of root system in pine-eucommia Mixed stand[J]. Journal of Anhui Agricultural University,1995,22(3):256-261(in Chinese).
    [19]方金梅,应朝阳,黄毅斌,等.铝胁迫对决明属水土保持牧草幼苗根系的影响[J].中国水土保持,2003(7):30-32.
    [20]刘建新.镉胁迫下玉米幼苗生理生态的变化[J].生态学杂志,2005,24 (3):265-268.
    [21]田胜尼,刘登义,王峥峰,彭少麟.铜尾矿对5种豆科植物根系生长的影响[J].生态环境, 2005,14(2):199-203.
    [22]田生科,李廷轩,彭红云,等.铜胁迫对海州香薷和紫花香薷根系形态及铜富集的影响[J].水土保持学报.2005,19(3):97-100
    [23]顾超,李蕾,何池全.喜旱莲子草及鸭趾草对重金属的富集实验研究[J].上海大学学报(自然科学版).2004,10(6):626-629
    [24]Niu X W.The distribution and description of Caragana Fabr. Acta Botanica Boreali Occidenrralia Sinica,1999,19(5):107-133.
    [25]Jia L.Research progress of Caragana.Plant Research,2001,21(4):515-518.
    [26]程积民,万惠娥,王静,等.半干旱区柠条生长与土壤水分消耗过程研究[J].林业科学,2005, 41(2):37-41.
    [27]牛西午,丁玉川,张强,等.柠条根系发育特征及有关生理特性研究[J].西北植物学报,2003, 23(5):860-865.
    [28]张莉,吴斌,丁国栋,张宇清.毛乌素沙地沙柳与柠条根系分布特征对比[J].干旱区资源与环境.2010,24(3):158-161
    [29]郑士光,贾黎明,庞琪伟,李锐.平茬对柠条林地根系数量和分布的影响[J].北京林业大学学报. 2010,32(3):64-69
    [30] Chen X R, Huang M B, Shao M A,et al. A comparison of fine root distribution and water consumption of mature Caragana korshinkii Kom grown in two soils in a semiarid region, China.Plant and Soil. 2009,315:149-161.
    [31]Zhang Z S,Li X R, Liu L C,Jia R L,Zhan J G,Wang T.Distribution,biomass,and dynamics of roots in arevegetated stand of Caragana korshinskii in the Tengger Desert,northwestern China. Journal of Plant Research,2009,12(2):109-119.
    [32]张志山,李新荣,张景光,等.用Minirhizotrons观测柠条根系生长动态[J].植物生态学报. 2006,30(3)457-464
    [33]Baker AJM.Metal tolerance[J].New Phytol,1987,106(suppl):93-111
    [34]张军英,席荣.金川镍尾矿库复垦的限制因子及植物适应性[J].甘肃冶金.2007,29(4):92-95
    [35]Nies D H,Silvers.Plasmid-determined Inducible effiux is responsible for resistance to cadmium,zinc and cobalt in Alealigenes Eutrophus[J].bacterial,1989,17(1):896-900
    [36]Ye ZH,Baker AJM,Wong MH,et al.Zine,lead and cadmium tolerance,uptake and accumulation by the common reed,Phragmites australis(Cav.)Trin exSteudel.Annals of Botany.1997,80:363-370.
    [37]匡少平,徐仲,张书圣.玉米对土壤中重金属铅的吸收特性及污染防治[J].安全与环境学报, 2002,2(l):28-31
    [38]刘小红,薛艳,周东美,等.矿区Cu耐性植物研究初探[J].农业环境科学报.2005,24(1):50-54
    [39]朱鸣鹤,丁永生,郑道昌,等.潮滩植物翅碱蓬对Cu、Zn、Pb和Cd累积及其重金属耐性[J].海洋环境科学.2005,24(2):13-16
    [40]李影,褚磊.节节草对Cu的吸收和积累[J].生态学报,2008,28(4):1565-1572.
    [41]张远兵,刘爱荣,王兵,李根.铜胁迫下7个高羊茅品种耐性和铜积累能力的比较[J].热带作物学报.2010,31(5):750-756
    [42]李影,储玲,王友保.铜处理下节节草耐性机制的探讨[J].生态学杂志.2010,27(6):37-41
    [43]Brooks R R,Lee J,Reeves R D.Deteetion of niekeliferous rocks by analysis of herbarium speeimens of indieator Plants.J Geoehem ExPlor,1977,7:49-57
    [44]Blamey FP C,Joyee E C,Edwards D G,etal.Role of triehomes in sunflower tolerance to manganese toxieity.Plan Soil,1986,91:171-180
    [45]何念祖,孙其伟.植物生长的有益元素[M].上海科技出版1993,227-240
    [46]刘国栋.植物营养元素-Ni[J].植物营养与肥科学报.2001,7(1):103-108.
    [47]陈同斌,宋波,郑袁明,等.北京市菜地土壤和蔬菜镍含量及其健康风险[J].自然资源学报2006,21(3):349-361
    [48]鲁艳,何明珠,马全林,等赵昕.镍胁迫对7种旱生植物种子萌发及幼苗生长的影响[J].种子. 2009,28(6):26-33
    [49]鲁艳,何明珠,赵昕,等.镍对高冰草幼苗生长及活性氧代谢的影响[J].生态学杂志.2009, 28(11):2208-2212
    [50]Marschner E H. Functions of mineral nutrients:Micronutrientsin mineral nutrition of higher plants[J].Academic Press(Second Edition),1997:364-369.
    [51]Brown P H,Welch RM, Cary E E. Nickel. A micronutrient essential for higher plants[J].Plant Physiol,1987,85:801-803.
    [52]Ye Z H,Shu W S,Zhang Z Q.Evaluation of major constraints to revegetation of lead/zinc mine tailings using biomassay techniques[J].Chemosephere,2002,47:103-111.
    [53]陈同斌,宋波郑,袁明,等北京市菜地土壤和蔬菜镍含量及其健康风险[J].自然资源学报, 2006,21(3):349-352.
    [54]Brooks R R. Plants that hyperaccumulate heavy metals. CAB international.1989,1-2.
    [55]Sanitadi Toppi L,Gabbrielli R.Response to cadmiumin higher plants[J].Environ.Exp.Bot, 1999,41(2):105-130
    [56]Jaffer T,Brooks R R,Lee J , et al. Sebertia acuminate ; A hyperaccumulator of Nickel from New Caledonia[J].Science ,1976,193(43) :579-580.
    [57]刘云鹏,施卫东,潘林,等.7个造林树种对重金属污染的吸滞能力评价试验[J].江苏林业科技.2010,37(6):13-17
    [58]仇荣亮,刘凤杰,万云兵,等.植物A.murale和A.corsicum修复镍污染土壤[J].中国环境科学.2008,28(11):1026-1031
    [59]吴永刚,姜志林,罗强.公路边茶园土壤与茶树中重金属的积累与分布[J].南京林业大学学报,2002,26(4):39-42.
    [60]佘伟.芒麻对重金属吸收和积累特征及镉胁迫响应基因表达研究[D].湖南农业大学,博士学位论文,2010.
    [61]丛自立.金昌市尾矿沙漠化土地的综合治理[J].中国沙漠,1997,17(3):317-321.
    [62]廖晓勇,陈同斌,武斌,等.典型矿业城市的土壤重金属分布特征与复合污染评价-以“镍都”金昌市为例[J].地理研究,2006,25(15):843-852.
    [63]苗玉新.大田作物研究法概述[J].黑龙江农业科学,2005,(3):50-52
    [64]Wang W Q,Wang Sh J et al.1994.Distribution and growth characteristics of the root systems of poplar,willow,elmand locust on site of renewed land by fine ash of coal.Scientia SilvaeSinicae, 30(1):25-32
    [65]刘慧霞,郭正刚,周雪荣,等.硅对紫花苜蓿根系生长的影响[J],中国草地学报,2009,31(1): 28-31
    [66]赵忠,李鹏,王乃,等.渭北黄土高原主要造林树种根系分布特征的研究[J].应用生态学报, 2000,11(1):37-39
    [67]杨吉华,李红云,李焕平,等.4种灌木林地根系分布特征及其固持土壤效应的研究[J].水土保持学报, 2007,21(3):48-51
    [68]黄勇,郭玉海.3人工梭梭林根系的分布特征[J].草地学报,2009,17(1):84-87
    [69]徐贵青,李彦.共生条件下三种荒漠灌木的根系分布特征及其对降水的响应[J].生态学报, 29(1)130-137
    [70]王进鑫,王迪海,刘广全.刺槐和侧柏人工林有效根系密度分布规律研究[J].西北植物学报, 2004,24(12):2208-2214
    [71]吴钦孝,丁汉福,刘克俭,等.黄土丘陵半干旱地区柠条根系的研究[J].水土保持通报,1989, 9(3):45-49
    [72]牛西午.柠条生物学特性研究[J].华北农学报,1998,13(4):122-129
    [73]徐华伟.某矿优势植物对重金属的积累及耐性研究[D].甘肃农业大学,硕士学位论文,2009.
    [74]刘云鹏,施卫东,潘林,等.7个造林树种对重金属污染的吸滞能力评价试验[J].江苏林业科技.2010,37(6):13-17
    [75]魏树和,周启星,王新,等.某铅锌矿坑口周围具有重金属超积累特征植物的研究[J].环境污染治理技术与设备,2004,5(3):33-39.
    [76]王胜利.干旱区绿洲灌漠土重金属吸附-解吸机理及其应用研究[D].兰州大学,硕士学位论文,2008.
    [77]王兆炜,南忠仁,赵转军,等.干旱区绿洲土壤Cd、Zn、Ni复合污染对芹菜生长及重金属积累的影响[J].2011,25(2):139-143.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700