肠道病毒71型感染对小鼠CPT2、PSGL-1和SCARB2的表达和作用的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分肠道病毒71型感染对小鼠大脑与脑干肉碱棕榈酰基转移酶2表达和作用的影响
     目的:肉碱棕榈酰基转移酶(Carnitine palmitoyltransferase, CPT)系统在长链脂肪酸β-氧化中起着重要作用,也是线粒体脂肪酸氧化产生ATP的关键组成部分。长链脂肪酸进入线粒体的限速步骤是在线粒体外膜CPT1的催化作用下,通过转脂作用把脂肪酰辅酶A转变成酰基肉碱,并且在CPT1的作用下进入线粒体基质;在线粒体内膜CPT2把酰基肉碱转换成酰基辅酶A,然后进入β-氧化途径。在本实验中我们研究肠道病毒71型(Entero virus71, EV71)感染对小鼠大脑和脑干肉碱棕榈酰基转移酶2表达和作用的影响,探讨EV71相关脑炎的病理生理机制。
     方法:1日龄ICR小鼠8窝(48-80只),每只小鼠腹腔内注射含有EV71(TCID50=107.5)的DMEM培养基O.1ml,观察小鼠感染后症状,并分别于病毒接种后5d、10d、15d各用乙醚安乐死6只感染组小鼠和6只0d(未接种病毒前)小鼠,取出大脑、脑干。应用荧光定量RT-PCR法检测小鼠脑组织中EV71病毒载量;电子显微镜检测线粒体;应用免疫组织化学(Immune histochemical, IHC)、Westblot、荧光定量RT-PCR法检测小鼠大脑、脑干CPT2的表达;检测大脑和脑干细胞的CPT2酶活性和ATP水平。
     结果:EV71感染小鼠后5天,在大脑检测到EV71RNA拷贝数为5.334±0.30log1ocopies/mg tissue,脑干为6.20±0.19log10copies/mg tissue;然而,随着感染时间延长,EV71RNA拷贝数逐渐降低。在感染后5天,电镜显示线粒体肿胀、线粒体嵴和线粒体膜断裂、变短或消失;CPT2表达下降,CPT2酶活性减低;ATP水平明显下降;而在感染后的10-15天,这些变化逐渐恢复到正常状态。
     结论:我们的研究资料显示:EV71感染损伤了脑组织的线粒体,引起CPT2的表达减少,导致CPT2酶活性降低、ATP生成减少。能量代谢障碍可能加速或加重了EV71脑炎发展,可能与脑炎的严重程度相关。本研究从能量代谢障碍方面阐述了EV71脑炎的病理生理机制。
     第二部分PSGL-1在肠道病毒71型感染小鼠的表达和作用
     目的:通过检测EV71感染小鼠不同组织中P选择素糖蛋白配体-1(Mouse P-selectin glycoprotein ligand-1, mPSGL-1)的表达,探讨P选择素糖蛋白配体-1(P-selectin glycoprotein ligand-1, PSGL-1)在EV71感染中的作用。
     方法:1日龄ICR小鼠11窝(66-110只)随机分为2组,实验组8窝(48-80只)每只小鼠腹腔内注射含有EV71(TCID50=107-5)的DMEM培养基0.1ml,另3窝(18-30只)为对照组,每只小鼠腹腔注射无菌DMEM培养基0.1ml。观察小鼠感染后症状,并分别于0d(接种病毒前)、病毒接种后、4d、8d、12d各用乙醚安乐死6只感染组小鼠与6只对照组小鼠,取出大脑、小脑、脑干、脊髓、心脏、肺脏。应用荧光定量RT-PCR法检测小鼠脑组织中EV71病毒载量;应用免疫组织化学、Westblot、荧光定量RT-PCR法检测小鼠大脑、小脑、脑干、脊髓、心脏、肺脏mPSGL-1的表达;应用免疫组织化学法检测CD4+、CD8+T淋巴细胞、巨噬细胞的表达;应用酶联免疫吸附法(Enzyme-linked immuno sorbent assay, ELISA)检测大脑、小脑、脑干、脊髓、心脏、肺脏的促炎细胞因子:肿瘤坏死因子-α(Tumor necrosis fector-alfa, TNF-a)、白细胞介素-6(Interleukin-6, IL-6)、白细胞介素-1β(Interleukin-lbeta, IL-1β)含量。分析EV71感染小鼠不同组织的mPSGL-1的相对表达量对CD4+、CD8+、巨噬细胞表达的影响,以及与促炎性细胞因子TNF-α、IL-6和IL-1β产生水平的关系。
     结果:EV71感染小鼠中枢神经系统的病毒载量较心脏和肺脏的病毒载量增多;mPSGL-1在EV71感染小鼠的组织中表达增加,在感染后一定时间内,mPSGL-1在中枢神经系统的相对表达量比在心脏或/和肺脏的相对表达量明显增多,尤其在脑干和大脑增多更为明显。在所被测组织中的CD4+、CD8+、巨噬细胞免疫反应染色显示也增多;另外,在EV71感染小鼠所被测组织中的mPSGL-1相对表达量与TNF-α、IL-6和IL-1β产生量有相关性:在感染后的4天,大脑、小脑、脑干、脊髓、心脏、肺脏的mPSGL-1相对表达量与TNF-α、IL-6和IL-1β产生量成负相关;在感染后8天,除了心脏和肺脏的mPSGL-1相对表达量与TNF-a产生量未有相关性外,大脑、小脑、脑干、脊髓mPSGL-1的相对表达量与TNF-α、IL-6和IL-1β产生量仍成负相关;在感染后12天在所有被测组织未再有相关性。
     结论:在EV71感染时,局部组织的mPSGL-1表达增加,可能在白细胞募集与宿主的先天性固有免疫反应中起着重要作用。
     第三部分SCARB2在肠道病毒71型感染小鼠的表达与促炎细胞因子的关系
     目的:在感染性疾病时,清道夫受体(Scavenger receptor class B, member2, SCARB2)参与早期的先天性固有免疫反应;因此,本研究探讨肠道病毒71型(Enterovirus71,EV71)感染小鼠时,小鼠清道夫受体(mouse SCARB2, mSCARB2)在不同组织的表达和作用。
     方法:1日龄ICR小鼠13窝(78-130只)随机分为2组,感染组10窝(60-100只)每只小鼠腹腔内注射含有EV71(TCID50=107.5)的DMEM培养基0.1ml,另3窝(18-30)只为对照组,每只小鼠腹腔注射无菌DMEM培养基0.1ml。观察小鼠感染后症状,并分别于病毒接种后2d、4d、6d、8d、12d各用乙醚安乐死6只感染组与对照组小鼠,取出大脑、小脑、脑干、脊髓、心脏、肺脏。应用荧光定量RT-PCR法检测小鼠脑组织中EV71病毒载量;应用免疫组织化学、Westblot、荧光定量RT-PCR法检测小鼠大脑、小脑、脑干、脊髓、心脏、肺脏SCARB2的表达;应用酶联免疫吸附法(Enzyme-linked immuno sorbent assay, ELISA)检测小鼠大脑、小脑、脑干、脊髓、心脏、肺脏的促炎细胞因子:肿瘤坏死因子-α(Tumor necrosis fector-alfa, TNF-α)、白细胞介素-6(Interleukin-6, IL-6)、白细胞介素-1β (Interleukin-lbeta, IL-1β)含量。分析EV71感染小鼠不同组织的SCARB2相对表达量与细胞因子TNF-α、IL-6、IL-1β含量的关系。
     结果:在EV71感染小鼠中枢神经系统的病毒载量较心脏和肺脏的病毒载量增多。在感染后一定时间段内,SCARB2在中枢神经系统的相对表达量较心脏或/和肺脏的相对表达量明显升高,尤其在脑干和大脑。另外,在EV71感染小鼠的不同组织的TNF-α、IL-6和IL-1p产生量与SCARB2相对表达量有相关性:在感染后4天、8天,大脑、小脑、脑干、脊髓、心脏、肺脏SCARB2的相对表达量与TNF-α、IL-6和IL-1p含量成正相关,感染后12天未再有相关性。
     结论:在EV71感染时,小鼠局部组织的SCARB2表达增加,可能在调节促炎细胞因子的产生中起着重要作用,尤其在中枢神经系统。
Impact of enterovirus71infection on the expression and role of carnitine palmitoyltransferase II in mice brain and brain stem
     Background:The carnitine palmitoyltransferase (CPT) system has crucial roles in the β-oxidation of long-chain fatty acids, and is a pivotal component of ATP generation through mitochondrial fatty acid oxidation. The rate-limiting step in the importation of long-chain fatty acids into the mitochondria is the transesterification of acyl-coenzyme A (CoA) to acylcarnitine by CPT I, while CPT II changes the imported acylcarnitine back to acyl-CoA. Here we investigated the impact of enterovirus71(EV71) infection on the expression and role of CPT II in mice brain and brain stem to explore the pathophysiology of EV71-associated encephalitis.
     Methods:48-80one day old ICR mice. ICR mice were inoculated intraperitoneally (i.p.) with EV71, and were sacrificed by aether anesthesia at days5,10and15post infection (p.i.), and day0(before EV71infection), their brain and brain stem were dissected out for determining the number of copies of viral RNA by quantitative real-time PCR (qRT-PCR). Mitochondria detected by electron microscopy. Detection of expression of CPT II by immunohistochemistry, qRT-PCR and western blot. CPT II activity and ATP level were also measured in brain and brain stem cells.
     Results:In EV71-infected mice, the number of copies of EV71RNA detected at day5p.i. were brain (5.33±0.30log10copies/mg tissue), brain stem (6.20±0.19log10copies/mg tissue). However, the virus was gradually eliminated in later days. Mitochondria undergone a markedly amplitude swelling in brain and brain stem at day5p.i., and shown some recovery from swollen in later. At day5p.i., expression of CPT II decreased, CPT II activity reduced and ATP levels lowed more obviously, and these changes gradually restored to basic normal state at10-15days p.i..
     Conclusion:Our data suggests that EV71infection impaired mitochondria, reduced the CPT Ⅱ expression and activity, and decreased local ATP level, which might be important factors to trigger the pathomechanism of acute encephalitis in EV71infection, which may be causally related to the severity of disease.
     The expression and role of P-selectin glycoprotein ligand-1in different tissues of enterovirus71-infected mice
     Background:Aim was to elucidate the role of P-selectin glycoprotein ligand-1(PSGL-1) in Enterovirus71(EV71) infection by evaluating the expression of mouse PSGL-1(mPSGL-1) in EV71-infected mice.
     Methods:66-110one day old ICR mice were divided into infected group (48-80) and control group (18-30). ICR mice were inoculated intraperitoneally (i.p.) with EV71, and were sacrificed by aether anesthesia at days4,8and12post inoculation (p.i.), and day0(before EV71infection), their lung, heart, brain, brainstem, spinal cord and cerebellum were dissected out for determining the number of copies of viral RNA by quantitative real-time PCR (qRT-PCR), detection of expression of mPSGL-1by immunohistochemistry, qRT-PCR and Western blot. Detection of expression of CD4+. CD8+T lymphocyt, macrophagocyt, natural killer cell of tissues by immunohistochemistry. Cytokines quantification by ELISA.
     Results:Viral loads in central nervous system (CNS) were higher than in lung or/and heart. Expression of mPSGL-1increased more obviously in CNS than in lung or/and heart within a certain period of time, particularly in brain stem and brain. In the tisssues, the expression of mPSGL-1increased, mean while, immunohistochemistry shown that the expression of CD4+、CD8+T lymphocyte, macrophagocyte, natural killer cell also increased. Local TNF-α, IL-6and IL-1β production were consistent with expression of mPSGL-1. Surprisingly, it presented a negative correlation between relative mPSGL-1mRNA level and TNF-α, IL-6and IL-1β levels in local tissues at day4p.i. and at day8p.i.(excluded TNF-α in lung and heart).
     Conclusion:The elevated local mPSGL-1may be important in the leukocyte recruitment and in host innate immune response against EV71infection.
     Association of the expression of SCARB2in EV71-infected mice with inflammatory cytokines
     Background:Scavenger receptor class B, member2(SCARB2) participates in early innate immune responses to infection, so our aim was to explore the expression and role of mouse SCARB2(mSCARB2) in different tissues in EV71-infected mice.
     Methods:78-130one day old ICR mice were divided into infected group (60-100) and control group (18-30). ICR mice were inoculated intraperitoneally (i.p.) with EV710.1ml107.5TCID50/ml. The control mice were injected i.p. with the same volume RD cell lysate. Mice were sacrificed by aether anesthesia at day4,8and12post infection (p.i.), their brain, brainstem, spinal cord, cerebellum, lung and heart were dissected out for determining the number of copies of viral RNA by quantitative real-time PCR (qRT-PCR), detection of expression of mSCARB2by immunohistochemistry, qRT-PCR and Western-blotting. Cytokines quantification by ELISA.
     Results:The viral loads in central nervous system (CNS) were higher than in lung or/and heart. The expression of mSCARB2increased in tissues of EV71-infected mice, however, the levels of mSCARB2increased in CNS were higher than in lung or/and heart within a certain period of time, particularly in brain stem and brain. In addition, local TNF-a, IL-6and IL-1β levels of production were consistent with mSCARB2levels of expression in tissues of EV71-infected mice. However, it presented a positive correlation between relative mSCARB2mRNA level and TNF-a, IL-6and IL-1β levels in local tissues at day4and8p.i..
     Conclusion:Our data revealed that the elevated local mSCARB2may modulate pro-inflammatory cytokines induction in local tissues, particularly, in CNS of EV71-infected mice.
引文
1. Alexander JP Jr, Baden L, Pallansch MA, Anderson LJ:Enterovirus 71 infections and neurologic disease--United States,1977-1991. J Infect Dis 1994,169:905-908.
    2. Chan KP, Goh KT, Chong CY, Teo ES, Lau G, Ling AE:Epidemic hand, foot and mouth disease caused by human enterovirus 71, Singapore. Emerg Infect Dis 2003,9:78-85.
    3. Ahmad K:Hand, foot, and mouth disease outbreak reported in Singapore. Lancet 2000,356:1338.
    4. Shah VA, Chong CY, Chan KP, Ng W, Ling AE:Clinical characteristics of an outbreak of hand, foot and mouth disease in Singapore. Ann Acad Med Singapore 2003,32:381-387.
    5. Jee YM, Cheon DS, Kim K, Cho JH, Chung YS, Lee J, Lee SH, Park KS, Lee JH, Kim EC, Chung HJ, Kim DS, Yoon JD, Cho HW:Genetic analysis of the VP1 region of human enterovirus 71 strains isolated in Korea during 2000. Arch Virol 2003,148:1735-1746.
    6. Chan LG, Parashar UD, Lye MS, Ong FG, Zaki SR, Alexander JP, Ho KK, Han LL, Pallansch MA, Suleiman AB, Jegathesan M, Anderson LJ:Deaths of children during an outbreak of hand, foot, and mouth disease in sarawak, malaysia:clinical and pathological characteristics of the disease. For the Outbreak Study Group. Clin Infect Dis 2000,31:678-683.
    7. Fujimoto T, Chikahira M, Yoshida S, Ebira H, Hasegawa A, Totsuka A, Nishio O:Outbreak of central nervous system disease associated with hand, foot, and mouth disease in Japan during the summer of 2000:detection and molecular epidemiology of enterovirus 71. Microbiol Immunol 2002,46:621-627.
    8. Tu PV, Thao NT, Perera D, Huu TK, Tien NT, Thuong TC, How OM, Cardosa MJ, McMinn PC: Epidemiologic and virologic investigation of hand, foot, and mouth disease, southern Vietnam,2005. Emerg Infect Dis 2007,13:1733-1741.
    9. Wang JR, Tuan YC, Tsai HP, Yan JJ, Liu CC, Su IJ:Change of major genotype of enterovirus 71 in outbreaks of hand-foot-and-mouth disease in Taiwan between 1998 and 2000. J Clin Microbiol 2002,40: 10-15.
    10. Zhang Y, Tan XJ, Wang HY, Yan DM, Zhu SL, Wang DY, Ji F, Wang XJ, Gao YJ, Chen L, An HQ, Li DX, Wang SW, Xu AQ, Wang ZJ, Xu WB:An outbreak of hand, foot, and mouth disease associated with subgenotype C4 of human enterovirus 71 in Shandong, China. J Clin Virol 2009,44:262-267.
    11. Huang CC, Liu CC, Chang YC, Chen CY, Wang ST, Yeh TF:Neurologic complications in children with enterovirus 71 infection. N Engl J Med 1999,341:936-942.
    12. Wang SM, Liu CC, Tseng HW, Wang JR, Huang CC, Chen YJ, Yang YJ, Lin SJ, Yeh TF:Clinical spectrum of enterovirus 71 infection in children in southern Taiwan, with an emphasis on neurological complications. Clin Infect Dis 1999,29:184-190.
    13. Wang YF, Chou CT, Lei HY, Liu CC, Wang SM, Yan JJ, Su IJ, Wang JR, Yeh TM, Chen SH, Yu CK: A mouse-adapted enterovirus 71 strain causes neurological disease in mice after oral infection. J Virol 2004,78:7916-7924.
    14. Wang W, Duo J, Liu J, Ma C, Zhang L, Wei Q, Qin C:A mouse muscle-adapted enterovirus 71 strain with increased virulence in mice. Microbes Infect 2011,13:862-870.
    15. Khong WX, Yan B, Yeo H, Tan EL, Lee JJ, Ng JK, Chow VT, Alonso S:A non-mouse-adapted enterovirus 71 (EV71) strain exhibits neurotropism, causing neurological manifestations in a novel mouse model of EV71 infection. J Virol 2012,86:2121-2131.
    16. Hashimoto I, Hagiwara A, Kodama H:Neurovirulence in cynomolgus monkeys of enterovirus 71 isolated from a patient with hand, foot and mouth disease. Arch Virol 1978,56:257-261.
    17. Zhang G, Zhou F, Gu B, Ding C, Feng D, Xie F, Wang J, Zhang C, Cao Q, Deng Y, Hu W, Yao K:In vitro and in vivo evaluation of ribavirin and pleconaril antiviral activity against enterovirus 71 infection. Arch Virol 2012,157:669-679.
    18. McGarry JD, Foster DW:Systemic carnitine deficiency. N Engl J Med 1980,303:1413-1415.
    19. Bieber LL:Carnitine. Annu Rev Biochem 1988,57:261-283.
    20. Bonnefont JP, Djouadi F, Prip-Buus C, Gobin S, Munnich A, Bastin J:Carnitine palmitoyltransferases 1 and 2:biochemical, molecular and medical aspects. Mol Aspects Med 2004,25: 495-520.
    21. Murthy Ms, Pande SV:Some differences in the properties of carnitine palmitoyltransferase activities of the mitochondrial outer and inner membranes. Biochem J 1987,248:727-733.
    22. McGarry JD, Brown NF:The mitochondrial carnitine palmitoyltransferase system. From concept to molecular analysis. Eur J Biochem 1997,244:1-14.
    23. Ramsay RR, Gandour RD, van der Leij FR:Molecular enzymology of carnitine transfer and transport. Biochim Biophys Acta 2001,1546:21-43.
    24. Chen Y, Mizuguchi H, Yao D, Ide M, Kuroda Y, Shigematsu Y, Yamaguchi S, Yamaguchi M, Kinoshita M, Kido H:Thermolabile phenotype of carnitine palmitoyltransferase II variations as a predisposing factor for influenza-associated encephalopathy. FEBS Lett 2005,579:2040-2044.
    25. Shinohara M, Saitoh M, Takanashi J, Yamanouchi H, Kubota M, Goto T, Kikuchi M, Shiihara T, Yamanaka Q Mizuguchi M:Carnitine palmitoyl transferase II polymorphism is associated with multiple syndromes of acute encephalopathy with various infectious diseases. Brain Dev 2011,33: 512-517.
    26. Yao D, Mizuguchi H, Yamaguchi M, Yamada H, Chida J, Shikata K, Kido H:Thermal instability of compound variants of carnitine palmitoyltransferase II and impaired mitochondrial fuel utilization in influenza-associated encephalopathy. Hum Mutat 2008,29:718-727.
    27. Mak CM, Lam CW, Fong NC, Siu WK, Lee HC, Siu TS, Lai CK, Law CY, Tong SF, Poon WT, Lam DS, Ng HL, Yuen YP, Tam S, Que TL, Kwong NS, Chan AY:Fatal viral infection-associated encephalopathy in two Chinese boys:a genetically determined risk factor of thermolabile carnitine palmitoyltransferase II variants. J Hum Genet 2011,56:617-621.
    28. Kobayashi Y, Ishikawa N, Tsumura M, Fujii Y, Okada S, Shigematsu Y, Kobayashi M:Acute severe encephalopathy related to human herpesvirus-6 infection in a patient with carnitine palmitoyltransferase 2 deficiency carrying thermolabile variants. Brain Dev 2013,35:449-453.
    29. Reed LJ, Muench H:A simple method of estimating fifty percent endpoint. Am J Hyg 1938,27: 493-497.
    30. Lin YW, Chang KC, Kao CM, Chang SP, Tung YY, Chen SH:Lymphocyte and antibody responses-reduce enterovirus 71 lethality in mice by decreasing tissue viral loads. J Virol 2009,83:6477-6483.
    31. Yang CF, De L, Yang SJ, Ruiz Gomez J, Cruz JR, Holloway BP, Pallansch MA, Kew OM: Genotype-specific in vitro amplification of sequences of the wild type 3 polioviruses from Mexico and Guatemala. Virus Res 1992,24:277-296.
    32. Jiang MH, Fei J, Lan MS, Lu ZP, Liu M, Fan WW, Gao X, Lu DR:Hypermethylation of hepatic Gck promoter in ageing rats contributes to diabetogenic potential. Diabetologia 2008,51:1525-1533.
    33. Gellera C, Verderio E, Floridia G, Finocchiaro G, Montermini L, Cavadini P, Zuffardi O, Taroni F: Assignment of the human carnitine palmitoyltransferase II gene (CPT1) to chromosome 1p32. Genomics 1994,24:195-197.
    34. Oldendorf WH, Cornford ME, Brown WJ:The large apparent work capability of the blood-brain barrier:a study of the mitochondrial content of capillary endothelial cells in brain and other tissues of the rat. Ann Neurol 1977,1:409-417.
    35. Witt KA, Mark KS, Hom S, Davis TP:Effects of hypoxia-reoxygenation on rat blood-brain barrier permeability and tight junctional protein expression. Am J Physiol Heart Circ Physiol 2003,285: 2820-2831.
    36. Yokota S, Imagawa T, Miyamae T, Ito S, Nakajima S, Nezu A, Mori M:Hypothetical pathophysiology of acute encephalopathy and encephalitis related to influenza virus infection and hypothermia therapy. Pediatr Int 2000,42:197-203.
    1. Alexander JP Jr, Baden L, Pallansch MA, Anderson LJ. Enterovirus 71 infections and neurologic disease--United States,1977-1991. J Infect Dis 1994;169:905-908.
    2. McMinn PC. An overview of the evolution of enterovirus 71 and its clinical and public health significance. FEMS Microbiol Rev 2002; 26:91-107.
    3. Modlin JF. Enterovirus deja vu. N Engl J Med 2007; 356:1204-1205.
    4. Yu CK, Chen CC, Chen CL, Wang JR, Liu CC, Yan JJ, Su IJ. Neutralizing antibody provided protection against enterovirus type 71 lethal challenge in neonatal mice. J Biomed Sci 2000; 7:523-528.
    5. Wu CN, Lin YC, Fann C, Liao NS, Shih SR, Ho MS. Protection against lethal enterovirus 71 infection in newborn mice by passive immunization with subunit VP1 vaccines and inactivated virus. Vaccine 2001; 20:895-904.
    6. Chen YC, Yu CK, Wang YF, Liu CC, Su IJ, Lei HY. A murine oral enterovirus 71 infection model with central nervous system involvement. J Gen Virol 2004; 85:69-77.
    7. Zhang G, Zhou F, Gu B, Ding C, Feng D, Xie F, Wang J, Zhang C, Cao Q, Deng Y, Hu W, Yao K. In vitro and in vivo evaluation of ribavirin and pleconaril antiviral activity against enterovirus 71 infection. Arch Virol 2012; 157:669-679.
    8. Butcher EC. Leukocyte-endothelial cell recognition:three (or more) steps to specificity and diversity. Cell 1991; 67:1033-1036.
    9. Clark RS, Carlos TM, Schiding JK, Bree M, Fireman LA, DeKoshy ST, Kochanek PM. Antibodies against Mac-1 attenuate neutrophil accumulation after traumatic brain injury in rats. J Neurotrauma 1996; 13:333-341.
    10. Lin TY, Chang LY, Huang YC, Hsu KH, Chiu CH, Yang KD. Different proinflammatory reactions in fatal and non-fatal enterovirus 71 infections:implications for early recognition and therapy. Acta Paediatr 2002; 91:632-635.
    11. Lin TY, Hsia SH, Huang YC, Wu CT, Chang LY. Proinflammatory cytokine reactions in enterovirus 71 infections of the central nervous system. Clin Infect Dis 2003; 36:269-274.
    12. Weng KF, Chen LL, Huang PN, Shih SR. Neural pathogenesis of enterovirus 71 infection. Microbes Infect 2010; 12:505-510.
    13. Wang SM, Lei HY, Su LY, Wu JM, Yu CK, Wang JR, Liu CC. Cerebrospinal fluid cytokines in enterovirus 71 brain stem encephalitis and echovirus meningitis infections of varying severity. Clin Microbiol Infect 2007; 13:677-682.
    14. Ley K. The role of selectins in inflammation and disease. Trends Mol Med 2003; 9: 263-268.
    15. McEver RP. Selectins:lectins that initiate cell adhesion under flow. Curr Opin Cell Biol 2002; 14:581-586.
    16. Rosen SD. Ligands for L-selectin:homing, inflammation, and beyond. Annu Rev Immunol 2004; 22:129-156.
    17. Berlin C, Bargatze RF, Campbell JJ, von Andrian UH, Szabo MC, Hasslen SR, Nelson RD, Berg EL, Erlandsen SL, Butcher EC. Alpha 4 integrins mediate lymphocyte attachment and rolling under physiologic flow. Cell 1995; 80:413-422.
    18. Tedder TF, Steeber DA, Chen A, Engel P. The selectins:vascular adhesion molecules. FASEB J 1995; 9:866-873.
    19. Alon R, Chen S, Puri KD, Finger EB, Springer TA. The kinetics of L-selectin tethers and the mechanics of selectin-mediated rolling. J Cell Biol 1997; 138:1169-1180.
    20. Sako D, Chang XJ, Barone KM, Vachino G, White HM, Shaw G, Veldman GM, Bean KM, Ahern TJ, Furie B, Cumming DA, Larsen GR. Expression cloning of a functional glycoprotein ligand for P-selectin. Cell 1993; 75:1179-1186.
    21. Laszik Z, Jansen PJ, Cummings RD, Tedder TF, McEver RP, Moore KL. P-selectin glycoprotein ligand-1 is broadly expressed in cells of myeloid, lymphoid, and dendritic lineage and in some nonhematopoietic cells. Blood 1996; 88:3010-3021.
    22. Somers WS, Tang J, Shaw GD, Camphausen RT. Insights into the molecular basis of leukocyte tethering and rolling revealed by structures of P-and E-selectin bound to SLe (X) and PSGL-1. Cell 2000; 103:467-479.
    23. Nishimura Y, Shimizu H. Cellular receptors for human enterovirus species a. Front Microbiol 2012;3:105.
    24. Reed LJ, Muench H. A simple method of estimating fifty percent endpoint. Am J Hyg 1938; 27:493-497.
    25. Lin YW, Chang KC, Kao CM, Chang SP, Tung YY, Chen SH. Lymphocyte and antibody responses reduce enterovirus 71 lethality in mice by decreasing tissue viral loads. J Virol 2009; 83:6477-6483.
    26. Wang W, Duo J, Liu J, Ma C, Zhang L, Wei Q, Qin C. A mouse muscle-adapted enterovirus 71 strain with increased virulence in mice. Microbes Infect 2011; 13:862-870.
    27. Yang CF, De L, Yang SJ, Ruiz Gomez J, Cruz JR, Holloway BP, Pallansch MA, Kew OM. Genotype-specific in vitro amplification of sequences of the wild type 3 polioviruses from Mexico and Guatemala. Virus Res 1992; 24:277-296.
    28. Jiang MH, Fei J, Lan MS, Lu ZP, Liu M, Fan WW, Gao X, Lu DR. Hypermethylation of hepatic Gck promoter in ageing rats contributes to diabetogenic potential. Diabetologia 2008; 51:1525-1533.
    29. Khong WX, Foo DG, Trasti SL, Tan EL, Alonso S. Sustained high levels of interleukin-6 contribute to the pathogenesis of enterovirus 71 in a neonate mouse model. J Virol 2011; 85:3067-3076.
    30. Wang SM, Lei HY, Huang KJ, Wu JM, Wang JR, Yu CK, Su IL, Liu CC. Pathogenesis of enterovirus 71 brainstem encephalitis in pediatric patients:roles of cytokines and cellular immune activation in patients with pulmonary edema. J Infect Dis 2003; 188: 564-570.
    31. Huang CC, Liu CC, Chang YC, Chen CY, Wang ST, Yeh TF. Neurologic complications in children with enterovirus 71 infection. N Engl J Med 1999; 341:936-942.
    32. Ooi MH, Wong SC, Lewthwaite P, Cardosa MJ, Solomon T. Clinical features, diagnosis, and management of enterovirus 71. Lancet Neurol 2010; 9:1097-1105.
    33. Moore KL, Stults NL, Diaz S, Smith DF, Cummings RD, Varki A, McEcer RP. Identification of a specific glycoprotein ligand for P-selectin (CD62) on myeloid cells. J Cell Biol 1992; 118:445-456.
    34. McEver RP, Cummings RD. Role of PSGL-1 binding to selectins in leukocyte recruitment. J Clin Invest 1997; 100:S97-S103.
    35. Walcheck B, Moore KL, McEver RP, Kishimoto TK. Neutrophil-neutrophil interactions under hydrodynamic shear stress involve L-selectin and PSGL-1. A mechanism that amplifies initial leukocyte accumulation of P-selectin in vitro. J Clin Invest 1996; 98: 1081-1087.
    36. Hicks AE, Nolan SL, Ridger VC, Hellewell PG, Norman KE. Recombinant P-selectin glycoprotein ligand-1 directly inhibits leukocyte rolling by all 3 selectins in vivo:complete inhibition of rolling is not required for anti-inflammatory effect. Blood 2003; 101: 3249-3256.
    37. Kanamori A, Kojima N, Uchimura K, Muramatsu T, Tamatani T, Berndt MC, Kansas GS, Kannagi R. Distinct sulfation requirements of selectins disclosed using cells that support rolling mediated by all three selectins under shear flow. L-selectin prefers carbohydrate 6-sulfation totyrosine sulfation, whereas P-selectin does not. J Biol Chem 2002; 277:32578-32586.
    38. Yang J, Hirata T, Croce K, Merrill-Skoloff G, Tchernychev B, Williams E, Flaumenhaft R, Furie BC, Furie B. Targeted gene disruption demonstrates that P-selectin glycoprotein ligand 1 (PSGL-1) is required for P-selectin-mediated but not E-selectin-mediated neutrophil rolling and migration. J Exp Med 1999; 190:1769-1782.
    39. Moore KL, Patel KD, Bruehl RE, Li F, Johnson DA, Lichenstein HS, Cummings RD, Bainton DF, McEver RP. P-selectin glycoprotein ligand-1 mediates rolling of human neutrophils on P-selectin. J Cell Biol 1995; 128:661-671.
    40. Kum WW, Lo BC, Deng W, Ziltener H.J, Finlay BB. Impaired innate immune response and enhanced pathology during Citrobacter rodentium infection in mice lacking functional P-selectin. Cell Microbiol 2010; 12:1250-1271.
    41. Kum WW, Lee S, Grassl GA, Bidshahri R, Hsu K, Ziltener HJ, Finlay BB. Lack of functional P-selectin ligand exacerbates Salmonella serovar typhimurium infection. J Immunol 2009; 182:6550-6561.
    42. Nishimura Y, Shimojima M, Tano Y, Miyamura T, Wakita T, Shimizu H. Human P-selectin glycoprotein ligand-1 is a functional receptor for enterovirus 71. Nat Med 2009; 15:794-797.
    1. Alexander JP Jr, Baden L, Pallansch MA, Anderson LJ. Enterovirus 71 infections and neurologic disease-United States,1977-1991. J Infect Dis 1994; 169:905-8.
    2. Chan KP, Goh KT, Chong CY, Teo ES, Lau G, Ling AE. Epidemic hand, foot and mouth disease caused by human enterovirus 71, Singapore. Emerg Infect Dis 2003; 9:78-85.
    3. Ahmad K. Hand, foot, and mouth disease outbreak reported in Singapore. Lancet 2000; 356:1338.
    4. Shah VA, Chong CY, Chan KP, Ng W, Ling AE. Clinical characteristics of an outbreak of hand, foot and mouth disease in Singapore. Ann Acad Med Singapore 2003; 32:381-7.
    5. Jee YM, Cheon DS, Kim K, Cho JH, Chung YS, Lee J, et al. Genetic analysis of the VP1 region of human enterovirus 71 strains isolated in Korea during 2000. Arch Virol 2003; 148: 1735-46.
    6. Chan LG, Parashar UD, Lye MS, Ong FG, Zaki SR, Alexander JP, et al. Deaths of children during an outbreak of hand, foot, and mouth disease in sarawak, malaysia:clinical and pathological characteristics of the disease. For the Outbreak Study Group. Clin Infect Dis 2000; 31:678-83.
    7. Fujimoto T, Chikahira M, Yoshida S, Ebira H, Hasegawa A, Totsuka A, Nishio O. Outbreak of central nervous system disease associated with hand, foot, and mouth disease in Japan during the summer of 2000:detection and molecular epidemiology of enterovirus 71. Microbiol Immunol 2002; 46:621-27.
    8. Tu PV, Thao NT, Perera D, Huu TK, Tien NT, Thuong TC, et al. Epidemiologic and virologic investigation of hand, foot, and mouth disease, southern Vietnam,2005. Emerg Infect Dis 2007; 13:1733-41.
    9. Wang JR, Tuan YC, Tsai HP, Yan JJ, Liu CC, Su IJ. Change of major genotype of enterovirus 71 in outbreaks of hand-foot-and-mouth disease in Taiwan between 1998 and 2000. J Clin Microbiol 2002; 40:10-5.
    10. Zhang Y, Tan XJ, Wang HY, Yan DM, Zhu SL, Wang DY, et al. An outbreak of hand, foot, and mouth disease associated with subgenotype C4 of human enterovirus 71 in Shandong, China. J Clin Virol 2009; 44:262-7.
    11. Huang CC, Liu CC, Chang YC, Chen CY, Wang ST, Yeh TF. Neurologic complications in children with enterovirus 71 infection. N Engl J Med 1999; 341:936-42.
    12. Wang SM, Liu CC, Tseng HW, Wang JR, Huang CC, Chen YJ, et al. Clinical spectrum of enterovirus 71 infection in children in southern Taiwan, with an emphasis on neurological complications. Clin Infect Dis 1999; 29:184-90.
    13. Wang YF, Chou CT, Lei HY, Liu CC, Wang SM, Yan JJ, et al. A mouse-adapted enterovirus 71 strain causes neurological disease in mice after oral infection. J Virol 2004; 78:7916-24.
    14. Wang W, Duo J, Liu J, Ma C, Zhang L, Wei Q, Qin C. A mouse muscle-adapted enterovirus 71 strain with increased virulence in mice. Microbes Infect 2011; 13:862-70.
    15. Khong WX, Yan B, Yeo H, Tan EL, Lee JJ, Ng JK, et al. A non-mouse-adapted enterovirus 71 (EV71) strain exhibits neurotropism, causing neurological manifestations in a novel mouse model of EV71 infection. J Virol 2012; 86:2121-31.
    16. Hashimoto I, Hagiwara A, Kodama H. Neurovirulence in cynomolgus monkeys of enterovirus 71 isolated from a patient with hand, foot and mouth disease. Arch Virol 1978; 56:257-61.
    17. Zhang G, Zhou F, Gu B, Ding C, Feng D, Xie F, et al. In vitro and in vivo evaluation of ribavirin and pleconaril antiviral activity against enterovirus 71 infection. Aich Virol 2012; 157:669-79.
    18. Calvo D, Dopazo J, Vega MA. The CD36, CLA-1 (CD36L1), and LIMP II (CD36L2) gene family:cellular distribution, chromosomal location, and genetic evolution. Genomics 1995; 25:100-6.
    19. Eskelinen EL, Tanaka Y, Saftig P. At the acidic edge:emerging functions for lysosomal membrane proteins. Trends Cell Biol 2003; 13:137-45.
    20. Kuronita T, Eskelinen EL, Fujita H, Saftig P, Himeno M, Tanaka Y. A role for the lysosomal membrane protein LGP85 in the biogenesis and maintenance of endosomal and lysosomal morphology. J Cell Sci 2002; 115:4117-31.
    21. Blanz J, Groth J, Zachos C, Wehling C, Saftig P, Schwke M. Disease-causing mutations within the lysosomal integral membrane protein type 2 (LIMP-2) reveal the nature of binding to its ligand beta-glucocerebrosidase. Hum Mol Genet 2010; 19:563-72.
    22. Gamp AC, Tanaka Y, Lullmann-Rauch R, Wittke D, D'Hooge R, De Deyn PP, et al. LIMP-2/LGP85 deficiency causes ureteric pelvic junction obstruction, deafness and peripheral neuropathy in mice. Hum Mol Genet 2003; 12:631-46.
    23. Berkovic SF, Dibbens LM, Oshlack A, Silver JD, Katerelos M, Vears DF, et al. Array-based gene discovery with three unrelated subjects shows SCARB2/LIMP-2 deficiency causes myoclonus epilepsy and glomerulosclerosis. Am J Hum Genet 2008; 82: 673-84.
    24. Carrasco-Marin E, Fernandez-Prieto L, Rodriguez-Del Rio E, Madrazo-Toca F, Reinheckel T, Saftig P, Alvarez-Dominguez C. LIMP-2 links late phagosomal trafficking with the onset of the innate immune response to Listeria monocytogenes:a role in macrophage activation. J Biol Chem 2011; 286:3332-41.
    25. Lin TY, Chang LY, Huang YC, Hsu KH, Chiu CH, Yang KD. Different proinflammatory reactions in fatal and non-fatal enterovirus 71 infections:implications for early recognition and therapy. Acta Paediatr 2002; 91:632-35.
    26. Lin TY, Hsia SH, Huang YC, Wu CT, Chang LY. Proinflammatory cytokine reactions in enterovirus 71 infections of the central nervous system. Clin Infect Dis 2003; 36:269-74.
    27. Wang SM, Lei HY, Su LY, Wu JM, Yu CK, Wang JR, Liu CC. Cerebrospinal fluid cytokines in enterovirus 71 brain stem encephalitis and echo virus meningitis infections of varying severity. Clin Microbiol Infect 2007; 13:677-82.
    28. Wang SM, Lei HY, Huang KJ, Wu JM, Wang JR, Yu CK, et al. Pathogenesis of enterovirus 71 brainstem encephalitis in pediatric patients:roles of cytokines and cellular immune activation in patients with pulmonary edema. J Infect Dis 2003; 188:564-70.
    29. Weng KF, Chen LL, Huang PN, Shih SR. Neural pathogenesis of enterovirus 71 infection. Microbes Infect 2010; 12:505-10.
    30. Khong WX, Foo DG, Trasti SL, Tan EL, Alonso S. Sustained high levels of interleukin-6 contribute to the pathogenesis of enterovirus 71 in a neonate mouse model. J Virol 2011; 85:3067-76.
    31. Reed LJ, Muench H. A simple method of estimating fifty percent endpoint. Am J Hyg 1938; 27:493-7.
    32. Lin YW, Chang KC, Kao CM, Chang SP, Tung YY, Chen SH. Lymphocyte and antibody responses reduce enterovirus 71 lethality in mice by decreasing tissue viral loads. J Virol 2009; 83:6477-83.
    33. Yang CF, De L, Yang SJ, Ruiz Gomez J, Cruz JR, Holloway BP, et al. Genotype-specific in vitro amplification of sequences of the wild type 3 polioviruses from Mexico and Guatemala. Virus Res 1992; 24:277-96.
    34. Jiang MH, Fei J, Lan MS, Lu ZP, Liu M, Fan WW, et al. Hypermethylation of hepatic Gck promoter in ageing rats contributes to diabetogenic potential. Diabetologia 2008; 51: 1525-33.
    35. Ooi MH, Wong SC, Lewthwaite P, Cardosa MJ, Solomon T. Clinical features, diagnosis, and management of enterovirus 71. Lancet Neurol 2010; 9:1097-105.
    36. Pamer EG. Immune responses to Listeria monocytogenes. Nat Rev Immunol 2004; 4: 812-23.
    37. Zenewicz LA, Shen H. Innate and adaptive immune responses to Listeria monocytogenes:a short overview. Microbes Infect 2007; 9:1208-15.
    38. Edelson BT, Unanue ER. MyD88-dependent but Toll-like receptor 2-independent innate immunity to Listeria:no role for either in macrophage listericidal activity. J Immunol 2002; 169:3869-75.
    39. Yamayoshi S, Yamashita Y, Li J, Hanagata N, Minowa T, Takemura T, Koike S. Scavenger receptor B2 is a cellular receptor for enterovirus 71. Nat Med 2009; 15: 789-801.
    40. Yamayoshi S, Koike S. Identification of a human SCARB2 region that is important for enterovirus 71 binding and infection. J Virol 2011; 85:4937-46.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700