柔红霉素高产菌种选育及其生物转化的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
柔红霉素(daunomycin)是由波赛链霉菌(S.peucetius)或天蓝淡红链霉菌(S.
    coeruleorubidus)等放线菌次级代谢产生的一种蒽环类抗肿瘤抗生素。它具有抗革兰氏阴
    性菌、革兰氏阳性菌、肿瘤及病毒的作用,并有免疫抑制活性。阿霉素(adriamycin)是柔红
    霉素的C-14位羟化衍生物,临床上使用的阿霉素是以柔红霉素为前体经化学合成获得。
    与柔红霉素相比,阿霉素的抗肿瘤谱比柔红霉素广,毒副作用更低,具有更高的应用价值。
    柔红霉素和阿霉素已广泛应用于肿瘤化疗,已成为某些肿瘤化疗的首选药物,有巨大的经
    济价值和社会效益。本研究工作的主要目的是提高柔红霉素产生菌Streptomyces
    coeruleorubidus SIPI-1482的产抗能力,以及开发用于生物转化法生产阿霉素的生物反应系
    统。
     在柔红霉素高产菌菌种选育过程中,我们采用了“核糖体工程技术”。具体工作是应用
    链霉素和卡那霉素抗性辅助筛选方法,以天蓝淡红链霉菌SIPI-1482野生型菌株株为出发
    菌,首先确定其对链霉素和卡那霉素的MIC。然后用含链霉素(6μg/ml)或卡那霉素
    (15μg/ml)的高氏一号合成培养基筛选SIPI-1482菌株抗性自发突变株,TLC和HPLC检
    测突变株产柔红霉素的水平。实验结果发现,在SIPI 1482菌株的链霉素抗性自发突变株
    中,正向突变的频率为34%,同时获得了产抗能力是SIPI 1482菌株1.63倍左右的突变株。
    卡那霉素用于SIPI1482菌株选育中获得的抗性突变株数量少,突变株产抗能力提高幅度
    小,正突变率低,与链霉素相比用于高产菌种选育的效果相对较差。比较了链霉素抗性自
    发突变株与卡那霉素自发突变株之间的差异,并对这些差异作了理论上探讨。依据前人的
    研究结果合成PCR引物来分析突变株Str~+51的核糖体结构基因,从分子水平研究该突变
    株柔红霉素生产能力的提高与其核糖体结构之间的关系。
     在提高SIPI-1482产抗水平的菌种选育中,采用的另一个方法是离子注入诱变育种。
    SIPI1482为出发菌株,以N~+作为辐射致变剂,离子注入条件为:辐射室的真空度10~(-3)Pa,
    离子能量60kev,辐射处理的剂量率10~(14)N~+/秒,总辐射剂量1×10~(14)N~+/cm~2。处理后的孢
    子直接在G1培养基平皿上培养,摇瓶接种发酵,TLC及HPLC测定突变株的发酵水平。
    结果发现,经离子注入处理后,菌株的形态变异丰富,同时获得了柔红霉素生产能力提高
    15倍的突变株SIPI1482M2。比较了亲株SIPI-1482以及突变株的菌落形态特性,并对另一
    突变株SIPI-1482M1进行产阿霉素排除研究。试验发现高产突变株在平皿上培养时,菌株
    产生的红色蒽环类代谢产物大量分泌到培养基中。通过抽提亲株与突变株的总DNA进行
    
    
     上海医药工业研究院博士论文
     酶切试验,高产交变株SIPI.1482M2酶切图谱存在明显的差异。
     在本论文的第二部分主要从事柔红霉素的生物转化研究。提高宿主菌StrCptomyn。
     Jlljwll TK抡对柔红霉素的耐受性的试验时,采用紫外和NTG两种诱变剂对TKy菌株
     进行诱变,以柔红霉素临界致死浓度筛选法和柔红霉素均匀浓度梯度筛选法对交变株进行
     筛选与验证。试验中发现,柔红霉素对 TK24的 MIC为 spg/ml,UV对 TK24的最佳致变
     剂量为905。培养基的种类,培养时问,抱子萌发与否等因素均对试验结果有一定的影啊。
     经过多次重复诱变与筛选,最终获得了耐20pg/ml柔红霉素的稳定突变株。
     以Strohl等发表的doxA基因序列设计PCR引物,从SIPll482以及S.CS菌株克隆dox’4
     基因没有获得成功,并对此进行详细分析。采用pHZ 060,pIJ702,pHZ1351等质粒为载体,
     构建了四个带 dnr厂 doxA基因的表达质粒 pYG50,pYG55,pYG56,pYG57。转化 TK64后获
     得重组工程菌,生物转化试验表明:带以 pHZ 060为载体的重组质粒虽然能够获得转化于,
     但是将柔红霉素添加到 pYG50/DHS Q和 pYG50/TK64的培养液中,均不能获得目的产物一
     一阿霉素。而带PYG55,PYG56,PYG57质粒的TK64重组菌株转化液的抽提物中均有对应
     于阿霉素标准样品的斑点,但不同质粒的生物转化效率不同。对pYG57/TK64的生物转化
     产物进行HPLC、TLC以及HPLC—UV等项目分析,发现转化产物与阿霉素标准品完全相
     同,同时测得的柔红霉素转化为阿霉素的转化效率为48.4%。将pYG57侣—N18工
     程菌与SIPll482,共发酵试验,未能获得阿霉素。而质粒pYG57虽然能够转化SIPll482
     菌株,但该质粒在SIPll482菌株中不能稳定存在。抽提pYG57沼 中的质粒,酶切
     电泳表明,质粒pYG57被破坏。
Daunomycin is one of the antitumor antibiotics, which belongs to
     anthracyclines and is produced by Streptomyces peucetius or Streptomyces
     coeruleorubidus. Its bioactivities include antibacterial, antitumor and
     immunosuppression. Adriamycin (also named doxorubicin) is a daunomycin
     derivative obtained by hydroxylation at c-i 4 and is produced from daunomycin by
     semi-synthesis methods in industry. Adriamycin has wider antitumor spectrum and
     fewer side effects as compared with daunomycin. They are the first line antitumor
     antibiotics in the chemotherapy of various cancers at present. The main purpose of
     this study is to improve the productivity of daunomycin producer, Streptomyces
     coeruleorubidus SIPL 1482, as well as to develop a biological system so as to
     produce adriamycin by bio-conversion.
    
     In the study of strain breeding by a novel technology called ribosome
     engineering, a screening method based on the resistance of strain to streptomycin
     or kanamycin was applied to improve the productivity of daunomycin by?
     Streptomyces coeruleorubidus var. Zhengding SIPI 1482. Streptomycin-resistant
     (str~) colonies occurred on G1 medium containing 6p.g/ml streptomycin showed a
     high frequency of positive mutation (34%). The highest one named Str5 1
     demonstrated about 1.63 folds increase in daunomycin productivity as compared
     with parent strain. Initiative time for daunomycin biosynthesis by mutant Str~5 1 is
     about 24 hours earlier than that of the parent strain. When kanamycin was used to
     screen resistant mutants, the mutation frequency is much less than that with
     streptomycin. A distinctive character between these mutants is that kanamyein
     resistant mutant secretes something to inactivate kanamycin into medium but not
     for streptomycin resistant mutants. A pair of PCR primers was used to clone
     ribosomal gene from mutant Str5 1, however none of the desired results was
     obtained. The relationship between the improvement of daunomycin productivity
    
    
    and the level of streptomycin resistance was also discussed in this section.
    
     A mutagenie method of ion-beam implantation was adopted in the breeding of
     SIPI 1482. The spores of parent strain were treated in the conditions as follows:
    
     vacuum degree (1O3Pa), the energy of ion (6Okev), dosage rate (1O拁 N~/s ) and
     total dosage (1 X lO N/cm2). A mutant named S1P11482M2 was selected and it
     was found that its productivity is 15-folds higher than that of parent strain based on
     flask fermentation and 1-LPLC analysis. TLC and HPLC analysis was used to
     identify whether or not mutant SIPI 1 482M 1 produces any adriamycin. The colony
     characters between parent and mutant were also compared and it was found that
     mutant SIPI 1 482M2 could secrete great deal of red anthracycline metabolites into
     medium. The total DNAs of both parent and mutant SIPI 1 482M2 were isolated and
     digested completely by BamI-ll, and the electrophoresis characteristic of the SJPI
     1482 M2 is obviously different from that of parent.
    
     In order to increase the resistance of Streptomyces lividans TK24 to
     daunomyc in, two kinds of mutagen (UV and NTG) were used in the strain
     breeding. Positive mutants were selected by a method of critical drug lethal
     concentration on the G 1 medium. Finally a stable mutant which exhibits the level
     of resistance up to 20p.gIml daunomyciri was obtained through several generations
     of mutation and selection. Other conditions such as type of medium, cultural time,
     spore pre-germination and so on were thoroughly investigated. It was found that
     artificial mutagenesis
引文
1 Steele, D.B.,Stowers, M.D. (1991), Annu.Rev.Microbial.45:89-106
    2 顾方舟,卢圣栋(1990),生物技术的现状与未来,第1版,北京医科大学与中国协和医科大学联合出版,北京:p192
    3 Perlman.D.(1980),Dev.Ind.Microbiol.21:xv-xxiii
    4 陈代杰,朱宝泉.(1995)工业微生物菌种选育与发酵控制技术.第1版,科学技术文献出版社,上海
    5 Motosugi,K.,Esaki,N.,Soda,K.(1982),Acta Microbiol.131:179-183
    6 Scholtz, R.,Schmuckle,A., Cook, A. et al. (1987), J. Gen. Microbiol 133:267-274
    7 Strotmann, U.,Roschenthaler, R. (1987), Curr. Microbiol.15:159-163
    8 Shirai, K. (1986). Agric. Biol. Chem. 50:2875-80
    9 Aoki, K., Ohtsuka, K., Shinke, R. et al. (1984)Agric.Biol. Chem. 48:865-872
    10 Lauff, J. J., Steele, D.B.,Coogan, L. et al(1990) Appl. Environ.Microbiol.56:3346-3353
    11 Cheetham, P.S.J.(1987), Enzyme Microb.Technol.9:194-213
    12 Steel, D.B.,Steel,B.P.,Kelley,V.C.(1989),Abstr Annu.Meet.SE Branch Am.Soc.Microbiol.,Orange Beach,p50
    13 Madi,E.,Antranikian,G.,Ohmiya,K.et al.(1987),Appl.Environ.Microbiol. 47:427-429
    14 Lauff,J.J.,Steele, D.B., Coogan,L.,et al(1990),Appl.Environ.Microbiol.56:3346-3353
    15 Betina,V.(1992),Folia Microbiol(Praha),37:3-11
    16 Rake J.B, Gerber R, Methta J et al(1998). J. Antibiot.51:58-67
    17 McHenry,C (1988),Annu.Rev.Biochem.,57:519-550
    18 Griep, M., Reems J.,Franden M. et al. (1990) , Biochemistry 29:9006-9014
    19 Arai,K. I. and Kornberg,A.(1979),Proc.Natl. Acad. Sci. USA 76:4308-4312
    20 Lutkenhaus,J. (1993),Mol.Microbial.,9:403-409
    21 Lewis, K. (1994), Trends Biochem.Sci.19:119-123
    22 Stock,J.B.,Ninfa,A.J.,Stock,A. M. (1989), Microbiol. Rev. 53:450-490
    23 Roychoudhury,S.(1993), Proc. Natl. Acad. Sci. USA 90:965-969
    24 Samad, M.Y.A., Razak, C.N.A., Salleh, A.B.et al. (1989), J.Microbiol.Methods 9:51-56
    25 Creswell, M.A., Attwell, R. W., Dempsey, M. J.(1988),J. Microbiol.Methods 8:51-56299-302
    
    
    26 Lehejckova, R.,Demnerova,K.,Kralova,B.(1986), Biotechnol.Lett.8:341-342
    27 Wikstrom, M. B. (1983), Appl.Environ. Microbiol. 45:393-400
    28 LiMuti, C.M.,Pauson,T.C.(1989),J.Microbiol. Methods 9:129-137
    29 Rake,J.B.,Gerber,R.,Mehta,R.J.et al.(1986),J.Antibiot.39:58-67
    30 Kohler-Staub,D.,Leisinger,T.(1985),J.Bacteriol.162:676-681
    31 Takaguchi,Y.,Mishima,H.,Okuda,M.et al.(1980),J.Antibiot.33:1120-1127
    32 Ando,K.,Oishi,H.,Hirono,S.et al.(1971),J.Antibiot.24:347-352
    33 Bur,R.W.,Miller,B.M.,Baker,E.E.et al.(1979),Antimcrob.Agents Chemother.15:361-367
    34 Meevootsom,V.,Somsuk,P.,Prachaktam,R. et al.(1983),Appl.Environ.Microbiol.46:1227-1229
    35 Henrissat,B.,Claeyssens,M.,Tomme,P., et al(1989), Gene, 81:83-95
    36 Henrissat, B. and Romeau, A.,(1995),Biochem.J.,311:350-351
    37 Jacobsen,C.S.,(1995),Appl.Environ.Microbiol.61:3347-3352
    38 Hawksworth, D,L., Colwell, R.R., (1992), Biodiv. Conserv 1:221-226
    39 Hawksworth,D.L.,(1995), Mycol.Res.99:1227-1228
    40 Dan S.T.,Andrew D.G.(1998),Nature Biotechnology 16:652-656
    41 胡瑜君,赵炎生,邓键慧等(1999),中国药科大学学报,30:63-65
    42 张怡轩,白秀峰,何建勇等(1999),沈阳药科大学学报,16:53-57
    43 陶文沂 周婉冰 张星元等(1996),中国轻工业出版社 北京
    44 邹美云,朱卫民,俞学琴等(1989),中国抗生素杂志,14:1
    45 崔大鹏,石莲英等(1999),中国抗生素杂志,24:265-268
    46 朱春宝,杨昭中(1986),医药工业,17:1-5
    47 顾方舟,卢圣栋(1990),生物技术的现状与未来,第1版,北京医科大学与中国协和医科大学联合出版,北京:p206
    48 张修军,周启(1999),中国抗生素杂志,24:93-95
    49 Yamashita, F.,Hotta,K.,Kurasawa,S.et al(1985),J Antibiot,38:58-63
    50 Fujimoto,Y.,Imamura,A.,Iyeiri,C.et al(1990),Agric Biol Chem,54:2855-61
    51 闫爱民,陈文新等(2000),微生物学报,40:1-8
    52 Mehling, A., Wehmeier, U. F., Piepersberg, W.(1995), Microbiol.142:2139-2147
    
    
    53 Dickens, M. L.,Strohl, W. R.,(1996), J. Bacteriol. 178:3389-3395
    54 Madduri, K., Kennedy, J., Rivola, G.(1998), Nature Biotechnology 16:69-73
    55 McDaniel, R., Hutchinson, C.R., Kholsla, C. (1995), J. Am. Chem. Soc. 117:6805-6810
    56 Shen, B., Summers, R.G., Wendt-Pienkowski, E., et al.(1995), J. Am. Chem. Soc 117:6811-6820
    57 Skatrud, P. L., Tietz, A. J., Ingolia, T. D., et al. (1989) Bio/Technol. 7:477-485
    58 Scotti,C.,Hutchinson, C. R. (1996), J. Bacteriol. 178:7316-7321
    59 Hopwood, D. A., Malpartida, F., Chater, K. F.(1985) IN Regulation of Secondary Metabolite Formation. Edited by Kleinkaut.H.,et al.
    60 Khosla, C., Bailey, J. E. (1988), Mol. Gen. Genet. 214:158-161
    61 Magnolo, S. K., Leenutaphong, D. L., DeModena, J. A. (1991), Bio/Technol. 9:473-476
    62 药品集—分册之二 抗微尘物感染药物.上海医药工业研究院,1977
    63 Di Marco. A., Silverstrini. R., Gaetani. M. et al. (1964), Nature 201:706
    64 Arcamone, F., Cassinelli, G, Fantini, A. et al (1969), Biotechnol. Bioeng. 11:1101-1110
    65 Bulumauerova, M., Pokorny, V., Stastna, J. (1978), Folia Microbiol. 23:255-260
    66 Yoshimoto, A., Oki, T., Takeuchi, T. et al.(1980), J. Antibiot. 33:1158-1166
    67 McGuire, J. C., Thomas, M. C., Randey, R, et al. (1981),Adv. Biotechnol. 3:117-122
    68 Arcamone, F., Cassinelli, G., Dimatteo, F. et al. (1980), J. Am. Chem. Soc. 102:1462-1463
    69 Bartel, P. L., Connors, N. C., Strohl, W. R. (1990), J. Gen. Microbiol. 136:1877-1886
    70 McGuire, J. C., Hamilton, B. K., White, R. J. (1979), Precess Biochem, 12:2-5
    71 Grein, A.(1981), Precess Biochem. 16:34-46
    72 Stutzman-Engwall, K., Otten, S. L., Hutchinson, C. R. (1992),J Bacteriol. 174:144-154
    73 Esser K., Dohmen, G. (1987), Process Biochem. 22:144-148
    74 Segan D, Santana C,Gosh R, et al.,(1997), Appl. Microbiol. Biotechnol 48:615-620
    75 李莉,许文思(1993),中国抗生素杂志,18:306-314
    76 李继安,陈代杰,许文思(1997),第八次全国抗生素学术会议论文汇编,中国药学会抗尘素专业委员会编,p82
    77 Otten, S. L., Xiaogchun, L., Ferguson, J. (1995), J. Bacteriol.177:6688-6692
    78 Otten, S. L., Gallo, M. A., Madduri, K. et al.(1997), J Bacteriol.179:4446-4450
    79 Dickens, M.L., Strohl, W.R. (1996), J. Bacteriol. 178:3389-3395
    
    
    80 Dickens,M.L.,Priestley,N.D.,Strohl, W.R. (1997), J. Bacteriol. 179:2641-2650
    81 Stutzman-wngwall, K.J., Hutchinson, C.R.(1989), Proc. Natl. Acad. Sci. USA 86:3135-3139
    82 Bartel PL;Zhu CB;Lampel JS.et al.(1990), J Bacteriol.172:4816-26
    83 朱春宝,博士论文 上海医药工业研究院,1993

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700