轴流压气机叶顶喷气扩稳技术—机理及智能调控
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
轴流压气机旋转失速和喘振问题历来是叶轮机械气动热力学研究的难点和热点,其中旋转失速机理及其控制手段为研究所关注的焦点。国际上经过几十年的数值和实验研究,对压气机失稳机理的认识开始逐渐清晰起来,也得出了对压气机失速的两条基本认识:一是在叶片尺度上的复杂流动造成的流道堵塞,二是在顶部间隙尺度上的泄漏流与主流的相互作用。同时国际上对扩稳措施也开展了许多研究,叶顶喷气作为一种行之有效的扩稳方法,其扩稳效果受到了广泛的关注,学者们也对其扩稳机理进行了相应的研究:基于对失速机理的认识基础上,单一地从对流动分离、堵塞的定常影响,或者从对叶顶间隙泄漏流非定常影响的角度对其扩稳机理进行解释。因此,为了追求更好的扩稳效果,有必要在统一对失稳机理的认识的基础上对其扩稳机理进行深入系统的研究,从而才能有助于设计更加可靠和有效的顶部喷气扩稳系统,减小效率损失,降低顶部喷气机构的复杂程度。
     本文以实验研究为手段,针对低速和跨音轴流压气机叶顶喷气的不同扩稳机理进行了相关的研究。首先在一台低速压气机上验证了喷气量动量比分界点的存在性,澄清了叶顶微喷气到大喷气的不同扩稳机理。其次,本文提出了一整套将扩稳机理应用到实际压气机中的技术方案。沿用“前失速先兆”的概念,创新地提出了基于互相关分析的检测手段,设计了采用比例阀控制喷气量的控制激发器,以及相应的DSP (Digital Signal Processing)控制器进行叶顶喷气主动控制,实现了根据实际需要光滑地利用不同喷气机理进行扩稳,获得了显著且可靠的喷气扩稳效果。最后,为减小外部气源造成的喷气机构的复杂性,将同样的扩稳思路应用到从压气机后部引气至前缘喷气从而形成自循环的自引气—喷气技术中,设计了自引气—喷气机构并在不同的压气机实验台上对其扩稳效果进行了验证。主要开展了以下几个方面的工作:
     1.轴流压气机叶顶喷气扩稳机理的研究。在低速单转子轴流压气机上采用微喷气到大喷气(喷气量从0.13%—3%)进行了叶顶喷气实验研究。在不同的叶顶间隙和喷气径向角度条件下,对随着失速裕度改善(SMI)变化的两个喷气动量比分界点的存在性进行了验证。并根据目前对失稳机理的两条认识对这三个阶段喷气量(微喷气、大喷气及超大喷气)对应的扩稳机理进行了详细的分析:微喷气仅能够减弱了叶顶间隙泄漏涡的强度以及泄漏流非定常性。大喷气既能增加叶顶区域进出口速度以及减小进口气流攻角,推迟叶片吸力面的分离;又能对叶顶间隙泄漏涡起到抑制作用,推迟泄漏流非定常性的产生。超大喷气同样能减小叶顶区域进口气流攻角和推迟叶顶间隙泄漏流非定常性的产生;但随喷气量的增加,喷气对叶高中部的影响更强,而且对压气机的整体性能造成很大的影响,此时压气机的扩稳机制可能已经发生改变。在此基础上为叶顶喷气在实际压气机应用中实现最佳的扩稳效果提供了指导性设计准则。
     2.前失速先兆检测机理及检测方法研究。通过壁面动态测量分析了前失速先兆与叶顶间隙泄漏流非定常性的关联性。在此基础上提出了基于互相关分析的检测方法,分析了互相关分析检测方法的有效性,并通过叶顶喷气控制手段对互相关分析检测前失速先兆的可行性进行了验证。提出了基于互相关分析检测前失速先兆的控制策略,为压气机内部流动失稳主动控制中扰动反馈信号的检测提供了解决方案。
     3.基于DSP控制器的叶顶喷气扩稳调控研究。充分结合对叶顶喷气扩稳机理以及前失速先兆检测机理的认识,自行设计DSP控制器,结合比例电磁阀和互相关分析检测方法,充分实现从微喷量到大喷量的连续过渡,从而使新的控制系统能够实现同一机构根据工况需要通过两种不同扩稳机理进行扩稳,将扩稳效果提高数倍。不仅在扩稳裕度提升上要远好于基于开关阀的叶顶主动喷气,而且和传统的定常喷气相比,基于比例电磁阀和DSP控制器的叶顶主动喷气在保证扩稳裕度相当的前提下能够节省大量喷气量,具有良好的经济性和实用性。
     4.自引气—喷气实验研究。和外部引气进行喷气不同,充分利用压气机进出口的壁面静压差,考察了不同引气角度和喷气偏航角的扩稳效果,并对自引气—喷气的前端喷气机理进行了分析:扩稳效果好的引气方式,对叶顶间隙泄漏涡强度的抑制以及推迟泄漏流非定常性产生的作用要强。实验结果表明:在低速轴流压气机中自引气—喷气方式虽然引气量仅相当于外部引气的微喷量级别,但是扩稳效果要好于外部喷气。另外在跨音轴流压气机上自引气—喷气能够达到8%-15%的扩稳效果,而且合理的设计自引气—喷气机构能够同时到达到扩稳增效的目的,为自引气—喷气走向实际应用提供契机。
     其核心内容归纳成如下几点:
     一、研究了叶顶微喷气到大喷气时,流动失稳裕度与喷气动量比之间的关系,得出了两个喷气动量比分界点的存在性。并在机理上分析了喷气动量比分界点前后的喷气量对压气机进出口气动参数、叶顶间隙泄漏涡、叶顶间隙泄漏流非定常性影响的区别和联系。
     二、澄清了前失速先兆与叶顶间隙泄漏流非定常性之间的关联性,在此基础上提出了采用互相关分析检测前失速先兆的方法,并对其可行性进行了验证。
     三、通过自行设计DSP控制器,集成了相应控制算法、高速/低速采集通道,结合叶顶喷气扩稳机理和前失速先兆检测方法,完成了叶顶喷气扩稳调控的实验。
     四、分别在单级低速轴流压气机和单级跨音轴流压气机上考察了自引气—喷气的扩稳效果,研究了不同引气机构扩稳效果的区别,并在机理上对其扩稳的物理机制进行了解释。
Rotating stall and surge in axial compressors are one of the most difficult problems in the field of aerothermodynamics of turbomachinery, which thus have been the research focus for many years. After decades of numerical and experimental research, researchers have gradually recognized two important flow structures that are believed to be crucial to stalling mechanisms: the blockage induced by the flow separations inside blade passages, and the tip leakage flow in blade tip region. At the same time, the control methods have also been investigated, among which the tip air injection was proved to be effective although its stability enhancement mechanism is not fully agreed upon. Some researchers explained the effectiveness based on the steady theory of flow separation and blockage alone, while the others paid their attention to unsteady tip leakage flow. A unified view of stability enhancement mechanisms, not just the individual stalling mechanism itself, are needed in order to design more reliable tip air injections to guarantee effective stall margin extension and minimize the efficiency penalty and reduce the complexity of the injection system.
     To explore the different stability enhancement mechanisms, in this dissertation the experimental investigation was performed in both a subsonic and a transonic axial flow compressor. Firstly, the existence of demarcation points with different injected momentum ratios was confirmed in the low-speed compressor, and the different stability enhancement mechanism from micro injection to macro injection was clarified. Secondly, a technique to apply the aforementioned mechanisms to real compressors was proposed systematically. An innovative cross-correlation analysis was proposed to detect the unsteadiness in the pre-stall process. A proportional electromagnetic valve to regulate injected mass flow was chosen, and the corresponding DSP controller was designed. The stall margin of the low-speed compressor can be significantly and reliably enlarged as the new control approach smoothly utilizes the different stability enhancement mechanisms based on the needs of the flows. Finally, to reduce the complexity of the tip air injection system with external air sources, the same stability enhancement strategy was extended to the technique of air recirculation from the back of compressor stage to the leading edge of the rotor blade. Self-recirculation injection systems were designed to regulate the injected mass flow adaptively, and their effects on stability enhancement were tested in different compressors. The contents in this dissertation can be briefly summarized as below:
     1. Experiments on the stability enhancement mechanism from micro tip injection to macro tip injection (0.13%-3%) were preformed in low speed axial flow compressor. Firstly the existence of demarcation points was confirmed with different injected momentum ratio under different tip clearance and injected angle. Then the stability enhancement mechanism of the three injected momentum ratio level (micro tip injection, large tip injection, overlarge tip injection) were analyzed in detail base on the two basic understanding of stall mechanism: Micro tip injection can only weaken the unsteady tip leakage flow (UTLF) and the strength of tip leakage vortex (TLV), while keeping the flow velocity and flow angles along the entire span unchanged. Large tip injection is strong enough to alter the flows in tip region, such as reducing the local angle-of-attack and/or pushing the starting point of TLV further back towards the trailing edge. The overlarge injection has the same effects with the macro tip injection, and as the injection amount increasing, the injected air influences not only the tip region but also more lower-span region, which produces stronger influence on the whole engine performance and possibly brings new stability enhancement mechanism. It can provide guidance design criteria for realizing optimal effect of stability improvement with tip air injection in practical compressor.
     2. Detection mechanism and method research of pre-stall inception. The relevance of pre-stall inception and the unsteady tip leakage flow has been studied, and the pre-stall inception is associated with the unsteady tip leakage flow. Then the cross-correlation analysis was proposed to analyze the pressure time-trace; and its feasibility has been validated by tip air injection experiments. The solution is provided to detect the feedback disturbance signal in the stall active control.
     3. Active control base on tip air injection, proportional electromagnetic valve and DSP (Digital Signal Processing) controller. The tip injection control system was designed base on the stability enhancement mechanism of tip air injection and detecting mechanism of pre-stall inception. Firstly, the DSP controller was designed, and the cross-correlation algorithm was cured to CPU of the DSP controller. Combined with the proportional electromagnetic valve and the cross-correlation analysis method, the system can realize continuous transition of the injected mass flow form micro tip injection to large tip injection. Compared to the traditional tip injection system with on-off valve, this system is much better to enhance the compressor stability. At the same time, the DSP controller and the proportional electromagnetic valve can help to save a lot of injected energy. So this system is more economical and practical than the traditional steady tip air injection.
     4. Experiments of self-recirculation injection. Different from the tip injection with external compression system, self-recirculation injection can take full advantage of static pressure difference between inlet and outlet, and can regulate the injected mass flow adaptively. Stability enhancement effect with different suction angle and injected yaw angle has been investigated, and the stability enhancement mechanism of front injection has been analyzed. According to the experimental results in low speed axial compressor, the injected mass flow rate by self-recirculation was equivalent to the micro injection, but the stability extension effect was better than the injection by using external air. And the stall margin improvement (SMI) can reach to8%-15%high on the transonic axial flow compressor. So if the self-recirculation injection system is designed rationally, it can increase both the stall margin and the efficiency. The results provide opportunities to apply the self-recirculation injection practical compressors.
     The core content in this paper can be summarized as follows:
     Firstly, the existence of critical injected momentum/free stream momentum has been verified. The inlet and outlet parameters, tip leakage vortex (TLV), unsteady tip leakage flow (UTLF) below and over the demarcation point of injected momentum ratio were analyzed to clarify the stability extension mechanism of tip air injection.
     Secondly, the relevance between pre-stall inception and unsteadiness of tip leakage flow was clarified. The detection method base on cross-correlation analysis was proposed, and its feasibility was also verified by using tip air injection.
     Then, the DSP controller is designed which integrate cross-correlation algorithm and high speed acquisition channel, and the proportional valve was used to adjust the injected mass flow. Then the experiments about active control by using tip air injection were performed.
     Finally, the self-circulation injection with different suction angle and injected yaw angle were investigated in low speed and transonic high speed axial flow compressor. And the stability extension mechanism was also analyzed.
引文
[1]Ronald C. Pampreen, Compressor surge and stall, Concepts ETI,1993.
    [2]发动机常见故障介绍,航空科技,1978,1.
    [3]李根深,陈乃兴,强国芳,“船用燃气轮机轴流式叶轮机械气动热力学”,国防工业出版社,1980.
    [4]Emmons, H. W., Pearson, C. E., Grant, H. P., "Compressor Surge and Stall Propagation", Trans. ASME J. Turbomachinery, Vol.77(4), pp.455-469,1955.
    [5]Moore, F. K., Greitzer, E. M., "A Theory of Post-Stall Transients in Axial Compressors: Part 1 Development of the Equations", ASME J. Eng. Gas Turbines and Power, Vol.108, pp.68-76,1986.
    [6]Greitzer, E. M., Moore, F. K., "A Theory of Post-Stall Transients in Axial Compressors: Part 2 Application", ASME J. Eng. Gas Turbines and Power, Vol.108, pp.231-240 1986
    [7]Ffowcs Williams J E. "Review lecture:Anti-sound", Proceedings of the Royal Society of London,1984.
    [8]Epstein. A.H., Ffowcs Willianms. J.E., Greitzer. E.M., "Active Suppression of Aerodynamic Instabilities in Turbomachines", AIAA 10th Aeroacoustics Conference, Seattle, Paper 86-1994,1986.
    [9]McDougall, N. M., Cumpsty, N. A., Hynes, T. P., "Stall Inception in Axial Compressors", ASME J. Turbomachinery, Vol.112, pp.116-123,1990
    [10]Day, I. J., "Stall Inception in Axial Flow Compressors", ASME J. Turbomachinery, Vol.115,pp.1-9,1993
    [11]Day, I. J., Breuer, T., Escuret, J., et al, "Stall Inception and the Prospects for Active Control in four High Speed Compressors", ASME Paper,97-GT-281,1997
    [12]Inoue.M., Kuroumaru.M., Tanino.T., Furukawa.M., "Propagation of Multiple Short Length-Scale Stall Cells in an Axial Compressor Rotor", ASME Paper,99-GT-97,1999.
    [13]Gamier, V. H., Epstein, A. H., Greitzer, E. M., "Rotating Waves as a Stall Inception Indication in Axial Compressors", ASME J. Turbomachinery, Vol.113, pp.290-302,1991
    [14]Escuret.J.F, and Gamier.V, "Stall Inception Measurements in a High-Speed Multistage Compressor", ASME J.Turbomachinery, Vol.118, pp.690-695,1996.
    [15]Tryfonidis, M., Etchvers, O., Paduano, J. D., Epstein, A. H., Hendricks, G. J., "Prestall behaviour of several high-speed compressors", ASME J.Turbomachinery, Vol.117, pp.62-80,1995
    [16]Day, I. J. and Freeman.C, "The Unstable Behavior of Low and High-Speed Compressors", Transactions of the ASME J. Turbomachinery, Vol.116, pp.194-201,1994.
    [17]Bernd Hoss, Dirk Leinhos,and Leonhard Fottner, "Stall Inception in the Compressor System of a Turbofan Engine", ASME J. Turbomachinery, Vol.122, pp.32-41,2000.
    [18]Camp, T. R. and Day, I. J., "A Study of Spike and Modal Stall Phenomena in a Low-Speed Axial Compressor", ASME J. Turbomachinery, Vol.120, pp.393-401,1998.
    [19]Chaoqun Nie, "An Experimental Investigation on Different Radial Loading Distribution and Patterns of Stall Inception in a Single-Stage Low-Speed Axial Compressor", ASME Paper,2003-GT-38090,2003.
    [20]Inoue, M., Kuroumaru, M., Yoshida, S., Minami, T., Yamada, K., and Furukawa, M., "Effect of Tip Clearance on Stall Evolution Process in a Low-Speed Axial Compressor Stage", ASME Paper,2004-GT-53354,2004.
    [21]M. Inoue, M. Kuroumaru, T. Tanino, M. Furukawa, "Propagation of Multiple Short Length-Scale Stall Cells in an Axial Compressor Rotor", ASME Paper,99-GT-97,1999.
    [22]Inoue, M., Kuroumaru, M., and Ando,Y.,"Detection of a Rotating Stall Precursor in Isolated Axial Flow Compressor Rotors", ASME J.Turbomachinery, Vol.113, pp.281-287,1993.
    [23]Chen,J.,Hasemann,U.,Seidel,U.,Jin,D.,Huang.X., and Rautenberg,M., "The Interpretation of Internal Pressure Pattens of Rotating Stall in Centrifugal Compressor Impellers", ASME Paper,93-GT-192,1993.
    [24]Bright, M. M., Qammar, H. K., Weigl, H. J., Paduano, J. D., "Stall Precursor Identification in High-Speed Compressor Stages Using Chaotic Time Series Analysis Methods", ASME Paper,96-GT-370,1996.
    [25]Bright, M. M., Qammar, H. K., Leizhen Wang,1998, "Investigation of Pre-stall Mode and Pip Inception in High-Speed Compressors through the Use of Correlation Integral", ASME Paper,98-GT-365,1998.
    [26]Feng Lin, "Use of Symbolic Time Series Analysis for Stall Precursor Detection", AIAA-98-3310,1998.
    [27]Liao, S.F. and Chen, J.Y., "Time-Frequency Analysis of Compressor Rotating Stall by Means of Wavelet Transform", ASME Paper,96-GT-57,1996.
    [28]程晓斌,“小波分析与压气机旋转失速先兆研究”,中国科学院工程热物理研究所,博士学位论文,2001.
    [29]Feng Lin, Jingyi Chen, Meilin Li, "Practical Issues of Wavelet Analysis of Unsteady Rotor Tip Flows in Compressors", AIAA-2002-4082,2002.
    [30]Feng Lin, Jingyi Chen, Meilin Li, "Wavelet Analysis of Rotor Tip Disturbances in an Axial Flow Compressor", JPP2003-wt,2003.
    [31]Pramod B Salunkhe, John Joseph, A M Pradeep. "Active feedback control of stall in an axial flow fan under dynamic inflow distortion", Experimental Thermal and Fluid Science. Vol 35(6), pp.1135-1142,2011.
    [32]Jackson,A.D., "Stall Cell Development in an Axial Compressor", ASME J.Turbomachinery,Vol 109, pp.492-498,1987.
    [33]Day, I. J., "Active Suppression of Rotating Stall and Surge in Axial Compressors", ASME J. Turbomachinery, Vol.115, pp.40-47,1993.
    [34]Hoying, D. A., Tan, C. S., Vo, H. D., et al, "Role of Blade Passage Flow Structures in Axial Compressor Rotating Stall Inception", ASME Paper,98-GT-588,1998.
    [35]Schlechtriem, S., and Lotzerich, M.,1997, "Breakdown of Tip Leakage Vortices in Compressors at Flow Conditions Close to Stall", ASME Paper,97-GT-41,1997.
    [36]Huu Duc Vo, Choon S. Tan, Edward M. Greitzer, "Criteria for Spike Initiated Rotating Stall",ASME Paper,2005-GT-68374,2005
    [37]Hah, C., Schulze, R., Wagner, S., et al, "Numerical and Experimental Study for Short Wavelength Stall Inception in a Low-Speed Axial Compressor", ISABE 99-7033,1999
    [38]Nie. C., Xu. G., Cheng, X., et al, "Micro Air Injection and Its Unsteady Response in a Low-Speed Axial Compressor", ASME J. Turbomachinery, Vol.124(4), pp.572-579,2002
    [39]邓向阳,“压气机叶顶间隙流的数值模拟研究”,中国科学院工程热物理所,博士学位论文,2005.7.
    [40]童志庭,“轴流压气机叶尖泄漏涡、失速先兆、叶尖微喷气非定常关联性的实验研究”,中国科学院工程热物理研究所,博士学位论文,2006.7.
    [41]耿少娟,“压气机叶顶间隙泄漏流对微喷气的非定常响应机制与扩稳效果研究”,中国科学院工程热物理研究所,博士学位论文,2007.7
    [42]Lin, F., Zhang, J. X., Chen, J. Y., Nie, C. Q., "Flow Structure of Short Length Scale Disturbance in an Axial Flow Compressor", AIAA J. Propulsion and Power, Vol.24(6), pp.1301-1308,2008.
    [43]杜娟.“跨音压气机/风扇转子叶顶泄漏流动的非定常机制研究”,中国科学院工程热物理研究所,博士学位论文.2010.7.
    [44]N.Tahara, T.Nakajima,M.Kurosaki, Y.Ohta, E.Outa and T.Nishikawa, "Active Stall Control With Practicable Stall Prediction System Using Auto-Correlation," AIAA 2001-3623,2001.
    [45]Dhingra, M., Neumeier, Y., Prasad, J. V. R., Breeze-Stringfellow, A., Shin, H-W. and Szucs, P. N, "A Stochastic Model for a Compressor Stability Measure," ASME Paper 2006-GT-91182,2006.
    [46]Christensen, D., Cantin,P., Gutz, D., Szucs, P. N., Wadia, A. R., Armor, J., Dhingra, M., Neumeier, Y., Prasad, J. V. R., "Development and Demonstration of a Stability Management System for Gas Turbine Engines," ASME Paper,2006-GT-90324,2006.
    [47]Zhiting Tong, Lin Li, Chaoqun Nie, Bin Lin, Yaoxin Cui,Wei Qi."Online stall control with the Digital signal processing method in an axial compressor," ASME Paper, 2009-GT-59509,2009.
    [48]李琳,聂超群,“轴流压气机旋转失速DSP在线控制方法,”航空学报.30(5):787-793,2009.
    [49]耿少娟,张小玉,聂超群,黄伟光,张宏武,“轴流压气机叶顶端区流场周向传播特征及其预测”,机械工程学报,48(16),2012.
    [50]McCaughan, F. E., "Bifurcation Analysis of Axial Flow Compressor Stability", SIAM J. Appl. Math., Vol.50, pp.1232-1253,1990.
    [51]Epstein.A.H., Ffowcs Willianms.J.E., Greitzer.E.M., "Active Suppression of Aerodynamic Instabilities in Turbomachines", ASME J. Turbomachinery, Vol.113(2), pp.290-302,1989.
    [52]Ffowcs Williams.J.E., Huang, X., "Active Stabilization of Compressor Surge", J. Fluid Mech., Vol.204,1989.
    [53]Pinsley,J. E., Guenette,G. R., Epstein, A. H., et al, "Active Stabilization of Centrifugal Compressor Surge", ASME J. Turbomachinery, Vol.113, pp.723-732,1991.
    [54]Gysling, D. L., Dugundji, J., Greitzer, E. M., et al, "Dynamic Control of Centrifugal Compressor Surge using Tailored Structures", ASME J. Turbomachinery, Vol.113(4), pp.710-722 1991
    [55]Ffowcs Willims,J.E. and Graham,W.R., "An Engine Demonstration of Active Surge Control",ASME Paper 90-GT-224,1990.
    [56]Ffowcs Willims,J.E., Harper, M.F.L., and Allwright,D.L., "Active Stabilization of Compressor in a Working Engine", ASME Paper 92-GT-88,1992.
    [57]聂超群,“压缩系统喘振现象主动控制的实验研究”,中国科学院工程热物理研究所,博士学位论文,1994
    [58]蒋骏,“离心风机喘振在线预报和自适应调节的实验研究”,中国科学院研究生院,硕士学位论文,2001.
    [59]Paduano, J. D., Epstein, A. H., Valavani, L., et al, "Active Control of Rotating Stall in a Low-Speed Axial Compressor", ASME J. Turbomachinery, Vol.115(1), pp.45-56,1993.
    [60]Hendricks,G.J., Gysling,D.L., "A Theoretical study of sensor-actuator scheme for rotating stall control", Journal of Propulsion and Power, Vol.10(1),pp.101-109,1994
    [61]Weigl, H. J., Paduano, J. D., Frechette, L. G., et al, "Active Stabilization of Rotating Stall in a Transonic Single Stage Axial Compressor", ASME J. Turbomachinery, Vol.120(4),pp.625-636,1998.
    [62]Vo,H.D., Paduano,J.D., "Experomental development of a jet injection model for rotating stall control", ASME Paper,1998-GT-308,1998.
    [63]M. T. Schobeiri, "Active Aerodynamic Control of Multi-Stage Axial Compressor Instability and Surge by Dynamically Adjusting the Stator Blades", ASME Paper,2001-GT-479,2001.
    [64]徐力平,“压气机进口畸变流场的主动控制”,航空动力学报,Vo1.4,No.3,July 1989.
    [65]Li Zhi-ping, Gong Zhi-qiang, Liu Yan and Lu Ya-jun, "The Experiment Research on the Performance of Low Speed Axial-Compressor by External Acoustic Excitation", ASME Paper,2004-GT-53183,2004.
    [66]李琳,“压气机流动失稳DSP在线控制方法的研究”,中国科学院研究生院,硕士学位论文,2008.
    [67]Koch, C. C., Smith, L. H. Jr., "Experimental Evaluation of Outer Casing Blowing or Bleeding of Single Stage Axial Flow Compressor, Part IV-Performance of Bleed Insert Configuration", No.3,NASA CR-54590.1968
    [68]Spakovszky Z S, Weigl H J, Paduano J D, van Schalkwyk C M, Suder K L, Bright M M, "Rotating Stall Control in a High-Speed Stage with Inlet Distortion:Part Ⅰ-Radial Distortion", ASME J.Turbomachinery, Vol.121(3), pp.510-516,1999.
    [69]Spakovszky Z S, van Schalkwyk C M, Weigl H J, Paduano J D, Suder K L, Bright M M, "Rotating Stall Control in a High Speed Stage with Inlet Distortion:Part Ⅱ-Circumferential Distortion", ASME J.Turbomachinery, Vol.121(3), pp.517-524,1999.
    [70]Suder, K.L., Hathaway, M.D., Thorp, S.A., Strazisar,A.J., and Bright, M.B., "Compressor Stability Enhancement Using Discrete Tip Injection", ASME J Turbomachinery, Vol.123, pp.14-23,2001
    [71]M. Kefalakis, K.D.Papailiou, "Detailed Measurements On An Axial Compressor Stage With Application Of Discrete Tip injection For Increasing The Sugre Margin", ECT 2001, Paper 2001-044
    [72]Fisher F B. "Application of Map Width Enhancement Devices to Turbocharger Compressor Stages", SAE Paper No.8809794. Power boost:light, medium and heavy duty engines. SP-780,1989.
    [73]Hunziker R, Dickmann H P and Emmrich R. "Numerical and Experimental Investigation of a Centrifugal Compressor with an Inducer Casing Bleed System", Proc Instn Mech Engrs Vol 215 Part A.2001.
    [74]Tamaki H. "Effect of Recirculation Device on Performance of High Pressure Ratio Centrifugal Compressor", ASME Paper,2010-GT-22570,2010.
    [75]Sivagnanasundaram S, Spence S, Early J and Nikpour B. "An Investigation of Compressor Map Width Enhancement and the Inducer Flow Field Using Various Configurations of Shroud Bleed Slot", ASME Paper,2010-GT-22154,2010.
    [76]Sivagnanasundaram S, Spence S, Early J and Nikpour B. "An Impact of Various Shroud Bleed Slot Configurations and Cavity Vanes on Compressor Map Width and the Inducer Flow Field", ASME Paper,2011-GT-45629,2011.
    [77]Turner, R.C., "Improvements in or Relating to Gas Turbines", British Patent (826,669), filed July 18,1955.
    [78]Crook, A.J., Greitzer, E.M., Tan, C.S., Adamczyk, J.J., "Numerical Simulation of Compressor Endwall and Casing Treatment Flow Phenomena", ASME J.Turbomachinery, Vol.115, pp.501-512,1993.
    [79]Hall, Edward J. Delaney, Robert A., "Aerodynamic analysis of compressor casing treatment with a 3-D Navier-Stokes solver", AIAA-1994-2796, ASME, SAE, and ASEE, Joint Propulsion Conference and Exhibit,30th, Indianapolis, IN, June 27-29,1994.
    [80]Hall, E.J., Topp, D.A., Heidegger, N.J., Delaney, R.A., "Investigation of Advanced Counterrotation Blade Configuration Concepts for High Spped Turoprop Systems:Task VII-Endwall Treatment Inlet Flow Distortion Analysis Final Report", NASA Contract NAS3-25270, NASA CR-195468, July,1995.
    [81]Hathaway, M.D., "An Improved Self-Recirculating Casing Treatment Concept for Enhanced Compressor Performance",22nd Army Science Conference, Baltimore, Maryland, December 11-13,2000.
    [82]Hathaway, M.D., "Self-Recirculating Casing Treatment Concept for Enhance Compressor Performance", Proceedings of the ASME Turbo Expo 2002, Amsterdam, The Netherlands, June 3-6,2002.
    [83]Strazisar, A.J., Bright, M.M., Thorp, S., Culley, D.E., Suder, K.L., "Compressor Stall Control Through Endwall Recirculation", ASME Paper,2004-GT-54295,2004.
    [84]Hathaway, M.D., Strazisar, A.J., "Impact of Discrete Tip Injection on Stabilization of a Transonic Compressor Rotor",21st Army Science Conference, Norfolk, Virginia, June 15-17,1998.
    [85]Kerney, P. "Recirculating Cavity Casing Treatment Failure", Wright Laboratories Report WL-TR-94-2092,1994.
    [86]Iyenar, V., Sankar, L.N., Niazi, S., "Assessment of the Self-Recirculating Casing Treatment Concept to Axial Compressors", AIAA-2005-0632,3rd AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, January 10-13,2005.
    [87]Akhlaghi, M., Elder, R.L., Ramsden, K.W., "Effects of a Vane-Recessed Tubular-Passage Passive Stall Control Technique on a Multistage Axial-Flow Compressor", ASME Paper, 2003-GT-38301,2003.
    [88]Yang, H., "Unsteady Simulation of a Transonic Compressor Coupled with Casing Treatment",11th Annual Conference of the Computational Fluid Dynamics Society of Canada," CFD2003, Paper no.75, Vancouver, B.C., Canada, May 28-30,2003.
    [89]Yang, H., Neumberger, D., Nicke, E., Weber, A., "Numerical Investigation of Casing Treatment Mechanisms with a Conservative Mixed-Cell Approach", ASME Paper 2003-GT-38483,2003.
    [90]Wilke, I., Kau, H.P., "A Numerical Investigation of the Influence of Casing Treatments on the Tip Leakage Flow in a HPC Front Stage", ASME Paper,2002-GT-30642,2002.
    [91]Wilke, I., Kau, H.P., "Stall Margin Enhancing Flow Mechanisms in a Transonic Compressor Stage with Axial Slots", ISROMAC10-2003-006,2003.
    [92]Wilke, I., Kau, H.P., "A Numerical Investigation of the Flow Mechanisms in a HPC Front Stage with Axial Slots", ASME Paper,2003-GT-38481,2003.
    [93]Fite, E.B., "Fan Performance from Duct Rake Instrumentation on a 1.294 Pressure Ratio, 725 ft/sec Tip Speed Turbofan Simulator Using Vaned Passage Casing Treatment", NASA/TM-2006-214241, April 2006.
    [94]Koff, S.G., Nikkanen, J.P., Massawy, R.S., "Rotor Case Treatment", U.S. Patent Number:5,308,225, May 3,1994.
    [95]Freeman C, Wilson A G, Day I J, Swinbanks M A, "Experiments in ActiveControl of Stall on an Aeroengine Gas Turbine", ASME J.Turbomachinery, Vol.120(4), pp:637-647,1998,
    [96]Kang, C.S., McKenzie, A.B., Elder, R.L., "Recessed Casing Treatment Effects on Fan Performance and Flow Field", ASME Paper,1995-GT-197,1995.
    [97]Leinhos, D.C., Scheidler, S.G., Fottner, L, "Active Stabilization of a Low Pressure Compressor in a Turbofan Engine with Constant Air Injection", AIAA-2001-3312,2001.
    [98]Leinhos D C, Scheidler S G, Fottner L, Grauer F, Hermann J, Mettenleiter M, Orthmann A, "Experiments in Active Control of a Twin-Spool Turbofan Engine", ASME Paper 2002-GT-30002,2002.
    [99]Scheidler, S.G., Fottner, L., "Active Stabilization of the Compression System in a Twin-Spool Turbofan Engine at Inlet Distortions", ISABE-2003-1083, Proceedings of the XVI International Symposium on Air Breathing Engines (ISABE), Cleveland, OH, August 31-September 5,2003.
    [100]Scheidler, S.G., Mundt, C., Mettenleiter M., Hermann, J., Hiller, S.-J., "Active Stability Control of the Compression System in a Twin-Spool Turbofan Engine by Air Injection", Paper ID No.073, The 10th International Symposium on Transport Phenomena and Dynamics of Rotating Machinery, Honolulu, Hawaii, March 7-11,2004.
    [101]Skoch, G.J., "Experimental Investigation of Centrifugal Compressor Stabilization Techniques", ASME J. Turbomachinery, Vol.125, pp.705-713,2003.
    [102]Stephanie Weichert, Ivor Day, Chris Freeman. "Self-regulation Casing Treatment For Axial Compressor Stability Enhancement", ASME Paper,2011-GT-46042,2011.
    [103]王念旭等.“DSP基础与应用系统设计”,北京航空航天大学出版社.2001.8
    [104]苏奎峰,吕强,常天庆等,'TMS320X281X DSP原理及C程序开发”,北京航空航天大学出版社.2008.2
    [105]Gabriele Cassina, Behnam H. Beheshti, Albert Kammerer, Reza S. Abhari. "Parametric Study of Tip Injection in an Axial Flow Compressor Stage", ASME Paper, 2007-GT-27403,2007
    [106]Feng Lin, Jingyi Chen, Chaoqun Nie, Hongwu Zhang, "Unsteady Tip Leakage Flow and Perspectives to Stall Mechanism in Axial Compressors", Keynote Speech, Asian Congress on Gas Turbines,2009.
    [107]Lin, F., Tong, Z., Geng, S., Zhang, J., Chen, J., and Nie, C, "A Summary of Stall Warning and Suppression Research with Micro Tip Injection", ASME,2011-GT-4611,2011.
    [108]聂超群,桂幸民,于清,王同庆,陈静宜,“跨音压气机近失速状态的非定常特性”,工程热物理学报,Vo1.19(5),pp.171-175,1998.
    [109]Lu, X.G., Chu, W. L., Zhu, J. Q., "Mechanism of the Interaction between Casing Treatment and Tip Leakage Flow in a Subsonic Axial Compressor", ASME Paper,2006-GT-90077, 2006.
    [110]Storer, J. A., Cumpsty, N. A., "An Approximate Analysis and Prediction Method for Tip Clearance Loss in Axial Compressors", ASME Paper,93-GT-140,1993
    [111]Mailach, R., Sauer, H., and Vogeler, K., "The Periodical Interaction of the Tip Clearance Flow in the Blade Rows of Axial Compressor",2001, ASME Paper,2001-GT-0299,2001

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700