基于棉籽油和文冠果油催化合成生物柴油研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前国际上石油和煤炭资源日益减少,严重制约着社会经济的发展,同时传统资源存在着严重的环保问题,因此新能源的研制开发是各国科研生产的战略重点。生物柴油因其原料可再生受到越来越多的关注,它具有含硫量极低、芳香烃含量少、含氧量高、十六烷值高、闪点高等优点。
     采用GC-MS分别对棉籽油和文冠果种仁油的理化性能指标和脂肪酸组成进行了测定与分析,结果表明两种原料油主要由16-18碳链的脂肪酸组成,文冠果种仁油和棉籽油的化学组成均满足用作燃料替代品的条件。本体系以KOH为催化剂,分别以棉籽油和文冠果种仁油为原料采用正交实验方法对其工艺进行了优化,得出以棉籽油为原料的最佳反应条件为:醇油物质的量比6.5:1,催化剂用量1.1%,反应温度45℃,反应时间为40min,生物柴油的产率达到96.05%;以文冠果种仁油为原料的最佳反应条件为:醇油物质的量比6:1,催化剂用量0.8%,反应温度65℃,反应时间为75min,生物柴油的产率达到90.83%。
     本文还针对油脂/甲醇不相溶特点将超声强化反应装置用于棉籽油/甲醇酯交换反应体系制备生物柴油。利用二次回归正交旋转组合设计超声强化棉籽油制备生物柴油实验,并用SAS软件对试验结果进行处理,得超声强化棉籽油制备生物柴油实验的数学模型为:
     Y1 = 95.90667 + 0.015833X_1 + 0.660833X_2 + 2.228333X_3-0.045X_4- 0.709167X_1~2-0.5925X_1X_2 + 0.78X_1X_3-0.1X_1X_4-1.334167X_2~2-2.975X_2X_3-0.045X_2X_4-1.870417X_3~2 +0.085X_3X_4+0.709583X_4~2
     最优工艺条件:超声时间(X_1)20 min,催化剂用量(X_2)0.9%,醇油比(X_3)6.5:1,,占空比(X_4)28%,得率(Y1)为97.35%。影响酯化率的因素顺序为:醇油比,催化剂用量,占空比,反应时间。
     同时还研究了微波强化对棉籽油酯交换反应的工艺影响,分别从醇油比、催化剂用量、微波功率、强化时间四个水平来考察棉籽油的得率,用正交实验方法对其工艺进行了优化得出最佳反应条件为:醇油摩尔比9:1,催化剂用量1.0%,反应时间3 min,微波功率360W。
     为了评价棉籽油和文冠果生物柴油是否可以作为普通柴油的替代燃料,研究了棉籽油生物柴油和文冠果生物柴油的组成和理化特性。结果表明棉籽油生物柴油和文冠果生物柴油闪点、硫含量、粘度、水分、酸值、密度、色度等指标基本达到国外EN14214生物柴油标准,与我国0#柴油的主要性能指标接近。
Petroleum and coal resources have been vanishing recently, which is seriously restricting socio-economic development and threatening the peace of the world. At the same time, serious environmental problems existed in traditional resources. So the research and development of new energy become a strategic focus of the researching production of all countries. Biodiesel is being paid more attention because of renewable materials. The characteristics of biodiesel owns some advantages, such as lack of sulfur and aroma hydrocarbon, rich of oxygen, high cetane value and high flash point, less hazardous exhaust gas. Synthesizing biodesel from cottonseed and Xanthoceras sorbifolia oil with KOH as catalysts was studied. At the same time, cottonseed biodiesel was prepared under ultrasonic wave and microwave.
     It’s physical and chemical characteristics and fatty acid composition of cottonseed and Xanthoceras sorbifolia oil that become the key point of replacing resource for petroleum and coal resources. The results of GC-MS and other tests showed that the cottonseed and Xanthoceras sorbifolia oil mainly contented 16-18C. Cottonseed and Xanthoceras sorbifolia oil were ideal for alternative fuel subatitution due to molecular structure of its product was similar to disesl. Using cottonseed and Xanthoceras sorbifolia oil as raw material, KOH as catalyst, through orthogonal analysis, the optimum conditions of cottonseed oil as raw material were as follows: molar ratio of methanol to oil 6.5:1, catalyst dosage 1.1%, reaction temperature 45℃and reaction time 40 min and the conversion rate reached 96.05%. The optimum conditions of Xanthoceras sorbifolia oil as raw material were as follows: molar ratio of methanol to oil 6:1, catalyst dosage 0.8%, reaction temperature 65℃and reaction time 75 min and the conversion rate reached 90.83%.
     Ultrasonic reaction equipment was designed and the effects of ultrasonic energy on the transesterification of cottonseed oil with methanol to biodiesel were investigated primarily. Results of quadratic regression orthogonal rotating design showed that the sequential factors affecting on degumming of cottonseed oil were molar ratio of methanol to oil, catalyst dosage, duty cycle and reaction time.The regression model obtained via SAS software for the degumming process was:
     Y1 = 95.90667 + 0.015833X_1 + 0.660833X_2 + 2.228333X_3-0.045X_4- 0.709167X_1~2-0.5925X_1X_2 + 0.78X_1X_3-0.1X_1X_4-1.334167X_2~2-2.975X_2X_3-0.045X_2X_4-1.870417X_3~2 +0.085X_3X_4+0.709583X_4~2
     The optimal conditions were molar ratio of methanol to cottonseed oil was 6.5:1, reaction time was 20min, duty cycle was 28% and catalyst dosage was 0.9%, the yields of biodiesel could reach 97.35%. Compared to the transesterification of mechanical stirring, the reaction time was shortened from 40min to 20min. It’s implied that emulsification and reaction enhancement of ultrasonic outfield cooperated well on improving the transesterification reaction.
     The biodiesel was prepared by transesterification reaction assisted with microwave. The effect of the mole ratio of methanol to oil, catalyst dosage, reaction time and microwave power on transesterification were researched. Through orthogonal analysis, the optimum conditions were as follows: molar ratio of methanol to oil 9:1, catalyst dosage 1.0%, reaction time 3 min and microwave power 360 w. The conversion rate was more than 94.47% under the optimum conditions.
     The physical and chemical characteristics of the biodiesel prepared by cottonseed and Xanthoceras sorbifolia oil were analyzed. The results met the quality criteria of the biodiesel produced from cottonseed oil and Xanthoceras sorbifolia oil meet the same standards 0#diesel and EN14214 of Europe.
引文
[1]付玉杰,祖元刚,张乃静,王黎丽.研究开发燃料油植物生产生物柴油的几个策略.植物学通报[J].2006,23(3):312-319.
    [2]孟祥梅,李维尊,陈冠益等.废油脂制取生物柴油的工艺优化及其品质提升.可再生能源[J].2007, 25(1):36-39.
    [3]谭天伟,王芳,邓利等.生物柴油的生产和应用.现代化工[J]. 2002, 22:4-6.
    [4] Cao P, DubéM A, Tremblay A Y. Methanol recycling in the production of biodiesel in a membrane reactor[J]. Fuel, 2008, 87:825-833.
    [5] Bouaid A., Martinez M., Aracil J. A comparative study of the production of ethyl esters from vegetable oils as a biodiesel fuel optimization by factorial design[J]. Chem. Eng, 2007, 134:93-99.
    [6] Demirbas A. Importance of biodiesel as transportation fuel[J]. Energ. Policy, 2007, 5:4661-4670.
    [7] Feredmna, B.Pyrde, E.H., Mounts, T.L Variables affecting the yields of fatty esters from transesterified vegetable oils journai of American oil[J]. Chemist’s society, 1984,61:1638-1643.
    [8]苏畅,赵崇峰,岳莉等.生物柴油技术的进展[J].当代化工, 2004, 33:79-81.
    [9] Knifton J F, Duranleau R G. Ethylene glycol-dimethyl carbonate cogeneration[J]. J. Mol. Catal, 1991, 67:389-399.
    [10]冀星,郗小林,孔林河,等.生物柴油技术进展与产业前景[J].中国工程科学, 2002, 4:86-93.
    [11] Hideki F., Akihiko K and Hideo N. Biodiesel Fuel Produetion by Transest-erifieation of oils[J]. Journal of bioseienee and bioengineering, 2001,92(5): 405-41
    [12]刘伟伟,张无敌.生物柴油的理化性质及质量标准[J].新能源及工艺, 2006, (l):27-31.
    [13]郭志璜等生物柴油—绿色环保汽车燃料[J ].精细石油化工进展, 2002, 3 (11):13 - 20.
    [14]魏小平,许世海,刘晓.生物柴油的发展及其在中国应用的探讨[J].石油商技, 2003,21:20-23.
    [15]周勇.清洁生物质秸秆能源的研究进展[J].应用化工,2005,34(10):395 - 397.
    [16] Diasakou M, Louloudi A , Papayannakos N. Kinetics of the non-catalytic transesterification of soybean oil [J].Fuel,1998 , 77(12):1297-1302
    [17] Peterson C L, Reece D L, Thompson J C, Ethyl ester of rapeseed used as a biodiesel fuel - A case study et al [J]. Biomass and Bioenergy, 1996 ,10 (5-6):331-336
    [18] Twaip F A, Zabidi N A M, Bhatia S. Catalytic conversion of palm oil to hydrocarbons: Performance of various zeolite catalysts[J]. Industrial and. Engineering. Chemistry Research.,1999 , 38:3230-3237
    [19] Antolin G, Tinaut F V,Briceno Y, et al. Optimisation of biodiesel production by sunfloweroil transesterification[J]. Bioresource Technology, 2002 ,83(2):111-114
    [20]传庆一,刘国堂.由油脂类制造脂肪酸的烷基酯的方法[P].CN 1287572 , 2001
    [21] Tomasevic A V, Siler-Marinkovic S S.[J]. Fuel Processing Technology ,2003,81: 1-6
    [22]宋庭礼,朱向平.用高酸值废动植物油生产生物柴油的方法[P].CN 1412278,2003
    [23]汤志明.废食用油脂生成燃料油的生产工艺[P].CN 1465669,2004
    [24] Yiji Shimada, Yomi Watanabe, Taichi Samukawa, et al. Conversion of vegetable oil to biodiesel using immobilized Candida Antarctica lipase [J]. J Am.oil Chem.Soc, 1999, 76(7):789-793.
    [25]胡斌,张未星等.棕榈油制备生物柴油的工艺条件研究[J].浙江化工, 2008, 39(8):1-3.
    [26]周慧,鲁厚芳,唐盛伟,梁斌.麻疯树油制备生物柴油的酯交换工艺研究[J].应用化工.2006,4.
    [27]邬国英,林西平,巫森鑫等.植物油植制备生物柴油[J].中国油脂,2003, 28(4):70-73
    [28]孙俊,邓红等.文冠果油超声波辅助合成脂肪酸甲酯工艺的优化[J].中国油脂, 2008, 33(4):50-53.
    [29] Massimo Cardone, Marco Mazzoncini.Brassica carinata as an alternative oil crop for the production of biodiesel in Italy: agronomic evaluation.fuel production by transesterifcation and characterization [J]. Biomass and Bioenergy, 2003, 25:623-636.
    [30] Antoling G.Optimisation of biodiesel production by sunflower oil transesterification [J]. Bioresource Technology, 2002, 83(2):111-114.
    [31] R.Alcantara, J, Amores.Catalytic production of biodiesel from soy-bean oil, used frying oil and tallow [J]. Bioresource Technology, 2000, 18:515-527.
    [32] Lee KT.Production of alkyl ester as biodiesel from fractionated lard and restaurant grease [J] Journal of the American oil Chemists’Society, 2002, 79(2):191-195.
    [33] Maa F, M Hanna A. Biodiesel production: a review [J].Bioresource Technology, 1999, 70:1-15.
    [34] Xie W L, Peng H, Chen L G. Transesterification of soybean oil catalyzed by potassium loaded on alumina as a solid-base catalyst. Appl. Catal. A-Gen, 2006, 300:67-74.
    [35] Vicente G, Coteron A, Martinez M, et al. Application of the factorial design of experiments and response surface methodology to optimize biodiesel production. Ind. Crop. Prod., 1998, 8:29-35.
    [36] Freedman B, Pryde E H, Mounts T L. Variables affecting the yields of fatty esters from transesterified vegetable oils[J]. JAOCS, 1984, 61:1638-1643.
    [37] Azcan N, Danisman A. Alkali catalyzed transesterification of cottonseed oil by microwave irradiation[J]. Fuel, 2007, 86:2639-2644.
    [38] Du W, Xu Y, Liu D, Zeng J. Comparative study on lipase-catalyzed transformation of soybean oil for biodiesel production with different acyl acceptors[J]. J. Mol. Catal. B-Enzym., 2004, 30:125-129.
    [39] Tanabe K, Hoelderich W F. Industrial application of solid acid–base catalysts[J]. Appl. Catal. A-Gen., 1999, 181:399-434.
    [40] Wang J X, Huang Q D, Huang F H, et al. Lipase-catalyzed production of biodiesel from high acid value waste oil using ultrasonic assistant[J]. Chin. J. Biotechnol., 2007, 23:1121-1128.
    [41] Isayama Y, Saka S. Biodiesel production by supercritical process with crude bio-methanol prepared by wood gasification[J]. Bioresource Technol., In Press, 2007-10.
    [42] Marchetti J M, Miguel V U, Errazu A F. Possible methods for biodiesel production[J]. Renewable and Sustainable Energ. Rev, 2007, 11:1300-1311.
    [43] Demirbas A. Biodiesel production via non-catalytic SCF method and biodiesel fuel characteristics[J]. Energ. Convers. Manag.2006, 47:2271-2282.
    [44] Zullaikah S, Lai C C, Vali S R, et al. A two-step acid-catalyzed process for the production of biodiesel from rice bran oil[J]. Bioresource Technol, 2005, 96:1889-1896.
    [45] Serio M D, Tesser R, Dimiccoli M, et al. Synthesis of biodiesel via homogeneous Lewis acid catalyst[J]. J. Mol. Catal. A-Chem, 2005, 239:111-115.
    [46]黄庆德,黄凤洪.生物柴油生产技术及其开发意义[J].粮食与油脂, 2002, 9: 8-10.
    [47] Barnhorst, Jeffrey A, et al. Transesterification process.[P]. 2002-03-07.
    [48] Darnoko D, Cheryan M. Transesterification processes for vegetable oils [J] JAOCS, 2000, 77 (12): 1269-1272.
    [49] Alcantaara R,Amoers J,Cnaoira L et al. Catalytic production of biodiesel from soy-bean oil used frying oil and tallow [J].Biomass and Bioenergy, 2000, 18:515-527.
    [50]盛梅,郭登峰,张大华.大豆油制备生物柴油的研究[J].中国油脂,2002,27(l):70-72.
    [51]宋庭礼,朱向平.用高酸值动植物油生产生物柴油的方法[P].CN:1412278A,2003
    [52] Brooke D G. Single~phase process for production of fatty acid methyl esters from mixtures of triglycerides and fatty acids [P].US:6642399,2003
    [53] Furuta S, Matsuhashi H, Arata K. Biodiesel fuel p roduction with solid superacid catalysis in fixed bed reactor under atmospheric pressure [J]. Catalysis Communications, 2004, 5 (12): 721- 723.
    [54] Shieh. Optimization of lipase—catalyzed biodiesel by response surface methodology [J]. Bioresource Technology, 2003,88(l):103 - 106
    [55] Manmoru. Production of biodiesel fuel from triglycerides alchol using immobilized lipase [J]. Journal of Moleeular Catalysis B:Enzymatic,2001,16: 53 - 58
    [56] Kazuhiro Bana, Masaru Kaiedab. Whole cell biocatalyst of biodiesel fuel Production utilizeing phizopus oryzae cells immobilized within biomass support particles[J].Biochemical EngineeringJournal, 2001,8:39 - 43
    [57] Tsujisaka .Y.et al .Purification,crystallization,and some properties of lipase from Geotrichum candidum [J] .Link.Agr.Biol.Chem., 1973,37:1457-1464
    [58] Borgstrom B. Erlanson C. Pancreas lipase and colipase,Interaction and effect of bile salt and other detergents[J].Eur.J.Biochem,1973, 37:60-68
    [59] Kamini N R, Iefuji H. Lipase Catalyzed methanolysis of vegetable oils inaqueous medium by cryptococcus spp S—2[J].Process Biochemistry, 2001, 37(4): 405 - 410.
    [60] Saka S, Kusdiana D. Biodiesel fuel from rapeseed oil as prepared in supercritical methanol[J]. Fuel, 2001, 80: 225 -231.
    [61] Stavarache C., Vinatoru M, Nishimura R., et al . Conversion of vegetable oil to biodiesel using ultrasonic irradiation[J]. Chemistry Letters , 2003 , 32 (8) : 716 - 717
    [62] Stavarache C , Vinatoru M, Nishimura R et al . Fatty acids methyl esters from vegetable oil by means of ultrasonic energy[J]. Ultrasonic Sonochemistry, 2005, 12: 367 - 372.
    [63] JOSE A C, ERNESTO E B, FABD A. Biodiesel from an alkaline transesterification reaction of soybean oil using ultrasonic mixing[J]. J Am Oil Chem Soc, 2005,82 (7): 525-530.
    [64]岳鹍,金青哲,刘元法,等.超声波作用下甲醇钠催化废煎炸油合成生物柴油的研究[J].中国粮油学报, 2006, 21 (5) : 98– 101.
    [65] Zhu N , Tsuchiya T. Study on Synthesizing BDF by Using Ultrasonic Sonochemistry Effect , 3rd. International Energy Conversion Engineering Conference , San Francisco , CA , USA , 2005 , pp. 15- 18
    [66]王建黎,李永超.超声波辐射对醇-油不相容体系酯交换反应的影响.[J].中国油脂, 2006,31(4): 61-64
    [67]赵雷,刘国琴,李琳等.超声波加速脂肪酸甲酯化的研究[J].中国油脂, 2008,33(1):33-36
    [68]阎杰.超声强化玉米油与甲醇的酯交换反应[J].粮油加工与食品机械, 2006 ,7:54-57
    [69]黄建蓉.食品微波杀菌技术的研究进展[J] .食品与发酵工业, 1998, 24 ( 4) : 44- 46.
    [70]张洪庆.微波能技术在农副产品加工中的应用[J].农机与食品机械,1996( 1):28-29.
    [71] Azcan N,Danisman A, Microwave assisted transesterification of rapeseed oil,Fuel (2008), doi :10.1016/j.fuel.2007.12.004
    [72] J. Hernando, P. Leton, M.P. Matia, J.L. Novella, J. Alvarez-Builla J. Biodiesel and FAME synthesis assisted by microwaves: Homogeneous batch and flow processes Fuel 86 (2007) 1641–1644.
    [73] Narumon Jeyashoke Kanit Krisnangkura .Microwave induced rapid transmethylation of fatty acids for analysis of food oil. Journal of Chromatography A, 818 (1998) 133–137
    [74]韩毅,邓宇,甘灰炉等.微波固体碱法制备脂肪酸甲酯的工艺研究[J]杭州化工,2008, 38 (1):31-34.
    [75]徐宝财,郑福平.日用化学品与原材料分析手册[M].北京:化学工业出版社:2002:89-93.
    [76]中华人民共和国国家技术监督局.GB9104.6-88.中华人民共和国国家标准-动植物油脂水分含量测定和过氧化值测定.北京:中国标准出版社,1995-08-17.
    [77]石油和石油产品试验方法国家标准汇编[M].中国标准出版社,1998.
    [78] Ma F., Clements L.D., Hanna M.A...Biodiesel fuel from animal fat-Ancillary studies on transesterification of beef tallow[J].Ind.Eng.Chem.Res,1998,37:3768-3771
    [79] Ma F., Clements L.D., Hanna M.A...The effects of catalyst,free fatty acids and water on transesterification of beef tallow[J].Trans.ASAE,1998,41:1261-1264
    [80]刘寿长,关新新,韩家显.脂肪酸酯的均相催化制备的研究[J].日用化学工业,1999,5:14-17
    [81] Wright H.J.,Segur J.B.,Clark H.V.A report on ester interchange[J].Oil and Soap, 1994,21:145-148
    [82]邓红,何玲,孙俊.文冠果油的冷榨提取及理化性质研究[J].西北农业大学学报(自然科学版),2006, 28 (6):1027-1031
    [83] Kevin J. Harrington. Chemical and Physical Properties of Vegetable Oil Esters and their Effect on Diesel Fuel Performance [J]. Biomass, 1986, 9: 1 - 17.
    [84]陈国钧.超声技术在中草药有效成分提取中的应用[J].机电信息,2005, 18: 56-58.
    [85] Z. Hromádková. A. Ebringerová. Ultrasonic extraction of plant materials-investigation of hemicellulose release from buckwheat hulls [J]. Ultrasonics Sonochemistry, 2003(10): 127-133
    [86] A. Ebringerová, Z. Hromádková. Effect of ultrasound on the extractibility of corn bran hemicelluloses[J]. Ultrasonics Sonochemistry, 2002(9): 225-229.
    [87] Sayan Gup ta,C.S. Manohar. An improved response surface method for the determination of failure probability and importance measures[J]. Structural Safety, 2004(26):123-139.
    [88]孙广东,刘云,翟龙霞等.非均相固体碱催化剂制备生物柴油的工艺优化.农业工程学报, 2008, 5(24): 191-194.
    [89] Ghassan M..Tashtoush,Mohamad I. Al-Widyan,Mohammad M. Al-Jarrah Experimental study on evaluation and optimization of conversion of waste animal fat into biodiesel[J].Energy Conversion and Management, 2004, 45(17):2697–2711.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700