介孔分子筛的改性及催化文冠果油制备生物柴油的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着世界经济的快速发展,人们对能源的需求和消耗日益增加。然而,石油资源的日益枯竭、油价的飞涨使得以石油裂解为源头的能源形式面临着严峻挑战。与此同时,石化能源的大量消耗,也对环境造成了极大的破坏,人类的生存空间受到了严重的威胁。因此,寻找可替代的资源和能源的产业势在必行。作为一种重要的可再生替代能源,生物柴油已在很多国家应用和推广。生物柴油制备方法主要采用酯交换反应,目前多使用的催化剂以均相酸或碱为主,但是均相催化反应易发生皂化反应且产物与催化剂难以分离。多相催化酯交换反应能在很大程度上弥补均相催化所存在的不足。因此,积极推进并发展新型多相催化剂(即固体催化剂)用于制备生物柴油成为科研工作者们研究的热点。
     介孔分子筛具有高度有序的孔道结构、高比表面积、孔径较大和可调性等其它多孔材料所不具备的优异性质,是催化剂的优良载体。以介孔材料为载体,利用其表面积大、结构稳定的特点可提高催化剂的性能。因此,本文以介孔分子筛SBA-15和MCM-41为载体,负载无机钾盐或者有机碱制备得到一批固体碱催化剂;以文冠果油为原料,用所得固体碱催化剂催化酯交换反应制备生物柴油,并以生物柴油的产率作为固体碱催化剂活性评价的指标。
     论文主要研究工作包括:(1)以SBA-15和MCM-41为载体,经A1或Mg镀饰后再进一步负载钾盐或者直接负载有机碱,获得碱性较强的负载型固体碱催化剂;(2)利用XRD、SEM、BET、CO2-TPD等表征手段对所得负载型固体碱催化剂进行表征;(3)利用单因素实验优化负载型固体碱催化剂的制备条件;(4)以文冠果油为原料,用制备的负载型固体碱催化剂催化酯交换反应制备生物柴油,以生物柴油的产率作为活性评价的指标;(5)采用柱层析对酯交换制备的粗生物柴油进行精制分离纯化与分析。
     主要结论如下:
     1)以介孔分子筛SBA-15及MCM-41为载体,分别采用直接合成法和后合成法镀饰A1或Mg,再将镀饰后的介孔分子筛浸渍于碱金属盐KN03溶液或有机碱氨丙基三乙氧基硅烷(APTS)中,经干燥、焙烧后得到负载型固体碱催化剂,通过活性评价得到催化活性最高的为KNO3-Al-SBA-15;
     2)通过XRD、SEM、BET及CO2-TPD等表征手段表明A1或Mg的加入能对SBA-15和MCM-41分子筛孔结构起到一定的耐碱侵蚀的作用。进一步负载KN03或APTS后,分子筛的碱性显著增加;
     3)以催化活性最高的KNO3-Al-SBA-15为例,讨论催化剂制备的单因素实验,最优的催化剂制备条件是:KNO3负载量为17%,煅烧温度为550℃,煅烧时间为6h;
     4)催化剂的活性通过酯交换反应制得生物柴油的产率进行评价,酯交换反应过程选择反应温度为70℃,醇油摩尔比为12:1,催化剂用量为原料油质量的5%,超声功率300W。在此条件下催化剂KNO3-Al-SBA-15的催化效果优于其他固体碱催化剂,催化酯交换反应所得生物柴油产率可达92%。催化剂重复使用5次,生物柴油产率仍能达到64.8%,说明制备的催化剂具有良好的重复利用性;
     5)柱层析精制生物柴油选取石油醚与甲醇的混合溶液为洗脱剂,采用梯度洗脱的方式。通过对精制得到的生物柴油进行气相色谱分析,计算得到生物柴油的纯度高达93.87%,柱层析产物的回收率为91.04%;通过红外光谱和核磁共振波谱分析技术对精制后的生物柴油进行了进一步纯度分析,光谱分析表明生物柴油经柱层析法精制后所含杂质明显减少。结果表明,柱层析法是一种很好的精制生物柴油的方法。
With the rapid development of world economy, the demand and consumption of energy become increasingly pronounced. However, the exhausting petroleum resource and soaring oil prices make the energy form as petroleum cracking faced severe challenges. And the same time, the excessive consumption of fossil energy greatly destroys the natural environment and seriously threatens the human living space. So searching alternative resources and energy industry is imperative. As a renewable alternative energy sources, biodiesel had already applied and popularized in many countries. The preparation of biodiesel mainly uses transesterification. Present used catalysts are homogeneous acid or alkali, but saponification reaction easily happens and separation between products and catalysts are difficult in homogeneous catalysis. Heterogeneous catalysis can largely overcome the disadvantages in homogeneous catalysis. Therefore, research workers focus on the development in new heterogeneous catalysts (namely solid catalyst) for the preparation of biodiesel.
     Mesoporous molecular sieves is an excellent catalyst carrier, which possesses highly ordered mesoporous pore structure, high specific surface area, larger pore size and tenability compared with other porous materials. Mesoporous material as a carrier, using its large surface area and stabile structure can improve the catalytic performance. Therefore, this article used mesoporous SBA-15 and MCM-41 as the carriers, prepared solid base catalysts by loading inorganic potassium salts or organic base on them; then solid base catalysts catalyzed sorbifolia oil to produce biodiesel by transesterification, and biodiesel yield was an activity index of solid alkali catalyst.
     Research in the paper included:(1) The supported solid base catalysts were obtained, which were used the mesoporous molecular sieves SBA-15 and MCM-41 as carriers, and loaded Al and Mg,then coated potassium salt or organic base on it. (2) The solid base catalysts were characterized by XRD, SEM, BET and CO2-TPD; (3) The preparation conditions of supported solid base catalysts were optimized by single factor experiment; (4) Solid base catalysts catalyzed sorbifolia oil to produce biodiesel by transesterification, and biodiesel yield was an activity index of solid alkali catalyst;(5) The crude biodiesel produced by transesterification was purified and analysed by column chromatography.
     The main conclusions as following:
     1) The mesoporous molecular sieves SBA-15 and MCM-41 as carriers loaded Al or Mg by direct synthesis and post synthesis method. The mesoporous molecular sieves after loading were dipped in alkaline metal salt solution or organic base 3-aminopropyl triethoxysilane (APTS). The supported solid base catalysts were finally obtained by being dried and calcined. Among the catalysts, KNO3-Al-SBA-15 had the highest catalytic activity after the activity evaluation;
     2) Characterization of XRD, SEM, BET, CO2-TPD and other means showed that the addition of Al or Mg played a role in alkaline erosion to protect the pore structure of SBA-15 and MCM-41 zeolite. Loading APTS and KNO3 in molecular sieves can significantly increase the alkaline of them;
     3) Taking the KNO3-Al-SBA-15 possessing the highest activity as example, we will discuss the single factor experiments of catalyst preparation. The optimum preparation conditions were KNO3 loading about 17%, calcination temperature about 550℃, calcination time about 6h;
     4) The activity of the catalysts was evaluated by yield of biodiesel prepared by transesterification. Transesterification conditions were reaction temperature about 70℃, molar ratio of methanol to oil about 12:1, catalyst amount about 5%, ultrasound power about 300W. Under these conditions, the catalyst activity of KNO3-Al-SBA-15 is better than other solid base catalysts. The yield of biodiesel by transesterification can reach about 92%. Although the catalyst was reused five times, the yield of biodiesel was still able to reach 64.8%, which indicated that the prepared catalyst possessed good reusability;
     5) The eluent of column chromatography was the mixture of petroleum ether and methanol, adopting the way of gradient elution. The refined biodiesel was analyzed by gas chromatographic. The results showed the purity of biodiesel was up to 93.87% and the recovery of column chromatography products was about 91.04%. The refined biodiesel were further analyzed by IR and NMR spectroscopy. IR results indicated that impurities of biodiesel refined by column chromatography significantly reduced. The results showed that column chromatography was a good method to refine the biodiesel.
引文
[1]付玉杰,祖元刚,张乃静,等.研究开发燃料油植物生产生物柴油的几个策略[J].植物学通报,2006,23(3):312-319
    [2]孟祥梅,李维尊,陈冠益,等.废油脂制取生物柴油的工艺优化及其品质提升[J].可再生能源,2007,25(1):36-39
    [3]Liesbeth Schrooten, Ina De Vlieger, FiliP Lefebre, et al. Costs and benefits of an enhanced reduction Policy of Particulate matter exhaust emissions from road traffic in Flanders[J]. Atmospheric Environment,2006,40 (5):904-912.
    [4]谭天伟,王芳,邓立,等.生物柴油的生产与应用[J].现代化工,2002,22(2):4-6.
    [5]盛梅,邬国英,徐鸽,等.生物柴油的制备[J].高校化学工程报,2004,18(2):231-236.
    [6]A Demithas. Biodiesel-A Realistic Fuel alternative for Diesel Engine[M].2008, Springer-Verlag London Limited,3.
    [7]韩明汉,陈和,王金福,等.生物柴油制备技术的研究进展[J].石油化工,2006,35(12):1119-1124.
    [8]曾少军,李华林.中国生物柴油发展的现状、问题及对策分析[J].化工进展,2008,27(10):1485-1489.
    [9]忻耀年,B.Sondermann, B.Emersleben生物柴油的生产和应用[J].中国油脂,2001,26(5):72-77.
    [10]忻耀年.生物柴油的发展现状和应用前景[J].中国油脂,2005(3):49-53.
    [11]陈秀,袁银南.生物柴油的酯交换法制备技术[J].粮油加工,2006,11:17-20.
    [12]张希良,岳立,柴麒敏,等.国外生物质能开发利用政策[J].农业工程学报,2006,22(增刊1):4-7.
    [13]闵恩泽,姚志龙.近年生物柴油产业的发展[J].化学进展,2007,19(8):1050-1059.
    [14]Goff, M.J., Bauer, N.S., Sutterlin, W.R., Suppes, G.J. Acid-catalyzed alcoholysis of soybean oil[J]. J.Am.Oil.Chem.Soc.,2004,81:415-420.
    [15]Kutas G, Lindberg C, Steenblik R. Biofuels-At What Cost Government support for ethanol and biodiesel in the European Union[R]. One of a Series of Reports Addressing Subsidies for Biofuels in Selected OECD Countries,2007.
    [16]S. Zheng, M. Kates, M. A. Dube, et al. Acid-catalyzed production of biodiesel from waste frying oil[J]. Biomass and Bioenergy,2006,30:267-272.
    [17]A. S. Ramadhas, S. Jayaraj, C. Muraleedharn. Biodiesel production from high FFA rubber seed oil[J]. Fuel,2005,84:335-340.
    [18]冀星,李黑虎,等.中国生物柴油产业发展战略思考[J].中国能源,2006,28(5):36-41.
    [19]朱建芳,钱伯章.生物柴油生产现状及技术进展[J].天然气与石油,2005,25(3): 49-52.
    [20]王久臣,戴林,田宜水,等.中国生物质能产业发展现状及趋势分析[J].农业工程学报,2007,23(9):276-282.
    [21]吴伟光,仇焕广,徐志刚.生物柴油发展现状、影响与展望[J].农业工程学报,2009,25(3):298-302.
    [22]袁振宏,罗文,吕鹏梅,等.生物质能产业现状及发展前景[J].化工进展,2009,28(10):1687-1692.
    [23]吴创之,周肇秋,阴秀丽,等.我国生物质能源发展现状与思考[J].农业机械学报,2009,40(1):91-99.
    [24]Fargione J, Jason H, Tilman D, et al. Land clearing and the biofuel carbon debt[J]. Science,2008,319 (5867):1235-1238.
    [25]孙婷,杜伟,刘德华,等.固定化全细胞催化可再生油脂合成生物柴油的稳定性[J].生物工程学报,2009,25(9):1379-1385.
    [26]盖玉娟,战风涛,吕志凤,等.对甲苯磺酸催化制备生物柴油的研究[J].粮油加工,2009,(6):62-64.
    [27]罗文,谭天伟,袁振宏,等.多孔玻璃珠固定化脂肪酶及其催化合成生物柴油[J].现代化工,2007, (11):40-42.
    [28]Miao X L, Wu Q Y. Biodiesel production from hetero-trophic microalgal oil[J]. Bioresonrce Technoiogy,2006,97:841-846.
    [29]韩笑天,郑立,孙珊,等.海洋微藻生产生物柴油的应用前景[J].海洋科学,2008,32(8):76-81.
    [30]Goering C E, Schwab A W, Daugherty M J, et al. Fuel Properties of eleven vegetable oils[J]. Trans.ASAE,1982,25:1472-1483.
    [31]B Trathnigg, M Mittelbach. Analysis of triglyceride methanolysis mixtures using isocratic HPLC with density detection[J]. Journal of Liquid Chromatography & Related Technologies,1990, (1):152-157.
    [32]丁灵.生物柴油的制备研究[D].北京:中国石油大学硕士论文,2007.
    [33]陈和,王金福.棉籽油酯交换制备生物柴油固体碱催化过程研究[J].高校化学工程学报,2006,20(4):593-597.
    [34]董美,吴明.有机碱催化制备生物柴油的条件优化[J].当代化工,2010,39(2):135-137.
    [35]余旭亚,黄遵锡,林海.生物酶法制备生物柴油的研究进展[J].中国油脂,2009,34(6): 48-53.
    [36]里伟,杜伟,李永红,等.生物酶法转化酵母油脂合成生物柴油[J].过程工程学报,2007,7(1):137-140.
    [37]谭天伟,王学伟,常杰.固定化脂肪酶催化制备生物柴油[J].石油化工,2005, 34(9): 855-858.
    [38]Shinada Y, Watanabe Y. Enzymatic alcoholysis for biodiesel fuel production and application of the reaction to oil processing[J]. Journal of Molecular Catalysis B:Enzymatic, 2002,17:144-142.
    [39]陈志锋,吴虹,宗敏华.固定化脂肪酶催化高酸废油脂酯交换生产生物柴油[J].催化学报,2006,27(2):146-150.
    [40]Ayhan D. Biodiesel production from vegetable oils via catalytic and non-catalytic supercritical methanol transesterification methods[J]. Prog.Energ.Com-bust.,2005,31: 466-487.
    [41]Ayhan D. Biodiesel production via non-catalytic SCF method and biodiesel fuel characteristics[J]. Energy Converse Manage,2006,47:2271-2282.
    [42]Yin JZ, Xiao M, Wang AQ, et al. Synthesis of biodiesel from soybean oil by coupling catalysis with subcritical methanol. Energy Converse Manage,2008,49:3512-3516.
    [43]Virtanen P, Karhu H, Toth G, et al. Towards one-pot synthesis of menthols from citral:modifying supported ionic liquid catalysts (SILCAs) with Lewis and Browsed acids[J]. J.Catal.,2009,263 (2):209-219.
    [44]张磊,于世涛,刘福胜,等.离子液体催化大豆油制备生物柴油[J].工业催化,2007,7:37-40.
    [45]吴芹,陈和,韩明汉,等.高活性离子液体催化棉籽油酯交换制备生物柴油[J].催化学报,2006,27(4):294-296.
    [46]Abreu Frederique R, Alves Melquizedeque B, Macedo Caio C S, et al. New multiphase catalytic systems based on tin compounds active for vegetable oil transesterification reaction[J]. J.Mol.Catal.A:Chem.,2005,227:263-267.
    [47]张海荣,林西平,邬国英,等.抗水性固体酸SO42--TiO2-Clay催化剂的制备及应用[J]无机化学学报,2007,23(6):1111-1116.
    [48]Zong MH, Duan ZQ, Lou WY, et al. Preparation of a sugar catalyst and its use for highly efficient production of biodiesel [J]. Green Chem,2007,9 (5):434-437.
    [49]曹宏远,曹维良,张敬畅.固体酸Zr(SO4)2 · 4H2O催化制备生物柴油[J].北京化工大学学报,2005,32(6):61-63.
    [50]L Qing Song, L Lei, W Zuo Xin, et al. Theoretical study of layer-anion interactions in Magnesium Aluminum layered double hydroxides [J]. Chinese Journal of Inorganic Chemistry,2001,17 (6):835-842.
    [51]Macario A, Moliner M, Corma A, et al. Increasing stability and productivity of lipase enzyme by encapsulation in a porous organic-inorganic system[J]. Microporous and Mesoporous Materials,2009,118 (1-3):334-340.
    [52]Li E, Rudolph V. Transesterification of vegetable oil to biodiesel over MgO-functionalized mesoporous catalysts[J]. Energy Fuels,2008,22 (1):145-149.
    [53]刘学军,贺华阳,王玉军,等.氧化钙固体碱催化剂用于大豆油和甲醇酯交换制备生物柴油的研究[J].石油炼制与化工,2006,(12):66-70.
    [54]孟鑫,辛忠KF/CaO催化剂催化大豆油酯交换反应制备生物柴油[J].石油化工,2005,34(3):282-286.
    [55]蔡红,周斌.离子交换树脂在有机催化反应中的应用进展[J].化工进展,2007,25(3):359-363.
    [56]李秋荣,史春香,李晓博.723型阳离子交换树脂催化合成甲基叔丁基醚[J].化工中间体,2004,20(6):573-578.
    [57]秦世嵘.阴离子型树脂催化制备生物柴油的研究[D].大连:大连理工大学硕士论文,2008.
    [58]Verziu M, Florea M, Simon S, et al. Transesterification of vegetable oils on basic large mesoporous alumina supported alkaline fluorides-Evidences of the nature of the active site and catalytic performances[J]. Journal of Catalysis,2009,263 (1):56-66.
    [59]Gwi-Taek Jeong, Don-Hee Park, Hae-Sung Kim, et al. Production of biodiesel fuel by transesterification of rapeseed oil[J]. Applied Biochemistry and Biotechnology,2004,114 (1-3):747-758.
    [60]Yang Chiamin, Liu Panghung, Ho Youfu, et al. Highly dispersed metal nanoparticles in functionalized SBA-15[J]. Chem. Mater.,2003,15 (1):275-280.
    [61]许慎敏,陈慧,梁宝臣,等.MCM-41分子筛负载不同碱金属催化合成生物柴油性能比较[J].分子催化,2007,21(增刊):385-386.
    [62]袁兴东,沈健,李国辉,等.SBA-15介孔分子筛表面的磺酸基改性及其催化性能[J].催化学报,2002,23(5):435-438.
    [63]Newalkar B L, Olanrewaju J, Komarneni S. Microwave-hydrothermal synthesis and characterization of zirconium substituted SBA-15 mesoporous silica[J]. J. Phys. Chem. B, 2001,105 (35):8356-8360.
    [64]Lu Weijing, Luo Yong, Chen Aiping. A novel preparation method of ZnO/MCM-41 for hydrogenation of methyl benzoate[J]. Journal of Molecular Catalysis A:Chemical,2002, 188 (1-2):225-231.
    [65]武宝萍,王慧彦,张秋荣,等.介孔分子筛B-SBA-15催化合成油酸乙酯[J].淮海工学院学报(自然科学版),2007,16(4):35-38.
    [66]Wang Q, Guerrero V, Ghosh A, et al. Catalytic properties of Dendron-OMS hybrids[J]. Journal of Catalysis,2010,269 (1):15-25.
    [67]Gurutze Arzamendi, Idoia Campo, Eider Arguinarena, et al. Synthesis of biodiesel from sunflower oil with silica-supported NaOH catalysts[J]. Journal of Chemical Technology and Biotechnology,2008,83:862-870.
    [68]Victor T. Wyatt, Michael J. Haas. Production of Fatty Acid Methyl Esters via the In Situ Transesterification of Soybean Oil in Carbon Dioxide-Expanded Methanol[J]. J Am Oil Chem Soc,2009, (86):1009-1016.
    [69]王璐,陶玲,赵福生,等.新疆地区文冠果种仁油与棉籽油合成生物柴油的比较研究[J].农业机械学报,2010,41(10):131-134.
    [70]F. Ferella, G. Mazziotti Di Celso, I. De Michelis. Optimization of the transesterification reaction in biodiesel production[J]. Fuel,2010,89:36-42.
    [71]Dhar G Murali, Kumaran G Muthu, Kumar Manoj, et al. Physical-chemical characterization and catalysis on SBA-15 supported molybdenum hydrotreating catalysts[J]. Catal Today,2005,99:309-314.
    [72]张微,徐恒泳,毕亚东,等.介孔分子筛SBA-15的改性研究进展[J].化工进展,2007,26(2):152-157.
    [73]王月娟,马静萌,孙春凤,等.乙二胺丙基功能化的SBA-15介孔分子筛的合成及催化性能[J].石油化工,2005,34(11):1086-1090.
    [74]Asefa Tewodros, Lennox R Bruce. Synthesis of nanoparticles via electroless deposition in SBA-15[J].Chem. Mater,2005,17 (10):2481-2483.
    [75]李永昕,唐璇,马清祥,等KNO3/A1SBA-15分子筛催化合成碳酸二丙酯的研究[J].分子催化,2006,20(2):125-130.
    [76]吴淑杰,黄家辉,吴通好,等Al-SBA-15介孔分子筛的合成、表征及其在苯酚叔丁基化反应中的催化性能[J].催化学报,2006,27(1):9-14.
    [77]张学军,张志华,王宗贤,等.Y分子筛/介孔Al-SBA-15复合材料与脱铝Y分子筛的表征和重油加氢裂化性能[J].化工进展,2009,28(2):267-271.
    [78]Yun Liu, Ling Wang. Bio-diesel preparation from waste oil using cation exchange resin as heterogeneous catalyst[J]. Chemistry and Technology of Fuels and Oils,2009,45 (6):417-424.
    [79]Murugesan A, Umarani C, Chinnusamy T R, et al. Production and analysis of bio-diesel from non-edible oils-A review[J]. Renewable and Sustainable Energy Reviews, 2009,13 (4):825-834.
    [80]Bokade V V, Yadav G D. Synthesis of biodiesel and bio-lubricant by transesterification of vegetable oil with lower and higher alcohols over heteropolyacids supported by clay (K-10)[J]. Process Safety and Environmental Protection,2007,85 (5): 372-377.
    [81]Sandra Glisic, Ivana Lukic, Dejan Skala. Biodiesel synthesis at high pressure and temperature:Analysis of energy consumption on industrial scale[J]. Bioresource Technology, 2009,100:6347-6354.
    [82]邓红,孙俊,张媛,等.不同方法提取的文冠果籽油的GC-MS分析[J].食品科学,2007,28(8):354-358.
    [83]王一平,翟怡,张金利,等.生物柴油制备方法研究进展[J].化工进展,2003,22(1) : 8-12.
    [84]朱宝璋,杨婉珍,黄少烈.直接利用分子蒸馏技术生产生物柴油的方法[P].中国专利:1869162.2006-11-29.
    [85]候相林,齐永琴,乔欣刚.超临界萃取精馏制生物柴油的方法[P].中国专利:1821354.2006-08-23.
    [86]朱华平,吴宗斌,陈元雄,等.固体超强碱氧化钙催化制备生物柴油及其精制工艺[J].催化学报,2006,27(5):391-396.
    [87]Gunawan Setiyo, Ismadji Suryadi, Ju Yi-Hsu. Design and operation of a modified silica gel column chromatography[J]. Journal of the Chinese Institute of Chemical Engineers, 2008,39 (6):625-633.
    [88]Cao Xueli, Xu Yatao, Zhang Guangming, et al. Purification of coenzyme Q10 from fermentation extract:High-speed counter-current chromatography versus silica gel column chromatography[J]. Journal of Chromatography,2006,1127 (1-2):92-96.
    [89]Tang D S, Zhang L, Chen H L. Extraction and purification of solanesol from tobacco.(Ⅰ).Extraction and silica gel column chromatography separation of solanesol[J]. Separation and Purification Technology,2007,56 (3):291-295.
    [90]Zhang Y Y, Yang Y W, Ren Q L, et al. Purification of soybean phosphatidylcholine by silica gel column chromatography[J]. Journal of Chemical Engineering of Chinese Universities,2006,20 (3):685-690.
    [91]Garscha Ulrike, Nilsson Tomasl, Oliw Ernst H. Enantiomeric separation and analysis of unsaturated hydroperoxy fatty acids by chiral column chromatography-mass spectrometry[J]. Journal of Chromatography B:Analytical Technologies in the Biomedical and Life Sciences,2008,872 (1-2):90-98.
    [92]Alcalde-Eon C., Escribano Bailon M.T., Santos-Buelga C. Separation of pyranoanthocyanins from red wine by column chromatography[J]. Analytica Chimica Acta, 2004,513 (1):305-318.
    [93]杨磊,卫蔚,刘婷婷,等.连续中压硅胶柱层析纯化法夫酵母虾青素[J].化工进展,2010,29(6):1125-1128.
    [94]袁华,吴莉,吴元欣,等.硅胶柱层析法提纯茶多酚的研究[J].华中师范大学学报(自然科学版),2007,41(4):553-556.
    [95]陈曾,吴玉龙,陶玲,等.响应曲面法优化文冠果油提取工艺的研究[J].农产品加工(学刊), (7):8-12,16.
    [96]Anastasia Macarioa, Girolamo Giordanoa, Barbara Onidab, et al. Biodiesel production process by homogeneous/heterogeneous catalytic system using an acid-base catalyst[J]. Applied Catalysis A:General,2010,378:160-168.
    [97]吕家根,武晓燕,马军,等.生物柴油高效合成方法研究[J].陕西师范大学学报(自然科学版),2009,37(1):39-41.
    [98]Fangming Jin, Kohei Kawasaki, Hisanori Kishid, et al. NMR spectroscopic study on methanolysis reaction of vegetable oil[J]. Fuel,2007, (86):1201-1207.
    [99]Spyros A, Angios D. Study of aging in oil paintings by 1D and 2D NMR spectroscopy[J]. Anal Chem,2004, (76):4929-4936.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700