生物柴油副产品甘油制备环氧氯丙烷
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物柴油作为一种极有发展前景的生物质能源,越来越受到世界各国的关注,并得到了大力的发展。其副产物甘油的大量生成使得甘油的深度开发已成为人们重点研究的对象。本文制备了磁性固体碱催化剂用于合成生物柴油和甘油,研究了甘油制备环氧氯丙烷过程中催化剂的制备及反应条件的优化。制备了SO_4~(2-)/ZrO_2固体酸用于甘油与HCl的反应,制备二氯丙醇。将KF了附载于γ-Al_2O_3上制备出的KF/γ-Al_2O_3固体碱催化二氯丙醇的环化反应制备环氧氯丙烷也良好的实验结果。
     1.用Fe_3O_4作为磁基质与镁铝水滑石合成磁性固体碱。从镁与铝的物质的量,镁与铁(Ⅱ)物质的量,反应温度,反应时间,催化剂用量及醇油比对产物产率的影响,探索在无溶剂情况下磁性固体碱催化酯化反应的最佳反应条件,利用磁场将磁性固体碱与反应体系进行有效分离回收。
     2.用正交实验法优化了制备固体酸的条件。考察了反应时间、反应温度、催化剂寿命等因素对甘油氯化反应的影响.研究结果表明,最佳制备催化剂的条件为1.0mol/L硫酸浸渍,500℃下煅烧4h.以此条件制备的催化剂在130℃下,催化甘油氯化反应4h,产率可达到82.1%。固体酸催化剂可重复使用6次以上,且具有良好的再生性。
     3.制备了固体碱KF/γ-Al_2O_3制备环氧氯丙烷。考察了KF浸渍浓度、煅烧时间、煅烧温度对催化活性的影响。分析了环化反应的最佳制备条件。研究结果表明:KF负载量为20%,浸渍时间4 h,焙烧温度500℃此时获得的KF/γ-Al_2O_3的催化剂催化效果最好。于85℃下催化二氯丙醇环化反应4h,可获得81.2%的产率。
As a promising biomass, biodiesel has attracted much attention allover the word and increased produced. Couple with the vigorous development of biodiesel industry, surplus glycerol immerges and deep exploration of this glycerol has been focused. In this paper, solid base nano-catalysts were prepared and used in the production of biodiesel, and the preparation of catalysts for conversion of glycerol into epichlorohydrin and optimizing of relative factors were investigated; SO_4~(2-)/ZrO_2 solid super acid were synthesized and evaluated in the production of dichlorohydrin from glycerol and HCl; solid base catalyst KF/γ-Al_2O_3 with KF loaded onγ-Al2O3 were tested in the Cyclization of dichloropropanol in order to Preparation of epichlorohydrin.
     1.Fe3O4 as magnetic matrix were combined with Mg-Al hydrotalcites to synthesize magnetic solid base catalyst. Effect of Mg/Al and Mg/Fe mole ratio, reaction temperature, reaction time, catalyst concentration, and alcohol/oil on the biodiesel yield was studied and the optimum reaction conditions of transesterification reaction over magnetic solid base without solvent were obtained. The catalyst could be effectively recycled in magnetic fields.
     2. Orthogonal experiment method was introduced to optimized the preparation condition of solid acid. Effect of reaction time, reaction temperature, lifetime of catalysts on the chlorination reaction of glycerol was investigated. The results revealed that after 4h of reaction time, a yield as high as 82.1% was achieved over the catalyst dipped by H_2SO_4 and calcined at 500℃for 4h, with 130℃of reaction temperature. The solid acid catalyst could be recycled more than 6 times, which indicated its good durability.
     3. Solid based catlyst KF/γ-Al_2O_3 was prepared and screened in the synthesis of dichlorohydrin. Factors including dosage of KF, calcination temperature and time were investigated. And the cyclization conditions were optimized. Obtained results showed that catalyst with a KF dosage of 20%,dipping time of 4h, and calcination of 500℃posses best activity. A yield of 81.2% was accomplished under the condition of 85℃of reaction temperature and 4h of reaction time.
引文
[1]胡亚伟,邸青,陈玉红等.生物柴油的制备及发展趋势.河南化工,2010,01:25-27
    [2] A. Brito, M. E. Borges, M. Gar?n et al. Biodiesel Production from Waste Oil Using Mg-Al Layered Double Hydroxide Catalysts. Energy & Fuels 2009, 23: 2952–2958
    [3] Boyi Fu, Palligarnai T. Vasudevan.Effect of Organic Solvent onEnzyme-Catalyzed Synthesis of Biodiesel. Energy & Fuels,2009,23:4105–4111
    [4] Earth Policy Institute.World ethanol production and world biodiesel production EB/OL].http://www.earthpolicy.org/Updates/2006Update55_data.tm#table5,008,8, 2008-10-15/2011-3-25
    [5]陈顺玉,吕玮,陈登龙等.生物柴油制备方法的研究进展.福建师大福清分校学报,2008,03:20-24
    [6]王香爱.生物柴油的研究进展.化工科技,2008,10:15-17
    [7]张良波,李昌珠等.生物柴油产业现状与展望.湖南林业科技,2008,2:50-55
    [8]魏秋兰,李茂月.生物柴油的研究与应用现状.上海汽车,2006,10:10-13
    [9] Garofalo R.Supplying EU Biodiesel growth:will enough raw materials be Available. In:Conference Paper at 3rd Euro Fed Lipid Congress. Edinburgh: 2004,1265
    [10] BOCKEY D.Biodiesel und pflanzliche Oel als Kraftstoffe. aus der Nische in den Kraftstoffmarkt.UFOP,Stand 2006(2).
    [11] 2007年生物柴油行业研究报告[EB/OL]. http://www. fueleconomy. cn/news/News_3/ 2007/07/19_1.htm,2007-7-19/2011-3-25
    [12]忻耀年.生物柴油的发展现状和应用前景.中国油脂,2005,30(3):49-53
    [13]黄斌.生物柴油制备技术研究进展.四川化工,2008,06:15-18
    [14]胡宗泰,王英阁,李继香.生物柴油研究现状和发展趋势.粮食与油脂,2006,10: 11-14
    [15]白雯,张春波,张丽静等.生物柴油的发展现状.广州化工,2008,36(1):4-17
    [16]梁斌,闵恩泽.利用西部可再生资源发展生物柴油产业.四川大学学报(工程科学版),2006,38(5):33-37
    [17]闵恩泽,唐忠,杜泽学等.发展我国生物柴油产业的探讨.中国工程科学,2005,7 (4):1-4
    [18]吴谋成,刘云.中国生物柴油的研发现状与展望.新能源产业,2007,6:53-57
    [19]张乃静.文冠果种仁油制备生物柴油工艺:[东北林业大学硕士论文] ,哈尔滨:东北林业大学,2007,12-20
    [20]陈顺玉,吕玮,陈登龙等.生物柴油制备方法的研究进展.福建师大福清分校学,2008,03:20-24
    [21] AdamsC,PetersJF, Rand,et al.JAOCS.1983,60(8):1574-1579
    [22] Ziejewski M,Kaufman KR,Pratt GL.Vegetable Oils 8118 Diesel Fuel[C].Seminar 11,Northern Regional Research Center,Peoria,Illinois,1983
    [23]曹晓燕,满瑞林,刘小风等.生物柴油制备方法研究进展.化学工程师,2007, 09: 25-28
    [24] Goering C E, Fry B.JAPCS,1984,6l(8):1627-1632
    [25]王一平,翟怡,张金利等.韩振亭生物柴油制备方法研究进展.化工进展, 2003,01:30-35
    [26]季永青,王美红,马林才等.生物柴油制备以及在柴油机上应用的关键技术研究.内燃机, 2009,06:15-18
    [27]李昌珠,蒋丽娟,程树棋.生物柴油一绿色能源.北京:化学工业出版社,2005
    [28] Schwab A W, Bagby M O,Freedman B.Fuel,1987,66(10):1372-1378
    [29] Pioch D,Lozano P, Rasoanantoanddro M C, et a1.Oleagineux,1993,48:289-291
    [30]张珂.生物柴油混合燃料对重型柴油机燃烧及排放的影响规律:[吉林大学硕士论文],长春:吉林大学,2009,6-18
    [31]李维尊.固体碱催化剂制取生物柴油研究及生物柴油发动机试验:[天津大学硕士论文],天津:天津大学,2007,3-15
    [32]王小行.新型全细胞催化剂在麻疯树生物柴油中的应用:[四川大学博士论文],成都:四川大学,2006,13-25
    [33]杜学禹.固体碱催化木本植物油脂制备生物柴油研究:[南京林业大学硕士论文],南京:南京林业大学,2009,14-34
    [34] Fangrui Ma,etal.Biodiesel production: a review Bioresource Technology, 1999,70:1-15
    [35]曹宏远,曹维良,张敬畅.固体酸Zr(S04)2·4H20催化制备生物柴油:北京化工大学学报,2005,32(6):61-63
    [36] Yan Li , Xiao-Dong Zhang, Li Sun, Jie Zhanget al. Fatty acid methyl ester synthesis catalyzed by solid superacid catalyst SO42-/ZrO2-TiO2/La3+.Applied Energy,2009
    [37] Su Zhang,Yuan-Gang Zu,Yu-Jie Fu etal.Rapid microwave-assisted transesterification of yellow horn oil to biodiesel using a heteropolyacid solid catalyst.Bioresource Technology,2010,101,931-936
    [38] Kathlene Jacobson, Rajesh Gopinath, Lekha Charan Meher et al . Solid acid catalyzed biodiesel production from waste cooking oil.Applied Catalysis B: Environmental,2008,85:86-91
    [39] Man Kee Lam, Keat Teong Lee, Abdul Rahman Mohamed . Sulfated tin oxide as solid superacid catalyst for transesterification of waste cooking oil: An optimization study.Applied Catalysis B: Environmental,2009,93:134-139
    [40] Krisada Noiroj , Pisitpong Intarapong , Apanee Luengnaruemitchai et al. A comparative study of KOH/Al2O3 and KOH/NaY catalysts for biodiesel production via transesterification from palm oil, Renewable Energy,2009,34: 1145-1150
    [41] Hong-yan Zeng , Zhen Feng, Xin Deng et al. Activation of Mg/Al hydrotalcite catalysts for transesterification of rape oil.Fuel,2008,87:3071-3076
    [42] Masoud Zabeti, Wan Mohd Ashri Wan Daud , Mohamed Kheireddine Aroua,Biodiesel production using alumina-supported calcium oxide: An optimization study. Fuel Processing Technology, 2010,91:243-248
    [43] Amish P. Vyas , N. Subrahmanyam a, Payal A. Patel,Production of biodiesel through transesterification of Jatropha oil usingKNO3/Al2O3 solid catalyst.Fuel , 2009,88:625-628
    [44] Ling L W,Yue M L.Highly efficient and selective production of epichlorohydrin through epoxidation of allyl chloride with hydrogen peroxide over Ti-MWW catalysts. J.Catal,2007,246:205~214.
    [45]陈阳.同时具有双酸中心的多金属氧酸盐催化酯交换反应研究:[东北师范大学硕士论文].长春:东北师范大学,2009,20-30
    [46]吴良彪.脂肪酶催化食用废油制备生物柴油.云南化工,2010(02):29-30
    [47]张伦,张无敌,尹芳等.酶催化制备生物柴油的研究进展.湖北农业科学,2010:29-30
    [48]李宇扬,孙佩慧,胡基埂等.脂肪酶催化制备生物柴油的研究进展.中国生物工程杂志,2008,28(10):136-141
    [49] Zul Ilham, Shiro Saka. Dimethyl carbonate as potential reactant in non-catalytic biodiesel production by supercritical method. Bioresource Technology,2009,100: 1793-1796
    [50] Kok Tat Tan, Meei Mei Gui, Keat Teong Lee. Abdul Rahman Mohamed, An optimized study of methanol and ethanol in supercritical alcohol technology for biodiesel production. The Journal of Supercritical Fluids,2010,53:82-87
    [51] Kok Tat Tan , Keat Teong Lee. Abdul Rahman Mohamed, Optimization of supercritical dimethyl carbonate (SCDMC) technology for the production of biodiesel and value-added glycerol carbonate. Fuel,2010,89:3833-3839
    [52] Sandra B. Dejan U. Skala. Phase transition at subcritical and supercritical conditions of triglycerides Methanolysis. The Journal of Supercritical Fluids, 2010,54:71-80
    [53] Meei Mei Gui, Keat Teong Lee. Subhash Bhatia, Supercritical ethanol technology for the production of biodiesel: Process optimization studies.The Journal of Supercritical Fluids,2009,49:286-292
    [54]程能林.溶剂手册.第三版.北京:化学工业出版社,2002,55-100
    [55]胡斌.甘油法合成环氧氯丙烷工艺研究:[浙江大学硕士论文].杭州:浙江大学, 2008,12-32
    [56] Tyson K S, Bozell J, Wallace R , et al . Biomass Oil Analysis: Research Needs and Recommendations. Technical Report of NREL, 2004:28-31
    [57]刘方.甘油催化氯代法合成环氧氯丙烷新工艺研究:[江西师范大学硕士论文].南昌:江西师范大学,2009,5-31
    [58]聂颖.环氧氯丙烷的生产工艺与改进.化工中间体,2004,04:10-14
    [59]徐伟箭,陈康庄.浅议环氧氯丙烷生产技术及其发展.氯碱工业,2006(9): 29-33
    [60]吴广铎,张建丽.甘油法环氧氯丙烷生产技术.氯碱工业,2008:21-25
    [61]李坤坤.甘油法合成环氧氯丙烷研究:[山东科技大学硕士论文].济南:山东科技大学,2009,6-28
    [62]卢德庆,夏力,贾小平等.甘油合成二氯丙醇的研究进展.山东化工,2008,05: 15-19
    [63]郑伟华,李辉,叶波,阮志宏等.环氧氯丙烷的制备工艺研究.广西轻工业, 2008: 13-16
    [64]徐成华,铝绍洁.Ti-ZSM25分子筛催化氯丙稀环氧化制环氧氯丙烷.石油化工, 2002,31(4):245-248
    [65] Strebelle M,Gilbeau P,Gatinat J P.Epichlorohydrin-based product and process for manufacturing this product.US.US6288248.2001
    [66]李风,崔丽娜.环氧氯丙烷生产技术及进展.巴陵石化科技,2005,(2):55-57
    [67]崔小明.环氧氯丙烷的生产技术及其进展.江苏氯碱,2008 09:15-19 [ 68] Hill J, Fischer J. A synthesis of beta-chloro-allylchloride. J Am Chem Soc, 1922, 44:2587
    [69]陈珍民.环氧氯丙烷的市场和技术经济性分析.中国氯碱,2009,02:25-29
    [70] Kubicek Pavel,Sladek petr,Buricova lvana.Method of preparing dichloropropanols from glycerine.2005:35-38
    [71] Boehringer C F,Sohne,Waldorf B,et al. Procedures for the production ofmono -and dichlorohydrin from glycerin and hydrogen chloride.1906:11-20
    [72]赵学娟,柏子龙.甘油法制备环氧氯丙烷中间体二氯丙醇催化剂的研究.精细化工中间体,2008,37(7):34-36
    [73] Boehringer C F, Sohne, Waldorf B, et al. Procedures for the production ofmono -and dichlorohydrin from glycerin and hydrochloric acid.1906:12-15
    [74]许玉梅.一种甘油催化氢氯化制备二氯丙醇的方法.CN. A,101029000. 2007-09-05
    [75] Sang Hee Lee, Sun Ho Song, Dong Ryul Park. Solvent-free direct preparation of dichloropropanol from glycerol and hydrochloric acid gas in the presence of H3PMo12?XWXO40 catalyst and/or water absorbent.Catalysis Communications, 2008,10(2):160-164
    [76] Lee S H , Park D R, Kim H, et al. Direct preparation of dichloropropanol (DCP) from glycerol using heteropolyacid (HPA) catalysts:A catalyst screen study. Catalysis Communications,2008,9 (9):1920-1923
    [77] Britton E C, Heindel R L. Preparation of glycerol dichlorohydrin.US.2144612. 1939-01-24
    [78] Britton E C, Slagh H R. Glycerol dichlorohydrin.US.2198600.1940-04-30
    [79]蒋剑春.一种甘油制备环氧氯丙烷的方法.CN.101003523A.2007-7-25
    [80]王在军,伊秋燕.一种非水体系制备环氧氯丙烷的方法.CN.101230052A. 2008-7-30
    [81] Angela Dibenedetto , Antonella Angelini. Converting wastes into added value products: from glycerol to glycerol carbonate, glycidol and epichlorohydrin using environmentally friendly synthetic routes.Tetrahedron.2010:1-6
    [82]岳攀.磁载杂多酸催化剂的制备及催化性能研究:[北京化工大学硕士论文].北京:北京化工大学,2008,5-30
    [83]张汝冰,刘宏英,李凤生.纳米材料在催化领域的应用及研究进展.化工新型材料,1999,27(5):31-36
    [84]钱伯章.纳米材料在石油化工中的应用进展.化工新型材料,2004,32(4):25-29
    [85]黎汉生,张东翔.磁性催化剂研究进展.材料导报,2005,08:15-19
    [86] Cell M. Application opportunities for nanostructured mate-rials and coatings. Mater Sci Eng A,1995,204-246
    [87] Karthikeyan J,Berndt C,Tikkanen J, et a1.Plasma spray synthesis of nanomaterial powders and deposits. Mater SciEng A,1997,238(2):275
    [88]张效岩,王英,张亚非等.磁性纳米粒子的制备及应用.磁性材料及器件,2004, 35(6):14-16
    [89] Milgrom L. Magnetic catalysts work like a dream.New Scientist,2004,184 (2473):27-31
    [90] AndoT,Yamawaki J,Kawate T,Sumi,etal.Bull Chem Soc Jpn,1982,55(8):2504- 2507
    [91]谢丹.生物柴油副产品甘油制备羟基丙酮的研究:[长沙理工大学硕士论文].长沙:长沙理工大学,2010,18-23
    [92]鲍德艳,鲁晓勇,李浔等.用于生物柴油制备的KF/Al2O3固体碱催化剂的研究.工业催化,2007,11:15-19
    [93] R.Tesser, E.Santacesaria, M. DiSerio, et al. Kinetics of Glycerol Chlorination with Hydrochloric Acid: A New Route to r,?-Dichlorohydrin. Ind. Eng. Chem. Res. 2007,46:6456-6465
    [94] March, J.Wiley-Interscience. In: 5th Advanced Organic Chemistry. New York, 2001,308-312
    [95]陈淑芬,甘黎明,史文权. SO42-/La2O3-ZrO2催化合成亚油酸乙酯.应用化工,2006,11:28-32
    [96]高兹,杨晓波.固体酸催化剂上的甲苯硝化反应.催化学报,1994,15(6):47
    [97] L. Ma, J. W. Zhu, X. Q. Yuan, et al. Synthesis of Epichlorohydrin from dichloropropanols Kinetic Aspects of the Process. Trans IChemE, Part A, 2007:1345-1348
    [98]田部浩三,小野嘉夫,.新固体酸和碱及其催化作用.郑禄彬,王公慰,张盈珍等译.第一版.北京:化学工业出版社,1992,219-221
    [99]顾苗.甘油合成环氧氯丙烷的工艺研究:[南京理工大学硕士学位论文].南京:南京理工大学,2009,23-57
    [100]BoWang, Jianpeng Zhu, Hongzhu Ma. Desulfurization from thiophene by SO42? /ZrO2 catalytic oxidation at room temperature and atmospheric pressure. Journal of Hazardous Materials, 2009,16:256–264

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700