栽培稻抗旱性状评价与定位及其育种应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
干旱是世界农业生产的主要障碍之一,水稻是世界上主要耗水作物,水稻抗旱性的研究对粮食增产增收具有重要意义。建立科学有效的抗旱性评定方法和鉴定体系,定位与克隆水稻抗旱性相关的基因,利用分子标记辅助选择和转基因技术,结合常规育种,进行节水抗旱、优质高产多抗等性状的聚合,培育节水抗旱新品种是水稻抗旱性研究的主要内容。本研究对可能的抗旱鉴定指标穗颈粗和穗水势进行了分析,利用抗旱群体材料对抗旱性状进行分子标记定位,并通过标记辅助选择技术构建了4个抗旱目标区段的近等基因系,精细定位了部分相关主效OTL,通过候选基因法克隆了其中一个可能的抗旱相关基因QsGRAS,并将来源于第4染色体的目标区段导入到早稻保持系中,获得了稳定株系。主要结果如下:
     1.穗水势:调查生育后期进行干旱处理的3个品种(2个旱稻和1个水稻)在晴天每隔1-1.5h一天内穗水势和叶水势的变化,发现旱稻品种的穗水势和叶水势比水稻品种开始下降要慢,比水稻品种保持更高的水平且恢复更快。在晴天中午,穗水势和叶水势在旱稻和水稻间的差异甚至在正常水分条件下也能观察到。穗水势和叶水势与关乎植株生长和植株产量组成因子的7个性状存在相似的相关性。基于穗水势和叶水势日变化的的平行趋势及两者间的高度相关,提出穗水势可以作为植株水分状况的一个指标,穗水势能更有效区分不同旱稻品种的抗旱性差异。
     2.穗颈粗及种质创新:调查以珍汕97B和IRAT109构建重组自交系群体在不同水分处理下的穗颈粗,发现穗颈粗与很多农艺性状,尤其是穗型极显著相关。通径分析表明两种水分条件下穗颈粗主要是通过颖花数或实粒数来对产量产生影响。基于213个SSR标记构建的连锁图谱,总共检测到3个控制穗颈粗的主效QTL,其中qPND-4在两种水分条件下都检测到,贡献率为5.03%.11.01%。在第4染色体RM241-RM349标记区间,共定位到7个穗型相关的QTL,控制穗数、穗长、一次枝梗数、二次枝梗数、每穗颖花数、着粒密度和每穗实粒数。共检测到17个与穗颈粗有关的上位性QTL,贡献率变异为2.58%-5.64%。
     通过杂交和连续回交,利用分子标记辅助选择技术对前景进行筛选,将IRAT109的第4染色体区段导入到旱稻不育系沪旱1A的保持系沪旱1B中,抗旱性鉴定发现,导入的材料在实粒数、穗颈粗和产量上有显著提高。
     3.近等基因系构建与QsGRAS基因克隆:立足于两年定位结果中5个控制较多抗旱相关性状的QTL区段,通过杂交和回交,并利用分子标记对前景和背景进行选择,构建目标区段来源于早稻IRAT109而其余背景均为水稻珍汕97B的近等基因系。对其中4个区段的近等基因系进行了抗旱性鉴定,在干旱条件下导入有OTL区段的近等基因系在产量和结实率上均高于珍汕97B。对第4染色体的RM273-RM255和第7染色体的RM134-RM420通过加密SSR和ILP标记,将控制实粒数和产量的OTL缩小到95kb,穗数和颖花数的QTL定位在609kb的区间内,结实率定位在227kb的范围内。第7染色体上影响实粒数和结实率的QTL定位在83kb的区间内,而控制颖花数和实粒数的则定位在446kb范围内。对精细定位的区段内的候选基因进行了初步的分析。并根据候选基因cDNA序列,设计引物,扩增获得OsGRAS的编码cDNA和启动子序列。对其保守区域进行分析,发现OsGRAS是GRAS转录因子家族的一个成员,其具有该家族典型的结构域。通过酶切及载体连接,共构建了OsGRAS基因及其启动子相关的三个表达载体。
Drought is one of the most serious world-wide problems in agriculture, rice is the largest water consumer in crops. Development of drought tolerant varieties is largely based on the quick and precise screening of germplasm and breeding materials in water-limited environments, mapping and cloning the drought-tolerance gene, incorporating the gene of high-yield, good-quality and drought tolerance by using MAS and transgenic technology. In this study, we analysed the characteristics of drought tolerance including panicle neck diameter and panicle water potential; mapped QTLs affecting drought tolerance in a RIL population; developed four sets of QTL-NILs by MAS and evaluated their DT ability; cloned a DT gene named OsGRAS by candidate-gene strategy; and applied QTL mapping result to the breeding program by introgressing the target region from chromosome 4 into upland rice CMS maintainer line "Huhan1B". Main results of the present study are as following:
     1. Study on panicle water potential. Two upland varieties (IRAT109, IAPAR9) and one lowland variety (Zhenshan 97B) were grown in summer season and treated by drought stress and normal condition in reproductive stage. Panicle water potential (PWP) and leaf water potential (LWP) were measured every l-1.5h in 24h in sunny days. Both PWP and LWP of upland varieties started to decreased later in the morning, maintained in a higher level at solar noon and recover more quickly in the evening than that of lowland variety. The results showed that PWP can be used as an indicator of plant water status based on the parallel daily changes, and the high correlation between PWP and LWP. Similar correlations were also observed between PWP, LWP and seven traits about plant growth and grain yield formation. PWP seemed to be more effective to distinguish the upland rice varieties with different drought tolerant ability. Difference of PWP and LWP between upland and lowland rice varieties were also observed in solar noon even under normal water condition.
     2. Study on panicle neck diameter and DT target interval introgressed into "Huhan1B" by MAS. The panicle neck diameter was measured in a rice RIL population of 187 lines from the cross "Zhenshan97B/IRAT109" under different water conditions in 2003 and 2004. Panicle neck diameter was found to be significantly correlated with many agronomical traits, especially with the panicle size. It was found by path analysis that panicle neck diameter has effect on yield by increasing the spikelet number and grain number. Based on a linkage map of 213 SSR markers, three main effect QTLs were detected for PND with contribution rates varied from 5.03% to 11.01%, including one locus detected under both water conditions (qrPND-4). The chromosomal region on chromosome 4 (RM241-RM349) also hosted QTLs for seven panicle traits, including panicle number, panicle length, primary branch number, secondary branch number, spikelet number per panicle, spikelet density and grain number per panicle. Seventeen epistatic QTLs were detected for PND under well-watered and stress conditions. The contribution rate of each pair of epistatic effect varied from 2.58% to 5.64%.
     During three times backcross procedure, positive individuals were selected in the progeny by foreground markers for further crossing or selfing. The target interval of chromosome 4 from IRAT109 was introgressed into an upland maintainer line "Huhan1B". It was found that introgressed lines have more grain number, higher yield and thicker panicle neck diameter but less panicle number than "Huhan1B" under drought stress.
     3. NIL Development and gene cloning of OsGRAS by candidate-gene strategy. Five QTLs controlling several DT traits was selected according to the mapping results for two years. NILs was developed by crossing and continuous backcross, and progeny selection by both foreground and background markers. The drought tolerance ability was evaluated for four populations of QTL-NILs. The NILs has higher yield and spikelet fertility than Zhenshan97B as the recurrent parent. Fine mapping was done to narrow down the interval by adding more SSR and ILP markers for the interval RM273-RM255 on chromosome 4 and RM134-RM420 on chromosome 7. For the target interval of chromosome 4, QTLs of both grain number and grain yield located in the interval RM17355-RM17352 (95kb), QTL of panicle number and spikelet number located in the interval RM5320-RM17355 (609kb), QTL of spikelet fertility located in the interval RM17183-RM17190 (227kb). For the region RM134-RM420 of chromosome 7, we found that QTLs influencing both grain number and spikelet fertility were located in RM134-RI04226 (83kb), spikelet number and grain yield located within RM1306-RI04046 (446 kb).
     Based on the sequence of candidate gene, full-length cDNA and promotor sequnece was obtained by primer design and PCR amplification. OsGRAS is a member of the GRAS Family of transcriptional regulators. OsGRAS has the typical domain of GRAS family accoding to the conserved domain alignment.Three expression vectors of OsGRAS were constructed by enzyme digestion and vector ligation.
引文
1.马长乐,王萍萍,曹子谊.盐地碱蓬APX基因的克隆及盐胁迫下的表达.物生理与分子生物学报,2002,28(4):261-266
    2.马均,马文波,周开达,汪旭东,田彦华,明东风,许凤英.水稻不同穗型品种穗颈节间组织与籽粒充实特性的研究.作物学报,2002,28(2):215-220
    3.方宣钧,吴为人.分子育种.分子植物育种.2003,1(1):1-5
    4.王玮,邹琦,杨兴洪,李岩,彭涛.水分胁迫下各小麦芽鞘长度与抗旱性的关系及其遗传特性的研究.西北植物学报,1998.18(1):24-29
    5.邓启云,袁隆平,梁风山,李继明,李新奇,王乐光,王斌.野生稻高产基因及分子标记辅助选择育种.杂交水稻.2004,19(1):6-10
    6.先兆江.几个苹果品种叶片气孔的初步研究.莱阳农学院学报.1985.02:54-60
    7.刘鸿艳,邹桂花,刘国兰,胡颂平,李明寿,余新桥,梅捍卫,罗利军.水分梯度下水稻CT,LWP和SF的相关及其QTL定位研究.科学通报,2005.50(2):130-139
    8.孙新立,才宏伟,王象坤.同工酶基因数量化方法对亚洲栽培稻的分类研究.作物学报,1996,22(6):693-699
    9.朱维琴,吴良欢,陶勤南.干旱逆境下不同品种水稻叶片有机渗透调节物质变化研究.土壤通报.2003,34(1):25-28
    10.许明子,全雪丽,石铁源,郑成淑,刘宪虎.不同水稻品种穗颈维管束性状及其相关研究.延边大学农学院学报,2000,22(2):81-85
    11.许绍斌,陶玉芬,杨昭庆,褶嘉档.简单快速的DNA银染合胶保存方法.遗传,2002,24(3):335-336
    12.余守武,谢建坤,万勇.水稻抗旱性相关性状的QTLs定位研究进展.分子植物育种,2004,2(3):391-400
    13.余新桥,梅捍卫,刘康,李明寿,梁文兵,罗利军等.优质节水抗旱雄性不育系”沪旱1A”的选育与利用.上海农业学报,2006,22(2):32-35
    14.吴为人,周元昌,李维明。数量性状基因型选择与基因型值选择潜力的比较.科学通报,2002,47:2080-2083
    15.应存山.中国稻种资源,《北京:中国农业科技出版社》.1993,540
    16.张木清,陈如凯编.作物抗旱分子生理与遗传改良.北京:科学出版社,2005
    17.李吉跃。植物耐旱性及其机理.北京林业大学学报,1991,13(3):93-99
    18.杨建昌,乔纳圣.威尔斯(译).水分胁迫对水稻气孔导度及脱落酸含量的影响[J].作物学报,1995,21(5):594-539
    19.沈新莲,袁有禄.棉花高强纤维主效QTL的遗传稳定性及它的分子标记辅助选择效果[J].高技术通讯,2001,11(10):13-16
    20.陈其军,王学臣,刘强.植物逆境胁迫耐受性功能基因组研究进展[J].生物化学与生物物理进展,2001,28(6):797-801
    21.罗利军,张启发。栽培稻抗旱性研究的现状与策略.中国水稻科学,2000,15(3):209-214
    22.胡又厘.1992.余甘根和叶的形态解剖特征与耐早性的关系.福建农学院学报,21(4):413-417
    23.凌启鸿,蔡建中,苏祖芳.水稻茎秆维管束数与穗部性状的关系研究.江苏农学院学报,1982,3(3):48-58
    24.徐云碧,朱立煌编.分子数量遗传学.北京:中国农业出版社,1994
    25.翁晓燕,蒋德安.影响水稻午休得因素分析与响应曲面分析.生物数学学报.1998,13(2):234-238
    26.高吉寅,胡荣海.水稻等品种苗期抗旱生理指标的探讨[J].中国农业科学,1984,4:41-45
    27.黄璜.水稻穗颈节间组织与颖花数的关系[J].作物学报,1998,24(2):193-199
    28.曾华宗.利用QTL进行植物抗旱基因鉴定的生物信息学方法和软件的设计与实现.[博士学位论文].上海:复旦大学图书馆,2007
    29.Ahn S,Acderson J A,Sorrells M E.Homoelogous relationships of rice,wheat and Chromosomes.Mol Gen Genet,1993,241:83-90
    30.Agneda G,Isaura M,Luis A.Barley yield in water-stress conditions:the influence of precocity,osmotic adjustment and stomatal conductance.Field Crops Res,1999,62(1):23-34
    31.All M,Jensen C R,Mogensen V O1.Root signaling and osmotic adjustment during intermittent soil drying sustain grain yield of field grown wheat.Field Crops Res,1999,62(1):35-52
    32.Anthony E H,Ndiaga C,Samba T.Development of cowpea cultivars and germplasm by the bean/cowpea CRSP.Field Crops Res,2003,82(2-3):103-134
    33. Armenta-soto J K, Chang T T, Loresto G C. Genetic analysis of root characters in rice[J]. SABRAO J, 1983,15(2):103-116
    
    34. Ashikari M, Sakakibara H, Lin S Y, Yamamoto T, Takashi T, Nishimura A, Angeles E R, Qian Q, Kitano H, Matsuoka M. Cytokinin oxidase regulates rice grain production. Science. 2005, 39: 741-745
    
    35. Babu R C, Nguyen B D, Chamarerk V, Shanmugasundaram P, Chezhian P, Jeyaprakash P. Genetic analysis of drought resistance in rice by molecular marker: Association between secondary traits and field performance. Crop Science, 2003, 43, 1457-1469
    
    36. Basia V, Arice A. Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations. Current Opinion in Biotechnology, 2005, 16 (2): 123-132
    
    37. Baverstock P R. Effect of variations in rate of growth on physiological parameters in the lizard Amphibolurus ornatus. Comparative Biochemistry and Physiology Part A: Physiology, 1975,51(3): 619-631
    
    38. Begg J E, Turner N C.Crop and water deficits [J]. Adv Agron. 1976, (28): 161-182
    
    39. Berloo R V, Stam P. Comparison between marker-assisted selection and phenotypical selection in a set of Arabidopsis thaliana recombinant inbred lines. Theor Appl Genet, 1999,98:113-118
    
    40. Bernacchi D, Beck-Bunn T, Emmatty D, Eshed Y, Inai S, Lopez J, Petiard V, Sayama H, Uhlig J, Zamir D, Tanksley S, Advanced backcross QTL analysis of tomato. II. Evaluation of near-isogenic lines carrying single-donor introgressions for desirable wild QTL-alleles derived from Lycopersicon hirsutum and L. pimpinellifolium. TheorAppl Genet, 1998, 97:170-180
    
    41. Blum A, Shpiler L, Golan G. Yield stability and canopy temperature of wheat genotypes under drought-stress. Field Crops Res, 1989, 22(4): 289-296
    
    42. Blum A. Genetic and physiological relationships in plant breeding for drought resistance. Agricultural Water Management, 2004, 7(1-3): 195-205
    
    43. Bolanos J, Edmeades G O. The importance of the anthesis-silking interval in breeding for drought to lerance in tropical maize. Field Crops Res, 1996, 48(1): 65-80
    
    44. Botstein D, White R L, Skolnick M. Constructions of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Human Genet, 1980, 32: 314-331
    45. Bouslama M. Stress tolerance in soybean. I.Evalution of three screening techniques for heat and drought tolerance. Crop Science, 1984,24:933-937
    
    46. Brondani C, Rangel P, Brondani R, Ferreira M. QTL mapping and introgression of yield-related traits from Oryza glumaepatulato to cultivated rice (Oryza sativa) using microsatellite markers. Theor Appl Genet, 2002,104:1192-1203
    
    47. Brown L R, Halweil B. China's water shortage could shake world food security [J], World Watch, 1998, (7/8): 3-4
    
    48. Campos H, Cooper M, Habben J E. Improving drought tolerance in maize: a view from industry. Field Crops Res, 2004. 90(1): 19-34
    
    49. Cao G Q, Zhu J, He C X. QTL analysis for epistatic effects and QTL x environment interaction effects on final height of rice (Oryza sativa L.). Acta Genetica Sinica, 2001,28(2): 135-143
    
    50. Capell T, Escobar C, Liu H. Overexpression of the oat arginine decarboxylase cDNA in transgenic rice (Oryza sativa L.) affects normal development patterns in vitro and results in putrescine accumulation in transgenic plants. Theor Appl Gene, 1998, 97: 246-254
    
    51. Champoux M C, Wang C, Sarkarung, et al. Locating genes associated with root morphology and drought avoidance in rice via linkage to molecular markers. Theor Appl Genet, 1995,90: 969-981
    
    52. Chandra B B R, Nguyen V C D, Shanmugasundarama P. Genetic Analysis of Drought Resistance in Rice by Molecular Markers Association between Secondary Traits and Field Performance. Crop Science, 2003,43:1457-1469
    
    53. Cui K H, Peng S B, Xing Y Z, Yu S B, Xu C G, Zhang Q. Molecular dissection of the genetic relationships of source, sink and transport tissue with yield traits in rice, Theor Appl Genet. 2003,106: 649-548
    
    54. Cutler J M. Dynamics of osmotic adjustment in rice. Crop Science, 1980, 20: 314-318.
    
    55. Darvasi A, Weinreb A, Minke V. Detecting marker-QTL linkage and estimating QTL gene effect and map location using a saturated genetic map. Genetics, 1993, 134(3): 943-951
    
    56. Dholakia B B, Ammiraju S S, Lagu M D, R6der M S, Rao V S, Dhaliwal H S, Ranjekar P K, Gupta V S. Molecular marker analysis of kernel size and shape in bread wheat. Plant Breeding, 2003, 122: 392-397
    57. Doi K, Izawa T, Fuse T, Yamanouchi U, Kubo T, Shimatani Z, Yano M, Yoshimura A. Ehd1, a B-type response regulator in rice, confers short-day promotion of flowering and controls FT-like gene expression independently of Hd1. Gene & Developmenet, 2004,18: 926-936
    
    58. Eric S O, Mich L B, Chris J A. Evalution of physiological traits as indirect selection criteria for drought tolerance in sugar beet. Field Crops Res, 2005,91(2-3): 231-249
    
    59. Fan C C, Xing Y Z, Mao H L, Lu T T, Han B, Xu C G, Li X H, Zhang Q F. GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein. Theor Appl Genet, 2006, 112: 1164-1171
    
    60. Farquhar G D. On the relationship between carbon isotope discrimination and intercellular carbon dioxide concentration in leaves. Aust J Plant Physiol, 1982, 121-137
    
    61. Fischer K S, Lafitte R, Fukai S, Atlin G, Hardy B. Breeding Rice for Drought-Prone Environments. Los Banos (Philippines): Interational Rice Research Institute. 2003, p.98
    
    62. Fisher R A, Maurer R. Drought resistance in spring wheat cultivars I. Grain yield response. Aust JAgric Res, 1978, 27: 897-912
    
    63. Frary A, Nesbitt T C, Frary A, Grandillo S, Knaap E, Cong B, Liu J, Meller J, Elber R, Alpert, Tanksley S D.fw2.2: a quantitative trait locus key to the evolution of toma to fruit size. Science, 2000, 289:85-88
    
    64. Fridman E, Pleban T, Zamir D. A recombination hotspot delimits a wild-species quantitative trait locus for tomato sugar content to 484 bp within an invertase gene. Proc NatlAcad Sci, 2000, 97(9): 4718-4723
    
    65. Fukai S, Cooper M. Development of drought-resistant cultivars using physio-morphological traits in rice [J]. Field crops Res, 1995, 40:67-85
    
    66. Fulton T M, Beck-Bunn T, Emmatty D, Eshed Y, Lopez J, Petiard V, Uhlig J, Zamir D, Tanksley S D. QTL analysis in an advanced backcross of Lycopersicon penivianum to the cultivated tomato and comparisons with QTLs found in other wild species. Theor Appl Genet, 1997, 95: 881-894
    
    67. Fussell L K. Crop phydiology and breeding for drought tolerance: Research and development. Field Crops Res, 1991. 27(3): 183-199
    
    68. Garrity D P, O'Toole J C. Screening rice for drought resistance at the reproductive phase. Field Crops Res, 1994, 39 (2-3):99-110
    69. Gimelfarb A, Lande R. Simulation of marker-assisted selection in hybrid population. Genetical research., 1994,63:39-47
    
    70. Gregorio G B. Progress in breeding for salinity tolerance and associated abiotic stresses in rice. Field Crops Res, 2002,76 (2-3): 91-101
    
    71. Hafid R E L, Dan H S, Kartou M. Physiological responses of spring durum wheat cultivars to early-season drought in a mediterranean environment. Annals of Botany, 1998, 81(2): 363-370
    
    72. Hemamalini G S, Shashidhar H E, Hittalmani S. Molecular marker assisted tagging of morphological and physiological traits under two contrasting moisture regimes at peak vegetative stage in rice (Oryza sativa L.). Euphytica, 2000,112 (1): 69-78
    
    73. Henry D, Amit D. Multigene engineering: dawn of an exciting new era in biotechnology. Curremt Opinion in biotechnology, 2002a. 13(2): 136-141
    
    74. Henry D. Antibiotic-free chloroplast genetic engineering-an environmentally friendly approach. Trends in Plant Science, 2001. 6(6): 237-239
    
    75. Henry D. Milestones in chloroplast genetic engineering: an environmentally friendly era in biotechnology. Trends in Plant Science, 2002b. 7(2): 84-91
    
    76. Hirasawa T. Root characteristics in the view of transpiration and photosynthesis. In: Abe J, Morita S, eds., Root system management that leads to maximize rice yields. Japanese Society of Root Research, Tokyo, 1997, 26-27
    
    77. Hittalmani S, Shashidhar H E, Bagali P G, Huang N, Sidhu J S, Singh V P, Khush G S. Molecular mapping of quantitative trait loci for plant growth, yield and yield related traits across three diverse locations in a doubled haploid rice population. Euphytica, 2002,125: 207-214
    
    78. Hospital F, Moreau L, Lacoudre F, Charcosset A, Gallais A. More on efficiency of marker-assisted selection. TheorAppl Genet, 1997, 95:1181-1189
    
    79. Hu H H, Dai M Q, Yao J L, Xiao B Z, Li X H, Zhang O F, Xiong L Z. Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice. Proc Nat Acad Sci, 2006, 103(35): 12987-12992
    
    80. Insightful Corporation, 2001. S-plus 6 for windows,.User's guide. Seattle, WA, USA.
    
    81. International network for genetic evaluation of rice: Standard evaluation system for rice. International Rice Research Institute, IRRI, 1996: Los Banos, Philippines
    82. Jiang G H, He Y Q, Xu C G, Li X H, Zhang Q. The genetic basis of stay-green in rice analyzed in a population of doubled haploid lines derived from an indica by japonica cross, Theor Appl Genet, 2004,108: 688-698
    
    83. Jonaliza C L, Pantuwan G, Jongdee B, Toojinda T. Quantitative Trait Loci Associated with Drought Tolerance at Reproductive Stage in Rice. Plant Physiology. 2004,133: 384-399
    
    84. Kamoshita A, Wade L J, Ali M L, Pathan M S, Zhang J, Sarkarung S, Nguyen H T. Mapping QTLs for root morphology of a rice population adapted to rainfed lowland conditions. Theor Appl Genet, 2002a, 104:880-893
    
    85. Kamoshita A. Zhang J X, Siopongco J, Sarkarung S,. Nguyen H T, Wade L J. Effects of phenotyping environment on identification of quantitative trait loci for rice root morphology under anaerobic conditions. Crop Science.2002b, 42: 255-265.
    
    86. Khush G S, Peng S. Breaking the yield frontier of rice. In: M. P. Reynolds ed., Increasing Yield Potential in Wheat: Breaking the Barriers, 1996, 36-51. CIMMYT, Mexico
    
    87. Khush G S, Singh R J, Sur S C. Primary trisomics of rice: origin, morphology, cytology and use in linkage mapping. Genetics, 1984,107:141-163
    
    88. Kinoshita T. Report of the commettee on gene symbolization, nomenclature and linkage group. Rice Genet Newslett, 1993,10: 7-39
    
    89. Kojima S, Takahashi Y, Kobayashi Y, Monna L, Sasaki T, Araki T, Yano M. Hd3a, a rice ortholog of Arabidopsis FT gene. promotes transition to flowering downstream of Hd under short. day conditions. Plant Cell Physiol, 2002,43(10): 1096-1105
    
    90. Koniecyzn A, Ausubel F M. A. procedure for mapping Arabidopsis mutations using codominant ecotype specific PCR based markers. Plant J, 1993, 4:403-410
    
    91. Ladha J K, Kirk G J D, Bennett J, Peng S, Reddy C K, Reddy P M, Singh U. Opportunities for increased nitrogen-use efficiency from improved lowland rice germplasm. Field Crops Res, 1998, 56, 41-71
    
    92. Lafitte H R, Courtois B, Arraudeau M. Genetic improvement of rice in aerobic systems: Progress from yield to genes. Field crop Res, 2002, 75,171-190
    
    93. Lafitte H R, Price A H, Courtois B. Yield response to water deficit in an upland rice mapping population: associations among traits and genetic markers. Theor Appl Genet, 2004, 109: 1237-1246
    94.Lanceras J C,Pantuwan G,Jongdee B,Toojinda T.Quantitative Trait Loci Associated with Drought Tolerance at Reproductive Stage in Rice.Plant Physiology.2004,135:384-399
    95.Lanceras J C,Pantuwan G,Jongdee B,Toojinda T.Quantitative trait Loci associated with drought tolerance at reproductive stage in rice.Plant Physiology,2004,35:384-399
    96.Lander E,Botstein D.Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps.Genetics,1989,121:185-199
    97.Lebreton C.Identification of QTL for drought response in maize and their use in testing causal relationships between traits.J Exp Bot,1995,46:288,853-865
    98.Levitt J.Responses of plants to environmental stress:water,radiation,salt and other stresses,2rid Edn.Academic Press,1980,New York
    99.Levitt J.Responses of Plants to Environmental Stresses.Academic Press,1972.NY p.695
    100.Li X,Qian Q,Fu Z,Wang Y,Xiong G,Zeng D,Wang X,Liu X,Teng S,Hiroshi F,Yuan M,Luo D,Han B,Li J.Control of tilling in rice.Nature,2003,422(6932):618-621
    101.Li Z K,Pinson S R M,Paterson AH.Genetic dissection of the source-sink relationship in rice.Mol.Breeding,1998,4:419-426
    102.Li Z K,Rutger J N.Geographic distribution and multilocus structure of isozyme variation in rice.Theor Appl Genet,2000,101:379-387
    103.Lilley J M,Ludlow M,McCouch S.Locating QTL for osmotic adjustment and dehydration tolerance in rice[J].J Exp Bot,1996,47:1427-1436
    104.Lincoln S E,Daly M J,Lander E.Constructing genetic maps with MAPMAKER/EXP 3.0.Whitehead Institute Technical Report(3rd edn).Whitehead Institute,1992:Cambridge,MA,USA.
    105.Liu H Y,Zou G,Liu G L,Hu S P,Li M S,Yu X O,Mei H W,Luo L J.Correlation analysis and QTL identification for canopytemperature,leaf water potential and spikelet fertility in rice under contrasting moisture regimes.Chinese Sci Bull,2005,50:317-326
    106.Liu J P,Eck J V,Cong B,Tanksley S D.A new class of regulatory genes underlying the cause of pear-shaped tomato fruit.Proc NatlAcad Sci,2002,99:13302-13306
    107.Liu J.The Arabidopsis thaliana SOS2 gene encodes a protein kinase that is required for salt tolerance.Proc Natl Acad Sci,USA,2000,97:3730-3734
    108. Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and 2~(-△△Ct) Method. Methods, 2001, 25(4):402-408
    
    109. Ludlow M M. Critical evaluation of the possibilities for modifying crops for high production per unit of precipitation. In Drought Research Priorities for the Dryland Tropics (eds. Bidinger F R), ICRISAT. 1990.179-211
    
    110. Machida Y, Nishihama R, Kitakura S. Progress in studies of plant homologs of mitogen-activated protein (MAP) kinase and potential upstream components in kinase cascades. Critical Review in Plant Science, 1997,16(6): 481-496
    
    111.Maloof J N. Natural variation in light sensitivity of Arabidopsis. Nature Genetics, 2001, 29,441-446
    
    112. Maloofl J N, Borevitzl J O, Dabi T, Lutes J, Nehring R B, Redfern J L, Trainer G T, Wilson J M, Asami T, Berry C C, Weigel D, Chory J. Natural variation in light sensitivity of Arabidopsis Nature Genetics, 2001, 29: 441 -446
    
    113. Mather K, Jinks J L. Biometrical genetics: the study of continuous variation (Edn 3). Chapman & Hall, London, New York, 1982
    
    114. McCouch S R, Cho Y G, Yano M, Paul E, Blinstrub M, Morishima H, Kinoshita T. Suggestion for QTL nomenclature. Rice Genetics Newsletters, 1997,14,11-13
    
    115. Mitchell J H, Siamhan D, Wamala M H. Response of four sorghum lines to mid-season drought. II. Leaf characteristics. Field Crops Res, 1996, 25(3-4): 297-308
    
    116. Mizoguchi T, Hayashida N, Yamaguchi-Shinozaki K, Kamada H, Shinozaki K. ATMPKs: a gene family of plant MAP kinases in Arabidopsis thaliana. FEBS Lett, 1993, 336(3):440-4
    
    117. Mizoguchi T, Hayashida N, Yamaguchi-Shinozaki K, Kamada H, Shinozaki K. Two genes that encode ribosomal-protein S6 kinase homologs are induced by cold or salinity stress in Arabidopsis thaliana. FEBS Lett, 1995, 358(2): 199-204
    
    118. Mizoguchi T, Irie K, Hirayama T, Hayashida N, Yamaguchi-Shinozaki K, Matsumoto K, Shinozaki K. A gene encoding a mitogen-activated protein kinase kinase kinase is induced simultaneously with genes for a mitogen-activated protein kinase and an S6 ribosomal protein kinase by touch, cold, and water stress in Arabidopsis thaliana. Proc Natl Acad Sci, 1996, 93(2): 765-769
    
    119. Moncada P, Martinez C P, Borrero J, Chatel M, Gauch H, Guimaraes E, Tohme J, McCouch S R. Quantitative trait loci for yield and yield components in an Oryza sativa X Oryza rufipogon BC_2F_2 population evaluated in an upland environment. TheorAppl Genet, 2001,102,41-42
    
    120. Monna L, Lin H, Kojima S, Sasaki T, Yano M. Genetic dissection of a genomic region for a quantitative trait locus, Hd3, into two loci, Hd3a and Hd3b, controling heading date in rice. Theor Appl Genet, 2002,104:772-778
    
    121. Moreau L, Charcosset, Hospital F, Gallais A. Marker-assisted selection efficiency in populations of finite size. Genetics, 1998,148:1353-1365
    
    122. Morgan J M. Osmoregulation and water stress in higher plants. Ann Rev Plant Physiol, 1984, 35: 299-319
    
    123. Morishima H, Glaszman J C. Current status of isozyme gene symbols. Rice Genet Newslett, 1990,5: 737-739
    
    124. Motoaki S, Ayako K, Kazuko Y S. Molecular responses to drought, salinity and frost: common and different paths for plant protection. Current Opinion in Biotechnology, 2003,14(2): 194-199
    
    125. Mu C, Nemoto K, You Z, Yamagish J. Size and activity of shoot apical meristems as determinants of floret number in rice panicles. Plant Production Science, 2005, 8(1), 51-59
    
    126. Neal G, Zhang J Z. Genomics applications to biotech traits: a revolution in progress? Current Opinion in Plant Biology, 2004, 7(2): 226-230
    
    127. Nguyen T T T, Klueva N, Chamareck V, Aarti A, Magpantay G, Millena A C M, Pathan M, Nguyen H T. Saturation mapping of QTL regions and identification of putative candidate genes for drought tolerance in rice. Mol Gen Genet, 2004, 272: 35-46
    
    128. Nishimura A. Isolation of a rice regeneration quantitative trait loci gene and its application to transformation systems. Proc Nat Acad Sci. 2005.102,11940-11944
    
    129. Olson M, Hood L, Cantor C, Doststein D. A common language for physical mapping of the human genome. Science, 1989,254:1434-1435
    
    130. Orita M, Suzuki Y, Sekiya T. Rapid and sensitive detection of point mutations and DNA polymorphisms using the polymerase chain reaction. Genomics, 1989, 5(4): 874-879
    
    131. Pantuwan G, Fukai S, Cooper M, Rajatasereekul S, OToole J C. Yield response of rice (Oryza sativa L.) genotypes to drought under rainfed lowland. 3. Plant factors contributing to drought resistance. Field Crop Res, 2002, 73,181-200
    132. Paterson A H, Damon S, Hewitt J D. Mendelian factors underlying quantitative traits in tomato: comparison across species, generations, and environments. Genetics, 1991, 127:181-197
    
    133. Paterson A H, Lander S E, Hewitt J D. Resolution of quantitative traits into Mendelian factors by using a complete linkage map of restriction fragment length polymorphisms. Nature, 1988, 335: 721-726
    
    134. Paterson A H. Molecular dissection of quantitative traits: progress and prospects. Genome Res, 1995,5(4): 321-333
    
    135. Peng S, Cassman K G, Virmani S S, Sheehya J, Khush G S. Yield potential trends of tropical rice since the release of IR8 and the challenge of increasing rice yield potential. Crop Science, 1999, 39,1552-1559
    
    136. Pilon S. Improved performance of transgenic fructan-accumulating tobacco under drought stress. Plant Physiology, 1995,107(1): 125-130
    
    137. Price A H, Steele K A, Moore B J, Jones R G W. Upland rice grown in soil-filled chambers and exposed to contrasting water-deficit regimes. II. Mapping quantitative trait loci for root morphology and distribution. Field Crops Res, 2002b, 76: 25-43
    
    138. Price A H, Tomos A D. Genetic dissection of root growth in rice (Oriza Sativa) 2. Mapping quantitative trait loci using molecular markers. Theor Appl Genet, 1997, 95: 143-152
    
    139. Price A H, Townend J, Jones M P, Audebert A, Courtois B. Mapping QTLs associated with drought avoidance in upland rice grown in the Philippines and West Africa. Plant Mol Biol, 2002a, 48:683-695
    
    140. Printer P J J, Zipoli G, Reginato R J, Jackson R D, Idso S B. Canopy temperature as an indicator of differential water use and yield performance among wheat cultivars. Agric Water Manog, 1990,18: 35-48
    
    141. Pysh L D, Wysocka-Diller J W, Camilleri C, Bouchez D, Benfey P N. The GRAS gene family in Arabidopsis: sequence characterization and basic expression analysis of the SCARECROW-LIKE genes. Plant J, 1999,18(1): 111-119
    
    142. Ray J D, Yu C, McCouch S. Mapping quantitative trait loci associated with root penetration ability in rice (Oryza sativa L)[J]. Theor Appl Genet, 1996, 92: 627-636.
    
    143. Ren Z H, Gao J P, Li L G, Cai X L, Huang W, Chao D Y, Zhu M Z, Wang Z Y, Luan S, Lin H X. A rice quantitative trait locus for salt tolerance encodes a sodium transporter. Nature Genetics, 2005, 37,1141-1146
    144. Ribaut J M, Raqot M. Marker-assisted selection to improve drought adaption in maize: the backcross approach, perspectives, limitations, and alternatives. J Exp Bot, 2007,58(2): 351-360.
    
    145. Roberts D M, Harmon A C. Calcium-modulated proteins: targets of intracellular calcium signals in higher plants. Annu Rev Plant Physiol Plant Mol Biol, 1992, 43: 375-414
    146. Robin S, Pathan M S, Courtois B, Lafitte R, Carandang S, Lanceras S, Amante M, Nguyen H T, Li Z. Mapping osmotic adjustment in an advanced back-cross inbred population of rice. Theor Appl Genet, 2003,107(7): 1288-1296
    147. Rosiella A A, Hamblin J. Theoretical aspects of selection for yield in stress and non-stress environments. Crop Science. 1981, 21:943-946
    148. Salah E D E A, Carlos A B, Anton J M P, Vered R, Maarten K. A QTL for flowering time in Aribiodopsis reveals a novel allele of CRY2. Nature Genetics, 2001, 29: 435-440
    149. Sasahara T, Kodama K, Kambayashi M. Studies on structure and function on the rice ear, IV. Classification of ear structure of grain on the secondary rachis-branch. Japanese Jour Crop Sci, 1982,51(1): 26-34
    150. Schulize E D. Soil water deficits and atmospheric humidity as environmental signals. Bios Scientific Publisher, 1993,: 129-145
    151. Schumacher K, Schimitt T, Rossberg M, Schmitz G, Theres K. The Lateral suppressor (Ls) gene of tomato encodes a new member of the VHIID protein family. Proc NatlAcad Sci, 1999,96(1): 290-295
    152. Septiningsih E M, Prasetiyono J, Lubis E, Tai T H, Tjubaryat T, Moeljopawiro S , McCouch S R. Identification of quantitative trait loci for yield and yield components in an advanced backcross population derived from the Oryza sativa variety IR64 and the wild relative O. rufipogon, Theor Appl Genet, 2003,107, pp. 1419-1432
    153. Shao H B. Changes of anti-oxidative enzymes and membrane peroxidation for soil water deficits among 10 wheat genotypes at seedling stage. Colloids and Surfaces B:Biointerfaces, 2005,42(2): 107-113
    154. Shi W M, Muramoto Y, Ueda A, Takabe T. Cloning of peroxisomal ascorbate peroxidase gene from barley and enhanced thermotolerane by overexpressing in Arabidopsis thaliana. Gene, 2001, 273(1):23-27
    155. Singh K, Ishii T, Parco A. Centromere mapping and orientation of the molecular linkage map of rice (Oryza sativa L.). Proc Nat Acad Sci USA, 1996a, 93: 6163-6168
    156. Singh K, Muttani D S, Khush G S. Secondary trisomics and telotrisomics of rice: origin, characterization, and use in determining the orientation of chromosome map. Genetics, 1996b, 143: 517-529
    157. Song X. J, Huang W, Shi M, Zhu M Z, Lin H X. A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase. Nature Genetics, 2007,39, 623-630
    158. Steele K A, Price A H, Shashidhar H E, Witcombe J R. Marker-assisted selection to introgress rice QTLs controlling root traits into an Indian upland rice variety. Theor Appl Genet, 2006,112: 208-221
    159. Stone J M, Walker J C. Plant protein kinase families and signal transduction. Plant Physiology, 1995,108: 451-457
    160. Stuber C W, Goodman M M, Moll R H. Improvement of yield and ear number resulting from selection at allozyme loci in a maize population [J]. Crop Science, 1982, 22: 737-740
    161. Stuber C W. Mapping and manipulating quantitative trait in maize. Trends in Genetics, 1995,11: 477-481
    162. Takahashi Y, Shomura A, Sasaki T, Yano M. A rice quantitative trait locus involved in photoperiod sensitivity, encodes the a subunitof protein kinase CK2. Proc Nat Acad Sci. 2001, 98(14): 7922-7927
    163. Tanksley S D, Nelson J C. Advanced backcross QTL analysis: a method for the simultaneous discovery and transfer of valuable QTLs from unadapted germplasm into elite breeding lines. Theor Appl Genet, 1996, 92:191-203
    164. Tanksley S D, Rick C M. Isozyme genetic linkage map of the tomato: applications in genetics and breeding. Theor Appl Genet, 1980, 57: 161-170
    165. Tanksley S D. Mapping polygenes. Annu Rev Genet, 1993, 27: 205-233
    166. Temnykh S, DeClerck G, Lukashova A. Computational and Experimental Analysis of Microsatellites in Rice (Oryza sativa L.): Frequency, Length Variation, Transposon Associations, and Genetic Marker Potential. Genome Res, 2001; 11: 1441-1452
    167. Thomson M J, Tai T H, McClung A M, Lai X H, Hinga M E, Lobos K B, Xu Y, Martinez C P, McCouch S R.. Mapping quantitative trait loci for yield, yield components and morphological traits in an advanced backcross population between Oryza rufipogon and the Oryza sativa cultivar Jefferson, Theor Appl Genet, 2003, 107, pp. 479-493
    168. Tomer J B, Prasad S C. Relationship between inheritance and linkage for drought tolerance in upland rice {Oryza sativa) varieties [J]. Indian J Agri Sci, 1996, 66(8): 459-465
    169. Tondelli A, Francia E, Barabaschi D, Aprile A, Skinner J S, Stockinger E J, Stanca A M, Pecchioni N. Mapping regulatory genes as candidates for cold and drought stress tolerance in barley. Theor Appl Genet, 2006,112(3): 445-454
    170.Toojinda T, Siangliw M, Tragoonrung S, Vanavichit A. Molecular genetics of submergence tolerance in rice: QTL analysis of key traits, Ann Bot (Lond), 91 Spec No, 2003, pp. 243-253
    171.Torii K U, Mitsukawa N, Oosumi T, Matsuura Y, Yokoyama R, Whittier R F, Komeda Y. The Arabidopsis ERECTA gene encodes a putative receptor protein kinase with extracellular leucine-rich repeats. Plant Cell, 1996, 8(4):735-46
    172. Turner N C, Jones M M. Turgor maintenance by osmotic adjustmet : A review and evalution In: Adaptation of plants to water and high temperature stress. 1980, 87-103
    173. Turner N C. Drought resistance and adaptation to water deficits in crop plants [A]. In: MusselH, stapes R.C. Stress Physiology in Crop Plants[C]. New York: Wiley, 1979, 343-372
    174. Turner N C. Further progress in crop water relations. Advances in A gronomy, 1997, 58:293-339
    175. Turner N C. The role of shoot characteristics in drought tolerance of crop plants. In: Drought Tolerance in Crop with Emphasis on Rice. IRRI, Los Banos, Manila, Philippines, 1982,115-134
    176. Venuprasad R, Shashidhar H E, Hittalmani S, Hemamalini G S. Tagging quantitative trait loci associated with grain yield and root morphological traits in rice (Oryza sativa L.) under contrasting moisture regimes. Euphytica, 2002,128: 293-300
    177. Vos P, Hogers R, Bleeker M. A new technique for DNA fingerprinting. Nucl Acid Res, 1995, 23: 4407-4414
    178. Walker D, Boerma H R, All J, Parrott W. Combining crylAc with QTLalleles from PI229358 to improve soybean resistance to lepidopteran pests. Molecular Breeding, 2002,9:43-51.
    179. Wan C, Xu W, Ronld E. Hydraulic lift in drought tolerance and susceptible maize hybrids. Plant and Soil, 2000, 219: 117-126
    180. Wang D G, Fan J B, Siao C J. Large-scale identification, mapping, and genotyping of single-nucleotide polymorphisms in the human genome. Science, 1998, 280: 1077-1082
    181. Wang D L, Zhu J, Li Z K. Mapping QTL with epistatic effects and QTL ' environment interactions by mixed model approaches. Theor Appl Genet, 1999, 99: 1255-1263
    182. Welsh J. McClelland M. Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Res, 1990,18: 7213-7218
    183. Williams J G K, Kubelik A R, Livak K J. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucl Acid Res, 1990,18: 6532-6535
    184. Wright G C, Smith R G G. Differences between two grain sorghum genotypes in adaptation to drought stress.II. Root water uptake and water use. Aust J Agric Res, 1993. 34: 615-651
    185. Wu K S, Tanksley S D. Abundance, polymorphism and genetic mapping of microsatellites in rice. Mol Gen Genet, 1993, 241: 225-235
    186. Xing Y Z, Tan Y F, Hua J P, Zhang Q F. Characterization of the main effects, epistatic effects and their environmental interactions of QTLs on the genetic basis of yield traits in rice. Theor Appl Genet, 2002,105: 248-257
    187. Xu J L, Lafitte H R, Gao Y M, Fu B Y, Torres R, Li Z K. QTLs for drought escape and tolerance identified in a set of random introgression lines of rice. Theor Appl Genet, 2005, 111: 1642-1650
    188. Yadav R, Courtois B, Huang N. Mapping genes controlling root morphology and root distribution in a doubled-haploid population of rice [J], Theor Appl Genet, 1997, 94: 619-632
    189. Yamagishi T, Peng S, Cassman K G, Ishii R. Studies on grain filling characteristics in "New Plant Type" rice lines developed in IRRI. Japanese Journal of Crop Science 65 (Extra issue No.2), 1996:169-170
    190. Yano M, Harushima Y, Nagamura Y, Kurata N, Minobe Y, Sasaki T. Identification of quantitative trait loci controlling heading date of rice using a high-density linkage map. Theor Appl Genet, 1997, 95: 1025-1032
    191. Yuan L P. The second generation of hybrid rice in China. In: Sustainable Rice Production for Food Security. Proceedings of the 20th Session of the International Rice Commission. FAO, Rome. 2003
    192. Yue B, Xiong L Z, Xue W Y, Xing Y Z, Luo L J, Xu C G. Genetic analysis for drought resistance of rice at reproductive stage in field with different types of soil. Theor Appl Genet, 2005, 111: 1127-1136
    193. Yue B, Xue W Y, Luo L J, Xing Y Z. QTL analysis for flag leaf characteristics and their relationships with yield and yield traits in rice, Acta genetica Sinica, 2006a, 33, 824-832
    194. Yue B, Xue W Y, Xiong L Z, Yu X Q, Luo L J, Cui K H, Jin D M, Xing Y Z, Zhang Q F. Genetic Basis of Drought Resistance at Reproductive Stage in Rice: Separation of Drought Tolerance From Drought Avoidance. Genetics, 2006b, 172:1213-1228
    195.Zeng H, Luo L, Zhang W, Zhou J, li Z, Liu H, Zhu T, Feng X, Zhong Y. PlantQTL-GE: a database system for identifying candidate genes in rice and Arabidopsis by gene expression and QTL information. Nucleic Acids Res, 2007, 35: 879-882
    196. Zeng Z B. Precision mapping of quantitative trait loci. Genetics, 1994, 136: 1457-1468
    197. Zhang H, Wang J, Nickel U, Allen R D, Goodman H M. Cloning and expression of an Arabidopsis gene encoding a putative peroxisomal ascorbate peroxidase. Plant MolBiol, 1997, 34(6): 967-971
    198. Zhang J, Zheng H G, Aarti A, Pantuwan G, Nguyen T T, Tripathy J N, Sarial A K, Robin S, Babu R C, Nguyen B D, Sarkarung S, Blum A, Nguyen H T. Locating genomic regions associated with components of drought resistance in rice: comparative mapping within and across species. Theor Appl Genet, 2001,103: 19-29
    
    199. Zhang X, Zhou S X, Fu Y C, Su Z, Wang X K, Sun C Q. Identification of a Drought Tolerant Introgression Line Derived from Dongxiang Common Wild Rice (O. rufipogon Griff). Plant Mol boil, 2006, 62: 247-259
    200. Zheng B S, Yang L, Zhang W P, Mao C Z, Wu Y R, Yi K K, Liu F Y, Wu P. Mapping QTLs and candidate genes for rice root traits under different water-supply conditions and comparative analysis across three populations. Theor Appl Genet, 2003,107:1505-1515
    201. Zhou P, Tan Y, He Y, Zhang Q. Simultaneous improvement for four quality traits of Zhenshan 97, an elite parent of hybrid rice by molecular marker-assisted selection. Theor Appl Genet, 2003, 106:326-331
    202. Zhu J, Weir B S. Mixed mode approaches for genetic analysis of quantitative traits. In: Chen LS, Ruan SG, Zhu J (eds): Advanced topics in biomathematics: Proceedings of international conference on mathematical biology. Singapore, World Scientific Publishing Co, 1998,321-330
    203. Zhuang J Y, Fan Y Y, Rao Z M, Wu J L, Xia Y W, Zheng K L. Analysis on additive effects and additive-by-additive epistatic effects of QTLs for yield traits in a recombinant inbred line population of rice, Theor Appl Genet, 105, 2002,1137-1145
    204. Zou G H, Mei H W, Liu H Y, Liu G L, Hu S P, Yu X Q, Li M S, Wu J H, Luo L J. Grain yield responses to moisture regimes in a rice population: association among traits and genetic markers. Theor Appl Genet, 2005,112(1):106-113

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700