基于宏观轮廓的沥青路面抗滑性能试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着社会文明程度的提高,道路行车安全越来越被人们所重视。提高沥青路面抗滑性能已成为保证交通安全的关键技术,轮胎与粗糙表面接触特性是提高路面抗滑能力的关键。
     本文基于宏观轮廓开展沥青路面抗滑特性及其试验研究,从轮胎与路面的界面接触特性分析沥青路面抗滑机理及影响抗滑性能的关键因素。采用压力胶片检测技术,开展不同宏观轮廓水平下的对比试验研究,揭示了轮胎与不同轮廓特征的路面界面接触特性,包括应力集中状态,从而验证路面宏观轮廓对抗滑性能的重要性。
     为测量沥青路面宏观轮廓,自主研发基于激光测距技术的高精度(10μm)轮廓测量仪,从准三维尺度测定沥青混合料表面宏观轮廓及衰减特性,提出了轮廓峰顶夹角和峰顶夹角衰减率等抗滑性能和抗滑耐久性评价指标,提出轮廓峰顶夹角小于90度(锐角)的比例为有效保证率,用于评价沥青路面抗滑性能衰减特性;提出了抗滑沥青混合料基于60℃标准温度和8小时标准评价时间搓揉试验抗滑性能评价标准为轮廓峰顶夹角有效保证率不小于70%。
     采用高精度(0.1mm)工业CT技术,针对沥青路面表层结构约1~2cm范围内的抗滑构造影响深度,探索从准三维尺度以角度描述和分形描述为基础的宏观轮廓提取和衰减分析;进而以沥青路面细观结构体积特性为理论基础,从三维尺度进一步分析沥青路面宏观轮廓衰减特性,提出了颗粒面积比、体积空隙率、抗滑构造敏感区衰减率等抗滑性能和抗滑耐久性评价指标;提出了抗滑沥青混合料基于60℃标准温度和8小时标准评价时间搓揉试验抗滑性能评价标准为体积空隙率不小于10.6%,抗滑构造敏感区衰减率不大于34%。
     研发以搓揉试验为原理的室内搓揉试验装置,模拟沥青路面行车荷载对抗滑性能的加速加载作用,采用单一粒径环氧树脂混合料验证搓揉试验模拟行车荷载作用的压密或磨耗效应,并建立相应的抗滑性能评价方法体系,揭示沥青路面基于宏观轮廓的的抗滑特性。
     基于搓揉试验,采用传统的构造深度和摩擦系数等常规试验方法以及自主研发的轮廓测量仪试验方法对骨架密实型断级配GAC-13和密实悬浮型AC-13抗滑沥青混合料进行抗滑耐久性研究;进而对骨架密实型断级配GAC-13抗滑沥青混合料四种不同间断级配采用工业CT技术进行抗滑耐久性研究,以寻求具有良好初始抗滑性能和耐久性的抗滑沥青混合料设计。
     为验证室内试验研究成果,铺筑了实体工程,采用本文研发的测量手段和常规抗滑性能评价手段进行跟踪观测和对比分析,发现抗滑构造敏感区(深度)、体积孔隙率与摩擦系数、构造深度等常规指标具有较高的相关性。但基于搓揉实验和轮廓测量仪的室内抗滑性能研究结果与实体工程现场试验结果差异较大,初步分析与室内试验车辙板成型工艺与实体工程压实工艺差别显著有关。因此,如何改进现场摊铺碾压施工工艺以提高沥青路面抗滑性能,是今后值得研究的方向。
     本文研究可显著改善沥青路面抗滑表层设计过分依赖经验的落后现状,实现科学设计沥青路面抗滑性能,从而降低资源与造价浪费,提高路面安全性能。
Along with social civilization improvement, people focus more on the safety oftransportation. Improve the anti slide performance of asphalt pavements has become a keytechnology to guarantee the safe transportation, and the contact of tires and rough pavementsurface is the key of this technology.
     This paper studies the asphalt pavement anti slide performance by analyzing the contactof tires and different pavement surface macro profile and figure out the key factors thatinfluence the performance. Based on film pressure technology, this paper also points out therelation of the contact of tires and different pavement surface macro profile by comparativeexperiments to prove the importance of the surface profile to the anti slide performance of thepavements.
     To measure the macro profile of asphalt pavement surface, a high precision (10μm)laser-measuring technology based measuring instrument has been researched and developedto test the surface of mixed asphalt and its dying features from tridimensional view. Based onthis study, this paper points out anti slide performance such as peak angle of the pavementsurface profile and its decay rate and the standard to evaluate anti slide performance anddurability. Paper also proposes the peak angle effective guarantee rate is more than70%basedon anti slide performance rubbing experiment under testing condition of60℃standardtemperature and eight hours standard time.
     This paper studies the reduction feature of1~2cm depth of asphalt pavement surface byhigh precision (0.1mm) industrial CT technology from angle and tridimensional view. Thestudy proposes anti slide performance and durability evaluating index such as particle arearatio, volume porosity, anti slide structure sensitive area reduction rate, etc., and points outvolume porosity is more than10.6%and anti slide structure sensitive area reduction rate isless than34%based on anti slide performance rubbing experiment under testing condition of60℃standard temperature and eight hours standard time.
     To simulate accelerated loading function of traffic load on the asphalt pavement to theanti slide performance, an indoor rubbing experiment device has been researched andinvented. The study uses single particle of composite material of epoxy resin to verify compaction or abrasion effect of traffic load influence by the rubbing experiment andestablishes a relevant anti slide performance evaluating system to show the influence ofsurface profile to the asphalt pavement’s anti slide performance.
     Based on rubbing experiment, this paper studies the anti slide performance and durabilityof tense graded asphalt mixed with GAC-13and tense-suspension grade asphalt mixed withAC-13by traditional conventional test methods such as texture depth and friction coefficient,and self-invented shape measuring instrument. Furthermore, paper studies the anti slideperformance and durability of four grades of tense grade asphalt mixed with GAC-13byindustrial CT technology to seek mix anti slide asphalt with better starting anti slideperformance and durability.
     To prove the experimental research result, this study has been applied on runningprojects. Tracking observation and comparative analysis based on measuring methods and antislide performance evaluation method this study developes shows that anti slide structuresensitive area(depth),volumetric porosity, coefficient of friction, structural depth, etc. thoseconventional indicators can highly meet the research result. But study of anti slideperformance based on rubbing experiment and profile measuring instrument has largedifference comparing to running projects testing result. This may be caused by the obviousdifference of lab testing plates and running projects plates forming process. Therefore, toimprove plates forming process of the running projects to increase anti slide performance ofasphalt pavements is another further research area.
     Study of this paper can remarkably change the fall-behind situation that the design ofasphalt pavement largely depends on experience and realize scientific design of asphaltpavement anti slide performance. Therefore, to reduce the resource waste and to improve thesafety of pavements.
引文
[1]李雪莲,査旭东,张起森.基于Matlab的高速公路沥青路面状况评价模糊决策系统[J].长沙交通学院学报,2004,20(4):78-81
    [2]董昭.加速磨耗试验与沥青路面材料抗滑性能衰变规律研究[D].西安:长安大学,2011
    [3]刘清泉.沥青路面抗滑表层的修筑[J].中国公路学报,1994.12, Vol.7(增1):18-24
    [4]Lower Hutt. Skid Resistance-the Influence of Alluvial Aggregate Size and Shape[J].Proceedings Conference of the Australian Road Research Board,1998(7):238-259
    [5]Ibrahim M.Asi. Evaluating Skid Resistance of Different Asphalt Concrete Mixes [J].Building and Environment,2007(42):325-329
    [6]Mahmoud,E., and E. Masad.Experimental Methods for the Evaluation of AggregateResistance to Polishing, Abrasion and Breakage.Journal of Materials in CivilEngineering,ASCE,2007,19(11):977-985
    [7]Alshibli Khalid A. Characterizing surface roughness and shape of sands using digitalmicroscope. Journal of Computer in Civil Engineering,2004(18):36-45
    [8]钟燕辉,张蓓,胡亚男.沥青路面纵向抗滑性能影响因素试验研究[J].中外公路,2009, Vol.29(10):96-99
    [9]Walters M H. Unever wear of vehicle tires [J]. Tire Science and Technology,1993,21(4):201-219
    [10]Sakai H. Fricion and wear of tire tread rubber[J]. Tire science and Technology,1996,24(3):252-275
    [11]Moore D F. The friction and lubrication of elastomers [J]. Pergamon Press,1975:08-115
    [12]王野平.论轮胎与路面间的摩擦[J].汽车技术,1999(2):10-14
    [13]彭旭东,谢友柏,郭孔辉.轮胎摩擦学的研究与发展[J].中国机械工程,1999,10(2):219-224
    [14]俞淇,戴元砍,张凯.静负荷下轮胎接地压力分布测试的研究[J].轮胎工业,1999,19(4):203-207
    [15]孙建林,萧田国,黄立宇,等.橡胶轮胎与路面间摩擦模型及分析[J].青海大学学报(自然科学版),2004,22(4): l-5
    [16]王吉忠,顾善发,宋年秀.轮胎与路面之间的摩擦和附着[J].轮胎工业,2002,22(2):67-70
    [17]Dodds C J, Robson J D. The description of road surface roughness[J]. Journal of Soundand Vibration,2003,31(2):175-183
    [18]张伟光,杨军.基于集料特性与级配的沥青混合料抗滑性能预测方法[J].中外公路,2010,30(2):230-235
    [19]曾庆成,王端宜,蔡旭.基于能量等价损耗原理的路面抗滑性能预测[J].武汉理工大学学报(交通科学与工程版),2012,36(3):532-536
    [20]赵战利,张争奇,胡长顺.集料级配对沥青路面抗滑性能的影响[J].长安大学学报(自然科学版),2005,25(1):6-9
    [21]张兰芳,费建国.高等级公路沥青路面抗滑性能研究[J].林业建设,2004,(2):20-23
    [22]陈俊,黄晓明.沥青路面多尺度结构的荷载响应分析[J].建筑材料学报,2012,15(1):116-121
    [23]刘晓斌,刘聚德.轮胎与路面面接触包容特性建模[J].青岛建筑工程学院学报,1998,19(4):51-53
    [24]周高峰,赵玉龙,蒋庄德,等.新型非硅薄膜网格压力传感器的研究[J].传感技术学报,2008,21(6):929-932
    [25]庄保华,王少清.高精度激光三角法位移测量被测表面倾斜影响研究[J].计量技术,1996,(2):2-5
    [26]赵育良.微丝直径激光测量系统的改进及提高精度的研究[J].光学技术,2005,(31):125-129
    [27]梁凤超,续志军.基于PSD的微位移传感器[J].传感器与微系统,2007,26(3):59-61
    [28]吴剑锋,王文,陈子辰.激光三角法测量误差分析与精度提高研究[J].机电工程,2003,20(5):89-92
    [29]钱晓凡,吕晓旭,钟丽云,等.提高激光三角法测量精度的新方法[J].激光杂志,2000,21(3):54-56
    [30]张肖宁.沥青混合料材料结构数字图像技术的基本方法[J].华南理工大学学报(自然科学版),2012,40(10):166-173
    [31]张肖宁,段跃华,李智,等.基于X-ray CT的沥青混合料材质分类方法[J].华南理工大学学报(自然科学版),2011,8(10):120-124
    [32]张肖宁,李智,虞将苗.沥青混合料的体积组成及其数字图像处理技术[J].华南理工大学学报(自然科学版),2002,30(11):113-118
    [33]吴文亮.沥青混合料的数字图像处理技术与概率统计方法研究[D].广州:华南理工大学,2009
    [34]段跃华.基于X-ray CT的沥青混合料粗集料基础特性研究[D].广州:华南理工大学,2011
    [35]肖鑫.超长连续下坡沥青面层抗滑性能研究[D].长沙:长沙理工大学,2009
    [36]肖能立,向中福,黎晓.公路路面抗滑性能影响因素研究[J].山西建筑,2011,(27):136-138
    [37]朱永刚.橡胶轮胎摩擦理论与数值化发展前景[J].弹性体,2006,(6):47-50
    [38]李天祥.沥青路面抗滑性能衰减试验研究[D].西安:长安大学,2009
    [39]Murat Ergun, Sukriye Iyinam, A.Faik Iyinam. Prediction of road surface frictioncoefficient using only macro and micro texture measurements[J]. Transp Engrg,2004,131(4):311-319
    [40]Nesbitt T R, Barron D J. Prediction of driving traction performance on snow[M].SAE800836,1980:36-45
    [41]Kokkalis A G. Prediction of skid resistance from texture measurements, Proceedings ofthe Institution of Civil Engineers[J], Transport,1998,129(2):85-93
    [42]Flintsch Gerardo W, De L eon Edgar, McGhee Kevin K, et al. Pavement surface macrotexture measurement and applications[J]. Transportation Research Record,2003,1860:168-177
    [43]Kokkalis A G, Tsohos G H, Panagouli O K. Consideration of fractals potential inpavement skid resistance evaluation[J]. Journal of Transportation Engineering,2002,128(6):591-595
    [44]Becchi I, Caporali E, Castelli F, et al. Field analysis of the water film dynamics on aroad pavement[J]. Phys.Chem.Earth (C),2001,26(12):717-722
    [45]季天剑,黄晓明,刘清泉.部分滑水对路面附着系数的影响[J].交通运输工程学报,2003,3(4):10-12
    [46]张会臣,高玉周,李亚斌,等.界面接触特性对两种自组装分子膜摩擦特性的影响[J].摩擦学报,2004,24(1):6-9
    [47]胡小弟,孙立军.重型货车轮胎接地压力分布实测[J].同济大学学报(自然科学版),2005,33(11):1443-1448
    [48]董文量,严霏,俞安明.沥青路面的抗滑机理和指标分析[J].南京市政,2006,(2):20-22
    [49]刘清泉.路面表面特性研究方向探讨[J].公路交通科技,1994,(2):1-5
    [50]王野平.论轮胎与路面间的摩擦[J].汽车技术,1999,(2):10-14
    [51]赵战利.基于分形方法的沥青路面抗滑技术研究[D].西安:长安大学,2005
    [52]吴金霞,唐质勇.路面抗滑机理分析[J].市政工程,1992,(3):1-9
    [53]曹平,严新平,白秀琴.沥青路面形貌对抗滑性能影响的理论分析[J].摩擦学学报,2009,(4):306-310
    [54]王书云.基于生心理因素的沥青路面性能关键参数研究[D].北京:北京工业大学,2010
    [55]刘利花.路面抗滑性能及其影响的试验和理论研究[D].北京:北京工业大学,2007
    [56]王利利.路面抗滑性能变化特性研究[D].北京:北京工业大学,2008
    [57]王端宜,李维杰,张肖宁.用数字图像技术评价和测量沥青路表面构造深度[J].华南理工大学学报(自然科学版),2004,32(2):42-45
    [58]吴文亮,李智,张肖宁.基于数字图像处理技术的沥青混合料均匀性评价(英文)[J].科学技术与工程,2007,11:5618-5622
    [59]李智.基于数字图像处理技术的沥青混合料体积组成特性分析[D].哈尔滨:哈尔并工业大学,2002
    [60]徐科.用于沥青混合料的数字图像处理技术及应用研究[D].广州:华南理工大学,2006
    [61]李智,徐伟,王绍怀,等.沥青混合料压实状态的数字图像分析[J].岩土工程学报,2002,24(4):451-455
    [62]陈国明.沥青混合料中粗集料表面物理特性的研究[D].哈尔滨:哈尔滨工业大学,2005
    [63]赵晶.基于数字图像的沥青路面表面构造评价体系研究[D].西安:长安大学,2012
    [64]Thomas Fletcher, Eyad Masad, Krishna Sivakumar. Aggregate Imaging System (AIMS)for Characterizing the Shape of Fine and Coarse Aggregates[J]. Transportation ResearchBoard (TRB), Washington,2003:2-31
    [65]曹平,白秀琴.沥青路表面分形特性与抗滑性能的关系研究[J].润滑与密封,2009,3:9-11
    [66]庄保华,王少清.高精度激光三角法位移测量被测表面倾斜影响研究[J].计量技术,1996,(2):2-5
    [67]赵育良.微丝直径激光测量系统的改进及提高精度的研究[J].光学技术,2005,31(1):125-129
    [68]梁凤超,续志军.基于PSD的微位移传感器[J].传感器与微系统,2007,26(3):59-61
    [69]吴剑锋,王文,陈子辰.激光三角法测量误差分析与精度提高研究[J].机电工程,2003,20(5):89-92
    [70]钱晓凡,吕晓旭.提高激光三角法测量精度的新方法[J].激光杂志,2000,21(3):54-56
    [71]贾洛.集料矿物成分对沥青混合料路用性能影响研究[D].西安:长安大学,2012
    [72]孙杨勇.粗集料表面微观构造分形性质探讨与沥青路面抗滑性能关系研究[D].广州:华南理工大学,2009
    [73]王辉,张起森.沥青路面抗滑表层的设计与对比分析[J].公路交通科,2004,5(5):15-17
    [74]张新天,高金岐,原文生,等.沥青路面抗滑表层构造特征及其影响因素分析[J].北京建筑工程学院学报,2005,6(2):33-36
    [75]邝海波,丁秀娴.高黏沥青对混合料路用性能影响研究[J].湖南交通科技,2012,38(4):64-66
    [76]吴旷怀,张肖宁.单一粒径为主的密断级配沥青混合料研究[J].哈尔滨建筑大学学报,1998,31(6):119-124
    [77]孔维芬. AK-13A沥青抗滑层路面配合比设计及施工[J].交通标准化,2008,(1):72-76
    [78]华永平.沥青路面抗滑表层AK-13B配合比优化设计[J].广东公路交通,2006,(4):27-31
    [79]米秋东,张镇山,唐雪飞. SAC-16与AK-16抗滑表层技术指标分析[J].辽宁省交通高等专科学校学报,2001,(4):46-48,62
    [80]刘涛,陈泰浩,吴枚良,等.沥青路面抗滑磨耗层水损害的原因与对策[J].公路交通技术,2007,4(2):55-60
    [81]李东海,李智. CAVF在AC-13沥青混合料设计中应用[J].低温建筑技术,2013,(1):10-12
    [82]周杰,王曦林,郑存艳,等.沥青混合料Superpave与马歇尔设计方法的比较[J].武汉理工大学学报,2007,9(9):68-70
    [83]刘福明,王江帅. Superpave级配对抗滑表层路用性能的影响[J].中南公路工程,2006,10(5):35-39
    [84]李明,郝健,刘志强. Superpave沥青混合料配合比设计应用研究[J].交通科技,2009,(1):71-73
    [85]孙式霜. Superpave沥青混合料设计方法应用研究[D].长春:吉林大学,2005
    [86]王正韶. SMA沥青混合料离析控制研究[D].济南:山东大学,2009
    [87]曹卫东.骨架密实型低噪声路面的研究及应用[D].上海:同济大学,2006
    [88]张肖宁,郭祖辛.按体积法设计沥青混合料[J].哈尔滨建筑大学学报,1995,28(2):28-36
    [89]王端宜.级配对沥青混合料体积特性的影响[J].华南理工大学学报(自然科学版),2002,30(3):53-56
    [90]王金安.应用激光技术和分形理论测量和描述岩石断裂表面粗糙度[J].岩石力学与工程学报,1997,(4):354-361
    [91]严安,吴科如,张东,等.混凝土材料断裂面信息的研究[J].同济大学学报(自然科学版),2001,29(11):1290-1293
    [92]王大庆.细集料几何特征参数的表征及对沥青混合料性能影响研究[D].哈尔滨:哈尔滨工业大学,2013
    [93]周纯秀,陈国明,谭忆秋.粗集料表面纹理粗糙度的分形测量和描述[J].哈尔滨工业大学学报,2009,41(11):85-89
    [94]孙朝云.沥青混合料组成特征数字图像处理系统研究[D].西安:长安大学,2007
    [95]Wang L B. An Evaluation of the Microstructures and the Macro-Behavior of Unboundedand Bonded Granular Materials[D]. Georgia: Georgia Institute of Technology,1998
    [96]Masad E, Jandhyala V K, Dasgupta N, et al. Characterization of air void distribution inasphalt mixes using X-ray computed tomography [J]. Journal of Materials in CivilEngineering,2002,14(2):122-129
    [97]张蕾.基于细观分析的沥青混合料组成结构研究[D].哈尔滨:哈尔滨工业大学,2008
    [98]潘艳珠,吴文亮,王端宜.基于工业CT技术的沥青混合料体积组成分析[J].公路与汽运,2010,(3):54-56
    [99]孙红红.基于CT图像沥青混合料三维有限元数值模拟研究[D].西安建筑科技大学,2012
    [100]万成,张肖宁,贺玲凤,等.基于真实细观尺度的沥青混合料三维重构算法[J].中南大学学报(自然科学版),2012,43(7):2813-2820
    [101]李晓军,张金夫,刘凯年,等.基于CT图像处理技术的岩土材料有限元模型[J].岩土力学,2006,27(8):1331-1334
    [102]虞将苗,李晓军,王端宜,等.基于计算机层析识别的沥青混合料有限元模型[J].长安大学学报(自然科学版),2006,(1):16-19
    [103]张冬冬.沥青混合料集料几何特性研究[D].西安:长安大学,2010
    [104]李芬,李之达,龚军安,等.基于CT图像分维估算的沥青混凝土损伤演化研究[J].湘潭大学自然科学学报,2006,38(2):52-55
    [105]谢涛.基于CT实时观测的沥青混合料裂纹扩展行为研究[D].成都:西南交通大学,2006
    [106]张倩,白燕,戴经梁.水对沥青混合料影响的CT图像熵值分析[J].公路,2007,4:158-161
    [107]冯樊.岩土材料拉伸强度仪研制与虚拟力学性能仿真[D].西安:西安科技大学,2010
    [108]J W Hall, K L Smith, L Titus-Glover. NCHRP Guide for Pavement Friction[C].Washington DC: Transportation Research Record,2009
    [109]Guidelines for the Management of Road Surface Skid Resistance[R]. AustroadsP-ublication No.AP-G83/05, Sydney: Austr-oads Incorporated,2005
    [110]Farber E, M S Janoff, S Cristinzio, et al. Dunning.Det-ermining PavementSkid-Resistance Requirements at Intersections and Braking Sites[C]. NCHRP ReportNo.154, Washington DC: National Cooperative Highway Rese-arch Program (NCHRP),2004.
    [111]King T R, Matyja F E.Tread design effect on winter traction[J]. SAE810067,1981,15(3):15-18
    [112]张勇.沥青路面抗滑表层级配优化研究[D].长春:吉林大学,2007
    [113]张肖宁,孙杨勇.粗集料的表面微观纹理的激光测量方法及分形性质研究[J].公路交通科技,2011,28(1):19-24
    [114]杜雪松.基于胎/路相互作用的路面抗滑特性研究[D].哈尔滨:哈尔滨工业大学,2012
    [115]Wallman C G, Astrom.Friction Measurement Methods and the Correlation BetweenRoad Friction and Traffic Safety[C]. Linkoping: Swedish National Road and TransportResearch Institute,2001
    [116]刘涛.沥青路面粗集料的微观构造及抗滑性能研究[D].广州:华南理工大学,2013

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700